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Supplementary Figure 1
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Model performance assessment of clinical and individual molecular data types using permutation tests.
The histograms show the distributions of the median C-indexes of the 100 survival-permuted data for (a) KIRC,
(b) GBM, (c) OV, and (d) LUSC. The median C-index values of the original survival data were marked with the

vertical dashed lines. The P-values were calculated based on the permutation C-index distributions.
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Comparison of the training performance of clinical variables, molecular data and their combina-

tions by Cox and RSF.

The training C-indexes by models from clinical variables, individual molecular data alone or in combina-

tion with clinical variables in (a) KIRC, (b) GBM, (c) OV and (d) LUSC.



C—-index

C—-index

Supplementary Figure 3

a
«© _| - —
o -
5 H RN
S I E 3 H | ﬂ L
© : I I I HI
© I [ ! ! ;-
0 | < ; 4 - 4 -
o - — —_

O LASSO + Cox

® LASSO + RSF GBM

T T T T 1
Clinical +SCNA +methy +mRNA  +miRNA

Mg

0.7

0.5
v
v
v

RSF i ;
Minimum depth + RSF +
Variable hunting + RSF

LASSO + RSF GBM

0.4
EC0OHE

\ \ \ \ \
Clinical +SCNA +methy +mRNA  +miRNA

C—-index

C—-index

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.8

0.6

0.4

0.2

14

7| @ LASSO + Cox

B LASSO + RSF LUSC

T T T T T
Clinical +SCNA +mRNA  +miRNA  +Protein

HEH g

RSF 3 Lol
Minimum depth + RSF -

Variable hunting + RSF
LASSO + RSF LUSC

EO0OM®m

T T T T T
Clinical +SCNA +mRNA  +miRNA  +Protein

The effect of learning algorithms on model performance.

The C-indexes obtained by using the same LASSO approach before Cox and RSF for molecular+clinical
data for (a) GBM and (b) LUSC. The C-indexes obtained by using different feature selection methods
before RSF for molecular+clinical data for (c) GBM and (d) LUSC.
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The effect of sample size on the model
performance.

The C-indexes obtained by using incremental
proportions of the original training samples as
the new training set for (a) KIRC DNA methyl-
ation, (b) KIRC mRNA expression, (c) KIRC
miRNA expression, (d) KIRC protein expres-
sion and (e) LUSC protein expression.
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Scheme of TCGA Pan-Cancer Survival Prediction Project.

Submitter Submission Score Status Report

Larsson Omberg syn1876294 0.519571 SCORED GBM, miRNA
Larsson Omberg syn1747046 0.615554 SCORED LUSC, RPPA
syn1894743 0.701120 SCORED KIRC, miRNA

Yuan Yuan syn1895168 0.551507 SCORED OV, CNV
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Biological insights from the KIRC mRNA-expression subtype.
(a) The Kaplan-Meier plot of the patients from the KIRC core set stratified by KIRC mRNA NMF subtypes. (b) The
top differentially expressed genes among KIRC mRNA NMF subtypes grouped by the top enriched pathways.
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Biological insights from the KIRC protein-expression subtype.
(a) The Kaplan-Meier plot of the patients from the KIRC core set stratified by KIRC protein NMF subtypes. (b)
The top differentially expressed protein markers among KIRC protein NMF subtypes.
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The Kaplan-Meier plot of KIRC patients stratified by the risk
scores predicted using the models trained from OV SCNA data.
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Alterations in clinically relevant genes across 12 tumor types in non-hypermutated tumors.

A subset analysis of mutations and indels in 2,892 patients representing 12 tumor types reveals a long tail of
the frequency distribution of alterations in clinically relevant genes that warrant further exploration, focusing
specifically on those with estimated mutation rates of < 10 mutations/Mb (a-b). As with the larger set (Fig. 5),
expanding tumor profiling beyond hotspot profiling technologies (c) to whole exome sequencing (d) increases
the percentage of patients in all tumor types that may harbor clinically relevant alterations. While the distribu-
tion is not identical to the larger set, hotspot alterations in known cancer genes occur at low frequencies in
unexpected tumor types (e); and alterations in emerging genes with potential clinical relevance are observed
across tumor types (f-i). For a key to the tumor types, see Supplementary Table 4.
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Supplementary Table 1. The important features for LUSC protein-expression-based

model by RSF.

Feature HR Wald_P Pathway
MSH2.MSH2.M.C 0.45 0.0046 DNA repair/MSI
MSH6.MSH6.R.C 0.48 0.0019 DNA repair/MSI
MRE11A Mrell.R.C 8.74 0.0072 DNA repair
CHEK2.Chk2 pT68.R.C 0.14 0.0093 DNA repair
XRCC5.Ku80.R.C 0.46 0.0105 DNA repair
GSK3A.GSK3B.GSK3.alpha.beta. M.V 0.19 0.0022 Metabolism
ACACA.ACCIL.R.C 0.59 0.0162 Metabolism
ASNS.ASNS.R.C 0.62 0.0147 Metabolism
PRKAA1.AMPK pT172.R.V 0.42 0.0025 Metabolism
COL6A1.Collagen VIRV 1.80 0.0130 EMT/Stroma
CDH2.N.Cadherin.R.V 5.37 0.0170 EMT/Stroma
MAPKS8.INK pT183 pT185.R.V 4.44 0.0465 Apoptosis signaling
CDC2.CDK1.R.V 3.24 0.0096 Apoptosis signaling
CASP3.Caspase.3_active.R.C 0.17 0.0116 Apoptosis signaling
FOX03.FOX03a pS318 S321.R.C 2.68 0.0038 PI3K/AKT
PTCHI1.PTCH.R.C 1.80 0.0130 Sonic Hedgehog signaling

HR: hazard ratio; Wald_P: the P-value from Wald’s test
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Supplementary Table 4. The short letter code for TCGA tumor types.

Short Letter Code Tumor Type

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

COAD Colon adenocarcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma
KIRC Kidney renal clear cell carcinoma
LAML Acute Myeloid Leukemia

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

ov Ovarian serous cystadenocarcinoma
READ Rectum adenocarcinoma

UCEC Uterine Corpus Endometrioid Carcinoma
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Supplementary Text

The effects of machine learning algorithm and feature selection on model performance

The overall predictive power of models built using the Cox and RSF methods are quite similar:
for example, the predictive power of molecular data is generally high for KIRC but low for GBM.
However, RSF models performed worse than Cox models in some scenarios (e.g., OV clinical
variables only, GBM/LUSC clinical + molecular data), and we determined that the discrepancy
arises from several factors. Compared with Cox, the models built by RSF consistently showed
higher C-indexes on the training set (Supplementary Fig. 2), suggesting a higher likelihood of
over-fitting. The feature selection scheme used by each method also contributes to the
performance difference. Indeed, given the same feature set selected by LASSO, the performance
difference between these two methods became smaller (Supplementary Fig. 3a-b). To further
investigate the effect of feature selection, we examined two additional feature selection methods
for RSF, minimal depth variable selection and variable hunting®. As shown in Supplementary
Figure 3c-d, adding one feature selection step before RSF did not necessarily improve the model

performance, and none of the feature selection methods appeared to be superior in all the cases.

The effects of the training set sample size on model performance

In addition, we investigated the effect of the training set sample size on model performance. We
conducted serial samplings and monitored the C-index as the training sample size varied for the
cases where molecular data had substantial predictive power (median C-index > 0.6) (Online
Methods). These cases include KIRC DNA methylation, KIRC mRNA expression, KIRC miRNA
expression, and KIRC and LUSC protein expression. As expected, when the training sample size
increased, there was a clear increase in the median C-index (Supplementary Fig. 4). For KIRC
and LUSC protein expression, the C-index continued to improve up to the full sample set
(Supplementary Fig. 4d-e), so a further increase in the number of training samples would likely
boost the performance of these models. For KIRC DNA methylation, mRNA expression and
miRNA expression, a high median C-index (C-index > 0.7) could be achieved with fewer training
samples (60%, 50% and 80% of the current training size, respectively) with the plateau being
reached at a proportion of 0.9, 0.7, and 0.9, respectively (Supplementary Fig. 4a-c). For these

cases, sample size might not represent a major factor limiting model performance.
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