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I. DATA

The DNA nucleotide data used in our analysis con-
sists of human CD4+ naive (CD45RO-) or memory
(CD45RO+) β chain sequences from 9 healthy indi-
viduals, sequenced and made available to us by H.
Robins and already used in [1]. Reads are 60 base
pair long for 6 donors and 101 base pair long for 3
donors (individuals 2, 3 and 7) and contain the CDR3
region and neighboring V and J gene nucleotides. All
end at the same position in the J gene, with four nu-
cleotides between this position and the first nucleotide
of the conserved phenylalanine. The data were divided
into out-of-frame reads (non-coding), used to learn the
pre-selection model as described in [1] and in-frame
(coding) reads used in the analysis presented in this
paper. The sequence data we used are available at
http://princeton.edu/~ccallan/TCRPaper/data/.

In our study we limit ourselves to unique sequences.
The experimental procedure and initial assessment of the
quality of the reads were done in the Robins lab following
the procedures described in [2, 3]. Each sequence was
read multiple times, allowing for the correction of most
sequencing errors. The numbers of unique sequences used
in each dataset is shown in Table SI.

Naive Memory

Donor 1 311917 177744

Donor 2 242254 135567

Donor 3 195007 119906

Donor 4 130958 142017

Donor 5 147848 32468

Donor 6 187245 104119

Donor 7 251335 136419

Donor 8 42326 120527

Donor 9 254349 89830

Table S I: Number of unique coding sequences in each
datasets.

The alignment to all possible V and J genes was done
using the curated datasets in the IMGT database [4].
There are 48 V genes, 2 D genes and 13 J genes plus a
number of pseudo V genes that cannot lead to a function-
ing receptor due to stop codons. We discarded sequences

∗

that were associated to a pseudo-gene as our model only
accounts for coding genes. The germline sequences of the
genes used in our analysis are the same as were used in
[1] to analyze the generative V(D)J recombination pro-
cess. The complete list of gene sequences can be found at
http://princeton.edu/~ccallan/TCRPaper/genes/.

II. PRE-SELECTION MODEL

The pre-selection, or generative model, assumes the
following structure for the probability distribution of re-
combination scenarios S [1]:

Ppre(S) =P (V )P (D,J)P (insVD)P (insDJ)

P (delV|V )P (dellD,delrD|D)P (delJ|J)

P (s1)P (s2|s1) · · ·P (sinsVD|sinsVD−1)

P (t1)P (t2|t1) · · ·P (tinsDJ|tinsDJ−1),

(1)

where a scenario is given by the VDJ choice, the
number of insertions insVD, insDJ and the num-
ber of deletions (delV,dellD), (delrD,delJ) at each
of the two junctions, together with the identi-
ties (s1, . . . , sinsVD),(t1, . . . , tinsDJ) of the inserted nu-
cleotides. It is worth noting that the insertions are as-
sumed to be independent of the identities of the genes
between which insertions are made. By contrast, the
deletion probabilities are allowed to depend on the iden-
tity of the gene being deleted. The validity of these as-
sumptions is verified a posteriori.

III. MODEL FITTING

A. Maximum likelihood formulation

The model probability to observe a given coding nu-
cleotide sequence is:

Ppost(~τ , V, J) = Q(~τ , V, J)Ppre(~τ , V, J), (2)

where ~τ = (τ1, . . . , τ3L) is the nucleotide sequence of the
CDR3 (defined as running from the conserved cysteine
in the V segment up to the last amino acid in the read,
leaving two amino acids between the last read amino acid
and the conserved phenylalanine in the J segment), L is
the length of the CDR3, and V and J index the choice
of the germline V and J segments (which completely de-
termine the sequence outside the CDR3 region). The D
segment is entirely absorved into ~τ , and is not explicitly
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tracked in assessing selection. The selection factor Q is
assumed to take the following factorized form:

Q(~τ , V, J) =
1

Z
qL qV,J

L∏
i=1

qi;L(ai). (3)

where ~a = (a1, . . . , aL) is the amino-acid sequence of the
CDR3, and Z is a normalization constant that enforces∑

~τ,V,J

Ppost(~τ , V, J) = 1. (4)

The probability, Ppre(~τ , V, J), of generating a specific
sequence in a V(D)J recombination event can be ob-
tained from the noncoding sequence reads by the meth-
ods explained in [1]. Specifically, the pre-selection model
gives the probability Ppre(S) of a recombination scenario
S = (V,D, J, insVD, insDJ,delV, . . .) as given by Eq. 1.
A scenario S completely determines the sequence ~τ , but
the converse is not true. The pre-selection probability
for a coding sequence is thus given by

Ppre(~τ , V, J) =
1

pcoding

∑
S→(~τ,V,J)

Ppre(S) (5)

where we sum over scenarios resulting in a particular
CDR3 sequence ~τ and a particular V, J pair. The nor-
malization factor pcoding ≈ 0.26 corrects for the fact that
a randomly generated sequence is not always productive
(i.e. in-frame and with no stop codon). From this point
on, we regard the initial generation probability of any
specific read as known. When we make statements about
the pre-selection distribution of CDR3 properties, such as
length or amino acid utilization, they are derived from
synthetic repertoires drawn from the above pre-selection
distribution.

We want to infer the parameters qL, qV,J and qi;L(·) of
the model from the observed coding sequence repertoires.
Formally we want to maximize the likelihood of the data
given the model. Unfortunately the sequence reads from
the data are not long enough to fully specify the V and
J segments, so we cannot use Ppost(~τ , V, J) as our raw
likelihood. Instead, we need to write the probability of
observing a given (truncated) read ~σ, of length 60 or 101
nucleotides, depending on the donor:

Ppost(~σ) =
∑

(V,J,~τ)→~σ

Ppost(~τ , V, J). (6)

where we note again that (~τ , V, J) fully specifies ~σ, while
~σ fully specifies ~τ , but not V and J. Given a dataset of
N sequences, ~σ1, . . . , ~σN (see Fig. S1 for notations), the
likelihood reads:

L(Q) =

N∏
a=1

Ppost(~σ
a). (7)

Our goal is maximize L with respect to the parameters
qL, qV,J , and qi;L(·) (globally refered to as Q).

a
CDR3

sequence read (60 or 100 nt)

. . .

V J

data sequences

generated sequences (V and J are known)

ξM

ξ1

1

N

. . .

1

M

V1

VM

J 1

J M

1

N

Fig. S 1: Summary of the notations used in this paper for the
sequences. The CDR3 region is defined from the conserved
cysteine around the end of the V segment to the last amino-
acid in the read, leaving two amino acids to the conserved
phenylalanine in the J segment. The nucleotides in the read
are defined as σi, the nucleotides in the CDR3 region as τi
and the amino acids in the CDR3 region as ai. The data
sequences therefore can be defined in terms of ~σ, or their V ,
J genes and ~τ . The generated sequences, with known V and

J genes, are defined in terms of ~ξ for the whole sequence or ~ρ
for only the CDR3.

B. Expectation maximization

Calculating Ppost(~σ) is computationally intensive.
Given the form of the model, it seems more natural
to work with Ppost(~τ , V, J), but this likelihood involves
the “hidden” variables V and J . To circumvent this
problem, we use the expectation maximization algorithm
[5, 6]. This algorithm uses an iterative two-step process,
with two sets of model parameters Q and Q′. The log-
likelihood of the data is calculated using the set of param-
eters Q′; in the “Expectation” step, this log-likelihood is
averaged over the hidden variables with their posterior
probabilities, which are calculated using the second set
of parameters Q. In the “Maximization” step, this av-
erage log-likelihood is maximized over the first set Q′,
while keeping the second set Q fixed. Then Q is updated
to the optimal value of Q′, and the two steps are repeated
iteratively until convergence.

In practice, starting with a test set of parameters Q,
we calculate, for each sequence of the data, the posterior
probability of a (V, J) pair:

Ppost(Va, Ja|~σa) =
Q(~τa, Va, Ja)Ppre(~τ

a, Va, Ja)∑
V,J Q(~τa, V, J)Ppre(~τa, V, J)

. (8)

The log-likelihood, expressed in terms of the hidden vari-
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ables V and J , is maximized after averaging over V and
J using that posterior. Specifically we will maximize:

L̂(Q′|Q) =

N∑
a=1

〈logPpost(~τ
a, Va, Ja;Q′)〉Q

≡
N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q) logPpost(~τ
a, Va, Ja;Q′).

(9)

Here we have added the Q dependencies explicitly be-
cause there are two different parameter sets Q and
Q′. The maximization is performed over Q′, which
parametrizes the log-likelihood itself, while keeping Q,
which parametrizes how the average is done over the hid-
den variables, constant. After each maximization step we
substitute:

Q← argmaxQ′L̂(Q′|Q), (10)

and iterate until convergence. This procedure is guaran-
teed to find a local maximum of the likelihood L(Q).

C. Equivalence with fitting marginal probabilities

The expectation-maximization step can be simplified
by noting that at the maximum, derivatives vanish:

∂L̂(Q′|Q)

∂Q′
= 0. (11)

Precisely, we take derivatives with each of the param-
eters, qL, qV J etc. and set them to zero. Since
Ppost(~τ , V, J) is naturally factorized in the Q parameters,

we obtain simple expressions, e.g. ∂L̂/∂ log q′L = 0 gives:

N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q)

(
δLa,L −

∂ logZ

∂ log q′L

)
= 0,

(12)
where δa,b is Kronecker’s delta function. The term in the
sum gives the total number of sequences in the data with
length L. Besides we have:

∂ logZ

∂ log q′L
=
∑
~τ,V,J

δL(~τ),LPpost(~τ , V, J ;Q′) = Ppost(L;Q′).

(13)
Hence the maximality condition simply becomes:

Pdata(L) = Ppost(L;Q′), (14)

i.e. that the length distribution of the model must be
equal to that of the data. Similarly, maximizing with
respect to qi;L(ai) entails that single amino-acid frequen-
cies at a given position are matched between data and
model:

Pi;L,data(ai) = Pi;L,post(ai;Q
′). (15)

The condition for qV J is slightly different, because we do
not directly have the frequencies of V and J in the data.
This is replaced by their expected frequency under the
posterior Ppost(Va, Ja|~σa) taken with parameters Q:

1

N

N∑
a=1

Ppost(V, J |~σa;Q) = Ppost(V, J ;Q′), (16)

where again the left-hand side is the empirical distribu-
tion of V and J (indirectly estimated with the help of the
model with parameters Q), and the right-hand side is the
model distribution of the same quantities (estimated with
parameters Q′, which are then varied to achieve equal-
ity with the data estimate). The approach of iteratively
adjusting model parameters to match a corresponding
set of data marginals is a conceptually clear and com-
putationally effective implementation of the expectation
maximization algorithm.

D. Gauge

As defined above, the model is degenerate: for each
i, L, the factors qi;L(a) and Z may be multiplied by a
common constant without affecting the model. We need
to fix a convention, or gauge, to lift this degeneracy. We
impose that, for each i, L:

20∑
a=1

Pi;L,pre(a)qi;L(a) = 1. (17)

where Pi;L,pre(a) is the probability of having amino-acid
a at position i in CDR3s of length L.

E. Numerical implementation

To solve the fitting equations (14)-(16) in practice, we
use a gradient descent algorithm:

qL ← qL + ε [Pdata(L)− Ppost(L;Q′)] , (18)

and similarly for qi;L and qV J . To do this, we
must be able to calculate the marginals Ppost(L;Q′),
Pi;L,post(ai;Q

′) and Ppost(V, J ;Q′) from the model at
each step.

This leaves us with the problem of estimating
marginals in the model, which we do using importance
sampling. Although it is easy to sample sequences from
Ppre by picking a random recombination scenario, sam-
pling from Ppost = QPpre is much harder, as the qi;L, qL
and qV J factors introduce complex dependencies between
the different features of the recombination scenario. To
overcome this issue, we sample a large number M of
(~τ , V, J) triplets from Ppre(~τ , V, J), and, when estimating
Ppost expectation values, weight the contribution of each
sequence with its Q(~τ , V, J) value (this is a particularly
simple instance of importance sampling). The generated
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Fig. S 2: The qi;L(a) selection factors learned for codons (red crosses) agree with those learned for amino acids (blue). The
qi;L(a) are plotted for each position in the CDR3 region (panels from 1 to 12) for naive CDR3 sequences of length 12, as a
function of the amino acids at each position. A given amino acid at a given position can come from different codons, which are
marked by multiple crosses at that position. Codons or amino acids for which there was not enough data to infer the selection
factors are not represented.
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Fig. S 3: The scatter of VJ gene selection factors qV J between donors A and B for naive (A) and memory repertoires (B),
as well as between the memory and naive repertoires of the same individual (C) shows that the memory and naive repertoires
are statistically similar to each other and across individuals. See Fig. S4 for the correlation analysis of all individuals and cell
types.
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Fig. S 4: Correlation coefficients between selection factors
obtained for models learned for different donors and cell type
(naive and memory). The compared factors are the amino-
acid selection factors qi;L (A) and the VJ gene selection fac-
tors qV J (B). Each position along the two axes in each plot
corresponds to a different individual. The naive dataset of
donor 8, and the memory dataset of donor 5 were removed
because of too low statistics. In all heat maps, the x and y
axes correspond to different donors (1-7;9 for naive, 1-4;6-9
for memory, and 1,2,3,4,6,7,9 for comparison between naive
and memory).

triplets are denoted by [(~ρ1, V1, J1), . . . , (~ρM , VM , JM )],

and the corresponding reads by (~ξ1, . . . , ~ξM ) (see Fig. S1
for notations). The marginal probability distribution of
lengths, for instance, is estimated by

Ppost(L;Q′) ≈
∑M
b=1 δLb,LQ

′(~ρb, Vb, Jb)∑M
b=1Q

′(~ρb, Vb, Jb)
. (19)

and similar expressions give estimates of Pi;L,post(ai;Q
′)

and Ppost(V, J ;Q′). Since we are optimizing over Q′, the
sequences (~ρb, Vb, Jb) can be generated once and for all at
the beginning of the algorithm. Then the marginal prob-
abilities are updated according to the modified Q′ using
Eq. 19. Finally, the normalization constant is evaluated
by calculating:

Z ≈ 1

M

M∑
b=1

qLb
qVbJb

Lb∏
i=1

qi;Lb
(abi ). (20)

so that

∑
~τ,V,J

Ppost(~τ , V, J) ≈ 1

M

M∑
b=1

Q(~ρb, Vb, Jb) = 1. (21)
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Fig. S 5: The effects of selection on deletion profiles. Distri-
bution of V (A), D left-hand side (B), D right-hand side (C),
and J (D) deletions in the pre-selected (black lin e), naive
(colored line) and memory (gray dashed line) repertoires. Er-
ror bars show standard deviation over 9 individuals. Results
using 9 separate models learned for each of the individuals.
The deletion distributions for the memory repertoire are the
same as for the naive repertoire. Selection has a slight effect
on favoring distributions with non-extreme deletion values of
deletions for V and J deletions, and does not have a signifi-
cant effect on D deletions.

F. Equivalence with minimum discriminatory
information

The principle of minimum discriminatory information
is to look for a distribution that reproduces exactly some
mean observables of the data, such as position-dependent
amino-acid frequencies, while being minimally biased
with respect to some background distribution. When
the background distribution is uniform, this principle is
equivalent to the principle of maximum entropy.

Taking Ppre as our background distribution, assume
we are looking for the distribution Ppost that satisfies
Eqs. (14)-(16) while minimizing the divergence or relative
entropy with respect to Ppre, defined as:

DKL(Ppost‖Ppre) =
∑
~τ,V,J

Ppost(~τ , V, J) log
Ppost(~τ , V, J)

Ppre(~τ , V, J)
.

(22)

Solving this problem is mathematically equivalent
to solving the maximum likelihood problem described
above.

We present the values of these minimized DKL diver-
gences for each donor in Table II.
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DKL

Donor 1 0.9646

Donor 2 0.9598

Donor 3 0.9945

Donor 4 0.9664

Donor 5 0.9402

Donor 6 0.9999

Donor 7 1.0195

Donor 8 1.1730

Donor 9 1.0831

Universal Donor 0.9175

Table S II: Kullback-Leibler divergence between the pre and
post-selection distributions (see Eq. 22).

IV. INDIVIDUAL, UNIVERSAL AND
SHUFFLED DONORS

We partition the data in three different ways to learn
the model. First, we learn a distinct model for each
donor, and for each of the naive and memory pools. For
each donor, we have a distinct Ppre learned from the out-
of-frame sequences of that donor (although in fact they
differ little from donor to donor as discussed in [1]). Sec-
ond, we pool all the sequences of a given type (naive
or memory) from all nine donors together, and learn a
“universal” or average model. For this we use a mean
Ppre averaged over all nine donors, and then learn Q us-
ing all sequences. Third, to assess the effect of finite-size
sampling in the universal model, we partition the data
from all donors into nine random subsamples of equal
sizes. This way we can estimate how much variability
one should expect from just sampling noise.

V. SELF-CONSISTENCY OF THE MODEL

We check the self-consistency of the assumption that
Q has a factorized form by calculating the covariances
between the different sequence features (V, J), L and
(a1, . . . , aL). We plot the model predictions for these co-
variances against the same quantities calculated from the
data (Fig. 2B of the main text and Fig. S10). We observe
a very good agreement, which validates the factorization
assumption.

VI. ENTROPY, DISTRIBUTIONS OF Ppre, Ppost

AND Q

To estimate global statistics, such as entropy, from the

model, we draw a large set of sequences (~ξ1, . . . , . . . , ~ξM )
from Ppre, and weight them according to the inferred
(normalized) Q values. Specifically, for each generated
sequence, we estimate its primitive generation probabil-

ity by summing over all the possible scenarios that could
have given rise to it:

Ppre(~ξ
b) =

1

pcoding

∑
S→ξb

Ppre(S) (23)

where ~ξb is the full nucleotide sequence, including the
CDR3 ~ρb as well as the Vb and Jb segments. The entropy
(in bits) of the selected sequence repertoire is defined as

H[Ppost] = −
∑
~σ

Ppost(~σ) log2 Ppost(~σ) (24)

and, to include selection effects, we estimate it by

H[Ppost] ≈ −
1

M

M∑
b=1

Q(~ρb, Vb, Jb) log
[
Q(~ρb, Vb, Jb)Ppre(~ξ

b)
]
.

(25)
The difference in the entropies of the pre- and post-

selection repertoires for each donor (∼ 5.5 bits) can be
linked to this Kullback-Leibler divergence by the follow-
ing relation:

Spre − Spost =

DKL(Ppost‖Ppre) + 〈(Q− 1) log2 Ppre〉pre,

where 〈· · ·〉pre denotes an average over the
pre-selection ensemble Ppre, approximated by
((~ρ1, V1, J1), . . . , (~ρM , VM , JM )).

The Kullback-Leibler divergence (≈ 1 bit, see Table
SII) is much smaller than the difference of entropies be-
tween the distributions (≈ 4.5 bits, see main text). Eq. 26
allows us to interpret that the main reduction in entropy
can be attributed to the fact that selection simply ampli-
fies the characteristics of the pre-selection distribution
(as discussed in the “Natural selection anticipates so-
matic selection” section in the main text). This is ev-
idenced by the strong correlation between Q and Ppre

(Fig. 5B of the main text) which results in the second
term in Eq. 26 being the main contribution to entropy
reduction.

The distributions of Ppre, Ppost and Q over the selected
sequences are determined from the same draw of M se-
quences from Ppre, weighted by the normalized selection
factors Q. For example the distribution of logPpre is:

P(logPpre) ≈
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
logPpre − logPpre(~ξ

b)
]
.

(26)
Marginal distributions over pairs of amino-acids

(ai, aj) at two positions i and j can also be calculated
using the ~ρb sequences and weighting them with Q. This
can be generalized to arbitrary marginals or statistics.

VII. SHARED SEQUENCES

The number of shared sequences in a subset of donors
is counted based on the nucleotide sequences. This em-
pirical number can then be compared to two kinds of
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Fig. S 6: The saturation of the Pdata(Q)/Ppre(Q) ratio
does not affect the inference of the model. We simulated
a dataset from Ppre and selected sequences with probability
min[Q(~σ)/7, 1]. The plot compares the qi;L(a) selection fac-
tors directly inferred from data (ordinate) to values inferred
from such simulated data (blue dots: simulation). The scat-
ter in these points is compared to the scatter obtained from
learning the selection factors using a random subset of the
data (red dots: sample). The size of the points denotes the
probability Pi;l,data(a) in the data repertoire.

theoretical predictions. Either by assuming that the se-
quences of each donor were generated and selected by a

“private” model P
(α)
post, where α denotes the donor, i.e. a

model inferred from the sequences of donor α; or by as-
suming that sequences were generated and selected by a

“common” or universal model P
(u)
post inferred from all se-

quences together. The latter is justified by the fact that
differences between private models are small, and could
reflect spurious noise that would exaggerate differences
between individuals.

If we assume private models, the expected number of
shared sequences between donors α and β is:

NαNβ
∑
~σ

P
(α)
post(~σ)P

(β)
post(~σ), (27)

where Nα and Nβ are the numbers of sequences in each
donor dataset. To estimate that number, we collect se-
quences that are shared between the generated datasets

{~ξa} of two (or more) donors, and reweight them by Q:

NαNβ
MαMβ

∑
(~ρ,V,J)∈α∩β

Q(α)(~ρ, V, J)Q(β)(~ρ, V, J), (28)

where Mα and Mβ are the number of generated sequences
for each donor model, and where the sum is over the se-

quences found in the {~ξa} dataset of both donors. Similar
equations are used for comparing more than two donors.

If we assume a common model, the expected number
of shared sequences reads:

NαNβ
∑
~σ

[P
(u)
post(~σ)]2. (29)

This can be estimated by:

NαNβ
M

M∑
b=1

P (u)
pre (~ξb)[Q(u)(~ρb, Vb, Jb)]

2, (30)

where {~ξa} are sequences generated from the mean VDJ

recombination model P
(u)
pre . Similarly, the number of

shared sequences between a triplet of donors α, β, γ is:

NαNβNγ
M

M∑
b=1

[P (u)
pre (~ξb)]2[Q(u)(~ρb, Vb, Jb)]

3, (31)

and likewise for quadruplets and more.
The expected numbers of shared sequences calculated

above are averages. Their distribution is given by a Pois-
son distribution of the same mean. We use these Pois-
son distribution to estimate the error bars in Fig. 6A of
the main text and S9A, as well as the distributions in
Fig. 6B-C and S9B-C.

If we assume a common model, sequences that are
shared between at least n individuals are distributed ac-
cording to ∝ [P

(u)
post]

n. To explore the statistics of these

sequences, we take our ~ρb sequences generated from P
(u)
pre

and weigh them with [P
(u)
pre (~ρb)]n−1[Q(u)(~ρb)]n. For ex-

ample, to estimate the distribution of logPpost in shared
sequences as in Fig. 6D of the main text (for pairs), and
Fig. S8 (for triplets and quadruplets), we calculate:

P(logPpost) ≈
1

M

M∑
b=1

[P (u)
pre (~ξb)]n−1[Q(u)(~ρb, Vb, Jb)]

n

× δ
[
logPpost − logP

(u)
post(

~ξb)
]
.

(32)

Sampling from shared sequences is equivalent to sam-
pling from the high-probability, large deviation regime of
the distribution. This statement can be made more phys-
ically intuitive by rewriting Ppost as a Boltzmann distri-

bution e−E/T with T = 1 and E = − logPpost. Consider-
ing sequences observed in at least n donors, is equivalent
to sampling from (1/Z(n))e−nE (where Z(n) is a normal-
isation constant), i.e. the Boltzmann distribution with
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A. CC [q i ;L(a) , alpha (a) ]

A 1.29 L 1.30
R 0.96 K 1.23
N 0.90 M 1.47
D 1.04 F 1.07
C 1.11 P 0.52
Q 1.27 S 0.82
E 1.44 T 0.82
G 0.56 W 0.99
H 1.22 Y 0.72
I 0.97 V 0.91

B. CC [q i ;L(a) , beta (a) ]

A 0.90 L 1.02
R 0.99 K 0.77
N 0.76 M 0.97
D 0.72 F 1.32
C 0.74 P 0.64
Q 0.80 S 0.95
E 0.75 T 1.21
G 0.92 W 1.14
H 1.08 Y 1.25
I 1.45 V 1.49

C. CC [q i ;L(a) , turn (a) ]

A 0.78 L 0.59
R 0.88 K 0.96
N 1.28 M 0.39
D 1.41 F 0.58
C 0.80 P 1.91
Q 0.97 S 1.33
E 1.00 T 1.03
G 1.64 W 0.75
H 0.69 Y 1.05
I 0.51 V 0.47

D. CC [q i ;L(a) , surface(a) ]

A 0.065 L 0.063
R 0.059 K 0.080
N 0.053 M 0.016
D 0.074 F 0.029
C 0.015 P 0.054
Q 0.051 S 0.071
E 0.089 T 0.065
G 0.070 W 0.012
H 0.025 Y 0.033
I 0.035 V 0.048

E. CC [q i ;L(a) , rim (a) ]

A 0.047 L 0.052
R 0.068 K 0.105
N 0.062 M 0.017
D 0.071 F 0.021
C 0.015 P 0.052
Q 0.053 S 0.072
E 0.094 T 0.064
G 0.071 W 0.007
H 0.022 Y 0.032
I 0.032 V 0.048

F. CC [q i ;L(a) , core (a) ]

A 0.049 L 0.078
R 0.066 K 0.050
N 0.058 M 0.027
D 0.051 F 0.051
C 0.020 P 0.051
Q 0.051 S 0.057
E 0.051 T 0.064
G 0.060 W 0.022
H 0.034 Y 0.070
I 0.047 V 0.049

Fr
ac

tio
n 

of
 p

os
iti

on
s

G. CC [q i ;L(a) , charge(a) ]

A 0 L 0
R 1 K 1
N 0 M 0
D - 1 F 0
C 0 P 0
Q 0 S 0
E - 1 T 0
G 0 W 0
H 0 Y 0
I 0 V 0

H. CC [q i ;L(a) , pH (a) ]

A 0 L 0
R 2 K 2
N 0 M 0
D - 2 F 0
C - 2 P 0
Q 1 S - 1
E - 2 T - 1
G 0 W 1
H 1 Y - 1
I 0 V 0

−0.5 0 0.5

I. CC [q i ;L(a) , polar (a) ]

A 0 L 0
R 1 K 1
N 1 M 0
D 1 F 0
C 0 P 0
Q 1 S 1
E 1 T 0
G 0 W 1
H 1 Y 1
I 0 V 0

−0.5 0 0.5

J. CC [q i ;L(a) , hydrop(a) ]

A 1.8 L 3.8
R - 4.5 K - 3.9
N - 3.5 M 1.9
D - 3.5 F 2.8
C 2.5 P - 1.6
Q - 3.5 S - 0.8
E - 3.5 T - 0.7
G - 0.4 W - 0.9
H - 3.2 Y - 1.3
I 4.5 V 4.2

−0.5 0 0.5
Spearman’s correlation

K. CC [q i ;L(a) , volume(a) ]

A 67 L 124
R 148 K 135
N 96 M 124
D 91 F 135
C 86 P 90
Q 114 S 73
E 109 T 93
G 48 W 163
H 118 Y 141
I 124 V 105

Fig. S 7: Correlation of the qi;L selection factors with several biochemical properties. Each panel shows the histogram, over
all positions and lengths, of Spearman’s correlation coefficient between the qi;L(a) values for a given amino acid and the
biochemical properties of that amino acid. The following biochemical properties are considered (from left to right, top to
bottom): preference to appear in alpha helices (A), beta sheets (B), turns (C) (source for (A-C): Table 3.3 [7]). Residues that
are exposed to solvent in protein-protein complexes (following definitions and data from [8], specifically Fig. S6 in the SI) are
divided intothree groups: surface (interface) residues that have unchanged accessibility area when the interaction partner is
present (D), rim (interface) residues that have changed accessibility area, but no atoms with zero accessibility in the complex
(E) and core (interface) residues that have changed accessibility area and at least one atom with zero accessibility in the
complex (F). Rim residues roughly correspond to the periphery of the interface region, and core residues correspond to the
center. Finally we plot the basic biochemical amino acid properties (source: http://en.wikipedia.org/wiki/Amino acid

and http://en.wikipedia.org/wiki/Proteinogenic amino acid): charge (G), pH (H), polarity (I), hydrophobicity (J) and
volume (K). For all properties the actual numerical values used to calculate the correlations are listed in the inset tables. We
see a positive correlation trend with turns and core residues and a negative correlation trend with the preference of amino acids
to appear in alpha helices and volume.
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Fig. S 8: Model prediction (magenta) and observed (red)
distributions of Ppost in the naive sequences that are shared
between at least three (left) or four (right) donors. The model
discrepancy may be attributed to its failure to capture the
very highly probable sequences.
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Fig. S 9: Comparison between data and model for the number
of shared sequences in the memory repertoires, in pairs (A),
triplets (B) and quadruplets (C) of individuals.

T = 1/n. Sequences shared between more and more indi-
viduals correspond to lower and lower temperatures, and
thus lower energies and higher probabilities. In the low
temperature regime, the roughness of the landscape de-
picted in Fig. 4C of the main text is starting to become
important, and may not be well captured by our model,
as suggested by Fig. S8.

VIII. CODON MODEL

It is reasonable to assume that selection acts on the
protein structure, at the amino acid level. But each
amino acid can be obtained using a number of differ-

ent codons, which could in principle each have a differ-
ent selection factor. We checked the robustness of our
selection coefficients by learning an alternative model in
which selection acts on codons. We present the results of
this alternative codon model in Fig. S2 on the example
of CDR3 sequences of length 12. We show the qi;L(a)
selection factors at each position for each amino acid,
and compare them to the selection factors obtained for
the codons coding for that amino acid. We see that, es-
pecially in the bulk of the CDR3 sequence, selection at
the level of codons or amino acids are equivalent, prov-
ing the generality of our approach. We observe a very
slight correlation between the discrepancies of the selec-
tion factors learned for the codon and amino acid mod-
els (log(qcodoni:L (a))− log(qaai:L(a))) and the G/C content of
these codons for amino acids at position 3 from the initial
cysteine (correlation coefficient of 0.09 calculated with a
p-value of 0.04) and the last position before the J primer
(correlation coefficient of 0.1 calculated with a p-value of
0.01).

IX. ADDITIONAL EFFECTS OF SELECTION
ON REPERTOIRE PROPERTIES

In the main text we present several repertoire prop-
erties, such as insertion profiles and comparisons of
the qi;L(a) selection factors between naive and memory
repertoires. In Fig. S5 we plot the deletion profiles for
V , J and D-lefthand side and D-righthand side dele-
tions, comparing the distributions for the pre-selection,
naive and memory repertoires. We note that the deletion
profiles for the V and J distributions are more peaked,
favoring intermediate deletion values. However the D
distributions are little affected by selection. Similarly to
the case of insertion distributions shown in the main text
in Fig. 3E-F, the naive and memory distributions appear
indistinguishable within the error bars.

In Fig. 3A-C of the main text, the selection factors
qi;L(a) acting on amino acids are compared between in-
dividuals and cell type. Similarly, the selection factors
acting on the genes qV J are statistically indistinguish-
able between the memory and naive repertoires for one
individual, compared to the variability between the naive
(or memory) repertoires taken from two sample individ-
uals (see Fig. S3).

To compare the repertoires of individuals as well as
the naive and memory repertoires with each other, we
consider the correlation coefficients between the selec-
tion factors log qi;L, and between the VJ gene selection
factor log qV J , of different individuals (Fig. S4). Correla-
tions between memory and naive repertoires are similar
to those between naive-naive or memory-memory reper-
toires for different individuals; all are a bit smaller than
the correlations between the artificial, shuffled sequence
datasets, where the discrepancy is entirely attributable
to statistical noise. These observations lead us to the
conclusion that at this level of description, the selection
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Fig. S 10: Comparison of the covariances between the model
and data between (V, J) and L (top) and (V, J) and ai given
L on the other hand (bottom). The model, which assumes
that the selection factors factorize, predicts the observed co-
variances well, thus validating this factorization assumption.

processes that shape the memory and naive repertoires
are very similar with each other and between different
individuals.

We also calculated the Jensen-Shannon divergence

JS(P
(α)
post, P

(β)
post) between individual models, where the JS

divergence between two distributions P and Q is defined
as:

JS(P,Q) =
1

2

∑
x

P (x) log
P (x)

M(x)
+

1

2

∑
x

Q(x) log
Q(x)

M(x)

(33)
with M(x) = 1

2 [P (x) +Q(x)]. This measure is preferable
to the Kullback-Leibler divergence because it is symmet-
ric. The values of this divergence for all pairs of donors
are shown in Table SIII.

1 2 3 4 5 6 7 8

2 0.02

3 0.11 0.11

4 0.03 0.03 0.10

5 0.07 0.07 0.13 0.07

6 0.03 0.03 0.10 0.04 0.05

7 0.03 0.03 0.12 0.03 0.08 0.04

8 0.08 0.07 0.14 0.07 0.12 0.07 0.08

9 0.07 0.08 0.15 0.07 0.11 0.07 0.06 0.13

Table S III: Jensen-Shannon divergence between the Ppost dis-
tributions for each donor.

X. SATURATION OF THE SELECTION RATIO

We consider distributions of the selection factor Q in
the pre-selection ensemble Ppre(Q), in the post-selection
ensemble according to the model Ppost(Q), and in the ac-
tual data sequences Pdata(Q). These three distributions
are formally defined as:

Ppre(Q) =
1

M

M∑
b=1

δ
[
Q−Q(~ρb, Vb, Jb)

]
. (34)

Ppost(Q) =
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
Q−Q(~ρb, Vb, Jb)

]
(35)

= QPpre(Q). (36)

Pdata(Q) =
1

N

N∑
a=1

∑
Va,Ja

Ppost(Va, Ja|~σa)

×δ [Q−Q(~τa, Va, Ja)] (37)

As can be seen in Fig. 4 of the main text, the
ratio of the distribution of global selection factors
Pdata(Q)/Ppre(Q) saturates for large values of Q. To
make sure that this saturation does not impair our abil-
ity to correctly infer the selection factors, we simulated
a dataset from Ppre and selected sequences with proba-
bility min[Q(~σ)/7, 1] to mimic the effects of this plateau.
We then inferred the selection coefficients for this arti-
ficial dataset. We see that the saturation does not af-
fect our ability to correctly infer the selection coefficients
(Fig. S6) and the variability in the inferred qi;L(a) selec-
tion factors is of the same order as from using random
subsamples of the original data.

We also checked that this saturation did not affect
much the prediction for the number of shared sequences,
by repeating the procedure replacing Q by max(Q, 7) in

Sec. VII. For example,
∑
~σ[P

(u)
post(~σ)]2, the probability for

any two sequences to be the same, only decreased by 2%,∑
~σ[P

(u)
post(~σ)]3, the probability for any three sequences to

be the same, by 6%, and
∑
~σ[P

(u)
post(~σ)]4 by 8%.
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XI. BIOCHEMICAL CORRELATIONS

To check for correlations of our inferred qi;L(a) selec-
tion factors with known biochemical properties, we calcu-
lated Spearman’s coefficient between the selection factors
and a number of standard quantities (see Fig. S7 for the
full list). We find that the selection factors do not corre-
late well with most standard properties, such as charge,
hydrophobicity and polarity. However we do find a trend
of positive correlation with amino acids that are likely
to appear in turns (Fig. S7 C) and ones that have been
identified as those that make the core of the interface
in a protein-protein complexes (Fig. S7 F) [8]. We find

a trend of negative correlations with amino acids that
have large volume (Fig. S7 K) and are likely to appear in
alpha helices (Fig. S7 A). These observations are consis-
tent with the fact that structurally CDR3 regions form
loops and bulky amino acids as well as stabilizing alpha
helix-like interactions would interfere with this structure.
Core amino acids are at the center of the interface and
are known to be the main contributors to interface recog-
nition and affinity. On the other hand interface rim and
non-interface (surface) residues, which are both in touch
to various degrees with the solvent and are not crucial
interface forming elements, show similar non-distinctive
correlation patterns.
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