Supplemental Data

Figure S1, related to Figure 1. p62 is overexpressed in the epithelium of human prostate tumors.

(A) p62 levels are increased in the epithelium of primary PCa tumors as compared to normal samples, and (B) are upregulated upon PCa progression. Analysis of TMA of Figure 1A. The H-score, the staining intensity of p62 in epithelium x the proportion of cells with the observed intensity, was used to grade p62 expression levels in each sample. Students t test (*p < 0.05,**p < 0.01).

Α

в

Gene sets enriched in phenotype p62 KO- Analysis with C5 database of MSigDB v. 3.1

	Response to	wounding	Ge	the sets enficie
pe	2KO vs WT	Biogroup	RANK	MSigDB
	(BST)	(BgI)	1	GENERATION OF A S
			2	G PROTEIN SIGNALIN
			3	CYCLIC NUCLEOTIDE
	275 14	446	4	HUMORAL IMMUNE R
			5	HORMONE SECRETIO
		/ /	6	RESPONSE TO WOUL
			7	DETECTION OF ABIO
	Overlap p	o-value:	8	CELL CELL SIGNALIN
	9.0E=	-10	9	RESPONSE TO EXTE
	n value:		10	NEGATIVE REGULATI
æ	p-value.		11	SECOND_MESSENGER
ž	9.0E-10		12	NEUROLOGICAL_SYS
va			13	INFLAMMATORY_RES
à			14	DETECTION_OF_STIM
Ĭ		n-value.	15	ECTODERM_DEVELOP
ő		0 1836	16	POTASSIUM_ION_TRA
		0.1000	17	REGULATION_OF_MU
			18	DEFENSE_RESPONSE
	12 genes	2 genes	19	G_PROTEIN_SIGNALIN
	Bs1 [†] Bg1	Bs1∲ Bg1	20	SYNAPTIC_TRANSMIS
-				_

_	· · · · · · · · · · · · · · · · · · ·										
ĸ	MSigDB	Size	ES	NES	NOM p-val	FDR q-val	FWER p-val				
	GENERATION OF A SIGNAL INVOLVED IN CELL CELL SIGNALING	26	0.61	1.85	0.001	0.222	0.247				
	G_PROTEIN_SIGNALING_COUPLED_TO_CYCLIC_NUCLEOTIDE_SECOND_MESSENGER	95	0.46	1.82	0	0.166	0.344				
	CYCLIC_NUCLEOTIDE_MEDIATED_SIGNALING	97	0.46	1.78	0	0.181	0.499				
	HUMORAL_IMMUNE_RESPONSE	29	0.56	1.75	0.006	0.182	0.599				
	HORMONE_SECRETION	16	0.64	1.74	0.006	0.172	0.664				
	RESPONSE_TO_WOUNDING	171	0.41	1.73	0	0.15	0.685				
	DETECTION_OF_ABIOTIC_STIMULUS	19	0.61	1.73	0.007	0.137	0.708				
	CELL_CELL_SIGNALING	364	0.38	1.72	0	0.132	0.746				
	RESPONSE_TO_EXTERNAL_STIMULUS	274	0.38	1.71	0	0.125	0.771				
	NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS	27	0.55	1.69	0.008	0.14	0.838				
	SECOND_MESSENGER_MEDIATED_SIGNALING	141	0.41	1.69	0	0.137	0.861				
	NEUROLOGICAL_SYSTEM_PROCESS	343	0.37	1.68	0	0.135	0.876				
	INFLAMMATORY_RESPONSE	113	0.41	1.65	0.001	0.172	0.944				
	DETECTION_OF_STIMULUS	41	0.49	1.65	0.006	0.16	0.945				
	ECTODERM_DEVELOPMENT	69	0.44	1.65	0.004	0.15	0.945				
	POTASSIUM_ION_TRANSPORT	56	0.46	1.64	0.004	0.147	0.953				
	REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS	129	0.4	1.64	0.001	0.146	0.959				
	DEFENSE_RESPONSE	209	0.38	1.64	0.001	0.139	0.96				
	G_PROTEIN_SIGNALING_COUPLED_TO_CAMP_NUCLEOTIDE_SECOND_MESSENGER	60	0.45	1.63	0.009	0.136	0.964				
	SYNAPTIC TRANSMISSION	162	0.38	1.62	0.001	0.141	0.975				

E STROMAL_STIMULATION_UP

F HUMORAL_IMMUNE_RESPONSE

-	_	_	-	-	-	_			Sample Nan
									TREM1
									CCR6
									IL6
							1		CCL2
									BST1
									MNX1
									KRT1
									TREM2
				5					IL7
				1					PAX5
									BLNK

Š	¥0	NO Y	¥0	¥0	Ň	M	2	5	ž	5	EN	Comple No
												CXCL2
										-		KNG1
												S10049
												CCL3
												S100A8
												IL1A
												S1PR3
												CXCR4
_												TNFAIP6
_												FOS
								_				IL5
					-				_	_		CXCR2
-		-					-					ANSG
-					-		-					CERPR
												CXCI 11
												KLRG1
												TACR1
												IL20
												IL1RAP
												LBP
												CRP
												IL18RAP
												HDAC5
												ELF3
		_	-				-	_				ADORA3
_			-						-	-		MEFV
					-		-			-		ORM1
												ALUA15
							-			-		CCI 20
												ADORA2A
												GHSR
												HDAC4
												NLRP3
												PTAFR
												IRAK2
												CCL24
												BLNK
												PLA2G2E
												ALOX5AP
												IL17C
												HDAC9

G INFLAMMATORY_RESPONSE

Figure S2, related to Figure 2. p62 deficiency in the stroma promotes a CAF and an inflammatory phenotype.

(A) Genes differentially expressed between orthotopic tumors from WT and p62 KO mice were subjected to NextBio analysis to identify biosets that contain similar genes. Venn diagrams show the number of common and unique genes in both sets. (B and C) Differentially expressed genes in orthotopic tumors from p62 KO mice analyzed by GSEA against C5 biological processes of the MSigDB database. (B) The top-ranked twenty gene sets enriched in p62 KO tumors are shown. (C) Leading edge genes of the "response to wounding" gene set. (D and E) Differentially expressed genes in orthotopic tumors from p62 KO mice analyzed by GSEA against C2 curated gene sets of the MSigDB database. (D) GSEA plot of the selected "stromal stimulation" gene set. (E) Leading edge genes of gene set of D. (F and G) Leading edge genes of selected gene sets enriched in p62 KO tumors from analysis shown in (B).

Figure S3, related to Figure 3. Loss of p62 in the prostate stroma promotes tumorigenesis in the prostate epithelium.

(A-C) H&E-stained organotypic cultures of different type of PCa cells: Myc-CaP (A), PC3 (B) and PNT2 (C) combined with fibroblasts from WT and p62 KO mice. Right panels show quantification of PCa cell invasion and proliferation of the organotypic experiments. (D) H&E-stained organotypic cultures of Myc-CaP cells with macrophages from WT and p62 KO mice. Right panels show quantification of PCa cell invasion and proliferation of the organotypic experiments. (E) The TGF β ______ SB431542 effectively blocks TGF β signaling as determined by immunoblot with pSMAD2. (F-H) Selective knockdown of IL-6 in p62 KO fibroblasts reverted increased IL-6 (F) and TGF β G production as determined by ELISA, as well as PCa invasion as determined by modified Boyden chamber assay (H). (I) Addition of IL-6 to p62/IL-6 DKO fibroblasts restored TGF β levels. IL-6 was added for 48 hr and TGF β _____levels were determined by RT-PCR. (J) PCa invasion determined by modified Boyden chamber assay in fibroblasts from the different genotypes. IL-6 was exogenously added to p62/IL-6 DKO fibroblasts. Data are means \pm SEM (n = 4). *p < 0.05, **p < 0.01. ***p < 0.001, ****p < 0.0001. Scale bars, 100 µm.

Figure S4, related to Figure 6. p62 role in prostate stroma of PTEN^{+/-} mice.

(A-C) IL-6 ELISA (A) and RT-PCR of IL-6 (B) and c-Myc (C) in prostate stromal cells from PTEN^{+/-} and PTEN^{+/-}/p62 KO mice (n = 6). (D) p62 levels are downregulated in the prostate stroma of PTEN^{+/-} mice. Immunostaining of p62 (green) and DAPI (blue) were performed in prostate sections of WT and PTEN^{+/-} mice of 9 months of age (n = 4). **p < 0.01, ****p < 0.0001. Scale bar, 25 μ m. Results are presented as means ± SEM.

Figure S5, Related to Figure 7. p62 signature in human stroma.

(A) Heat map of the top 25 genes differentially expressed (FDR > 0.0002 and fold > 1.5) in the top 25% versus the bottom 25% of human stroma samples ranked by p62 expression levels. Expression data were extracted from the GSE9014 dataset. Blue and red in the heatmap indicate genes that are underexpressed or overexpressed, respectively. (B-H) A positive significant correlation of gene expression between p62 and ATPV0E (B), VPS16 (C), VAPB (D), RSP3 (E), RPL9 (F), LAPTM5 (G), and eIF4E (H) is shown for human stromal samples from the GSE9014 dataset.