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The Bond-Order Parameters Are Good Descriptors of the
Morphology of the System
To show that the bond-order parameters are good descriptors of
themorphology and order of the system, we determined the bond-
order parameters averaged over one period (as defined in Eq. 5
in the main text) in all of the simulations used to construct the
morphology diagram in Fig. 3 B, i (linear pH–time program) of
the main text. For each point in the morphology diagram (i.e.,
each C, ρ pair), we determined hψniτ for n = 1, 2, 3, and 4. If all
these values were smaller than 0.5, we assigned the point in the
diagram to the disordered morphology; otherwise, we chose the
n having the largest hψniτ and assigned the structure according to
it: dimers for n = 1, fibers for n = 2, honeycomb for n = 3, and
square lattice for n = 4. In Fig. S2 we compare the phase diagram
constructed following this method (Fig. S2A) to that obtained by
visual inspection of the morphologies (Fig. S2B, also shown in
Fig. 3 B, i of the main text). These morphology diagrams are in
good agreement; therefore, we are confident in the use of ψn as
a descriptor of the morphology and order of the system.

Asymptotic Behavior of the System in the Limit of Fast
Oscillations
In this section, we study the asymptotic behavior of the system in
the limit of fast oscillation by performing a perturbation analysis
on the Fokker–Planck equation of the system. This analysis is based
on the work of Reimann et al. (1) and Reimann (2) on thermal
flashing ratchets. The Fokker–Planck equation of a system of par-
ticles interacting via time-oscillating potentials is

∂pðr; tÞ
∂t

=D∇
��
pðr; tÞ∇βUðr; tÞ+∇pðr; tÞ��; [S1]

where D is the diffusion constant of the particles (assumed to be
position and time independent and the same for all particles), r
is a 2N vector describing the position of the N particles in the
system, p(r, t) is the probability density at time t (i.e., the prob-
ability of finding the system at r at time t), U(r, t) is the total
potential energy of a system at r and time t, and ∇=

P2N
i ð∂=∂riÞ.

Inanequilibrium(nonoscillating) system,both thepotential energy
and the probability density are independent of time; therefore,

D∇
��
pðrÞ∇βUðrÞ+∇pðrÞ��= 0; [S2]

which—as expected—yields the Boltzmann distribution upon solv-
ing for p(r):

pðrÞ= exp
�
−βUðrÞ�Z

dr exp
�
−βUðrÞ�: [S3]

Let us analyze now a periodic nonequilibrium steady state
where the interparticle potentials oscillate with period τ. In such
a system, p(r, t) = p(r, t + nτ) for any integer n. We define h = t/τ
and the probability of finding the system at position r and stage h
as ρτ(r, h). Using this convention, Eq. S1 becomes

∂ρτðr; hÞ
∂h

= τD∇½ðρτðr; hÞ∇βUðr; hÞ+∇ρτðr; hÞÞ�: [S4]

Eq. S4 has no simple analytical solution, but we can consider the
asymptotic limit τ → 0. Let us decompose ρτ(r, h) as a power series
in τ,

ρτðr; hÞ=
X∞
n=0

τnρnðr; hÞ; [S5]

where the functions ρn(r, h) are independent of τ. We are inter-
ested in an expression for ρ0(r, h) because in the limit of τ → 0,
ρτ(r, h) → ρ0(r, h). Note that the ρn(r, h) functions are periodic
in time and thus fulfill the condition

ρnðr; 0Þ= ρnðr; 1Þ: [S6]

We now replace Eq. S5 into Eq. S4. Because the Fokker–Planck
equation is valid for an arbitrary τ, terms of the same power of τ on
both sides of the equation should be equal. This condition results in
the following equations for the zeroth and first-order terms in τ:

∂ρ0ðr; hÞ
∂h

= 0 [S7]

∂ρ1ðr; hÞ
∂h

=D∇
��
ρ0ðr; hÞ∇βUðr; hÞ+∇ρ0ðr; hÞ

��
: [S8]

We can integrate Eq. S8 between h = 0 and h = 1 and use the
fact that ρ0 is independent of h (condition given by Eq. S7) and
Eq. S6 to get

D∇

2
4
0
@ρ0ðrÞ∇

0
@Z1

0

dhβUðr; hÞ
1
A+∇ρ0ðrÞ

1
A
3
5= 0: [S9]

Finally, Eq. S9 can be solved analytically to yield

p0ðrÞ=
exp

 
−
Z 1

0
dhβUðr; hÞ

!
Z

dr exp

 
−
Z 1

0
dhβUðr; hÞ

!: [S10]

Comparison between Eq. S3 (equilibrium) and Eq. S10
(periodic steady state) shows that in the limit τ → 0 and a periodic
steady-state condition, the system of particles interacting via oscil-
lating interparticle potentials is equivalent to an equilibrium system
of particles interacting via an effective average potential, given by

UeffðrÞ=
Z1
0

Uðr; hÞdh: [S11]

We finally decompose the total potential energy in Eq. S11 into
its contributions (in the present case, U is pairwise additive):

X
i; j>i

ueffij

���ri − rj
���= X

i; j>i

Z1
0

uij
���ri − rj

��; h�dh: [S12]

For Eq. S12 to be valid for any arbitrary set of functions uij(jri − rjj,
h), the following condition must hold:

Tagliazucchi et al. www.pnas.org/cgi/content/short/1406122111 1 of 8

www.pnas.org/cgi/content/short/1406122111


ueffij

���ri − rj
���= Z

1

0

uij
���ri − rj

��; h�dh: [S13]

This equation is equivalent to Eq. 5 in the main text.

Comparison of Radial Distribution Functions Obtained in
Simulations with Time-Oscillating Potentials and the
Effective Time-Averaged Potential
We determined the pair correlation functions for aa, ab, and bb
pairs from simulations, using oscillatory potentials as well as the
effective time-averaged potential defined by Eq. 5 in the main
text. In the case of the oscillatory potential, we averaged the pair
correlation function over one oscillation period. See Fig. S3.

Calculation of the Characteristic Diffusional Timescale, td, as
a Function of the Size of the Colloid
We start from the definition of the diffusion coefficient,

D=
kBT

6πηðσ=2Þ; [S14]

and the diffusional timescale,

td =
σ2

D
: [S15]

In water at 298 K, D ∼ (0.44 μm3·s−1)·σ−1, and thus combining
Eqs. S14 and S15 yields

td =
σ3

0:44  μm3 s: [S16]

We used Eq. S16 to determine the values of td as a function of σ
shown in Table S1.

Determination of the Energy Dissipation Rate from the
Brownian Dynamics Simulations
The instantaneous change in the total energy of the system is the
sum of the energy dissipated by the system into the environment
and the work performed on the system by changing the inter-
particle potentials. In a periodic nonequilibrium steady state, the
change in total energy during one oscillation cycle is zero and,
therefore, the statistically averaged energy dissipated per period
(«d) is equal to the negative of the statistically averaged energy
performed on the system per period («w), which is given by (3)

«d =−«w =−limM→∞
1
M

XM
m=1

Zτ
0

∂Uðr; t+mτÞ
∂t

�����
r

dt: [S17]

In Eq. S17, U(r, t) is the total potential energy of the system at
time t and particle positions r. In our Brownian dynamics (BD)
implementation we calculate the time derivative of U by dividing
each BD time step into two processes: First we update the in-
teractions between particles and then we move them. The time
derivative of U at constant r is the difference between the po-
tential energy at the beginning of the time step (before updating
interactions) and that after updating the interactions (but before
moving the particles).

Analysis of Energy Dissipation in the Limit of Very Fast
Oscillations
We start our analysis with Eq. S17. The interactions between par-
ticles are pairwise additive; therefore, we can write

Uðr; tÞ=
X
i; j>i

uij
���ri − rj

��; t�: [S18]

We then split the summation in Eq. S18 into three sums corre-
sponding to aa, ab, and bb interactions:

Uðr; tÞ=
Xi; j∈a
i; j> i

uaa
���ri − rj

��; t�+ Xi∈a; j∈b
i; j

uab
���ri − rj

��; t�

+
Xi; j∈b
i; j> i

ubb
���ri − rj

��; t�:
[S19]

Replacing Eq. S19 into Eq. S17, we get

«d =−limM→∞
1
M

XM
m=1

Xi; j∈a
i; j> i

Zτ
0

∂uaa
���ri − rj

��; t+mτ
�

∂t

�����
r

dt

−limM→∞
1
M

XM
m=1

Xi∈a; j∈b
i; j

Zτ
0

∂uab
���ri − rj

��; t+mτ
�

∂t

�����
r

dt

−limM→∞
1
M

XM
m=1

Xi; j∈b
i; j> i

Zτ
0

∂ubb
���ri − rj

��; t+mτ
�

∂t

�����
r

dt:

[S20]

Let us consider only the first term of Eq. S20, which we denote
«d
aa. In the periodic nonequilibrium steady state, the average

properties of the system depend only on the stage within the
period (h, Asymptotic Behavior of the System in the Limit of Fast
Oscillations section) but do not change with the number of the
period (m). For the observable A(h), we define the average
value 〈A(h)〉 (with 0 < h < 1) as

�
AðhÞ�=−limM→∞

1
M

XM
m=1

Aðhτ+mτÞ: [S21]

Using the definition in Eq. S21 and the change of variables t = hτ,
we can write

«aad =−
Xi; j∈a
i; j> i

Z1
0

*
∂uaa

���ri − rj
��; h�

∂h

�����
r

+
dh: [S22]

For a given value of h, the term h∂uaaðjri−rjj; hÞ=∂hjri is the same
for any i, j pair of a particles. We can, therefore, rewrite the
summation in Eq. S22 to obtain

«aad =−
N2

a

2

Z1
0

*
∂uaa

���r1 − r2
��; h�

∂h

�����
r

+
dh: [S23]

Eq. S23 can be rewritten as

«aad =−
N2

a

2

Z
dr1

Z
dr2

Z1
0

dh
∂uaa

���r1 − r2
��; h�

∂h
ρssaaðr1; r2; hÞ;

[S24]

where Na is the number of particles of type a and ρssaa(r1, r2, h)
dr1dr2 is the probability of finding particle 1 between r1 and r1 +
dr1 and particle 2 between r2 and r2 + dr2 when the period is
at stage h (the superindex ss denotes the periodic steady-state
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condition). Because our system is isotropic, we define r = jr1 – r2j.
We also define gssaa(r, h)dr as the average number of particles of type
a located at a distance between r and r + dr from a particle of
type a at stage h. Applying these definitions to Eq. S24, we obtain

«aad =−
Na

2

Z
dr
Z1
0

dh
∂uaaðr; hÞ

∂h
  gssaaðr; hÞ: [S25]

In the limit τ→ 0, the structure of the system is described by an
effective potential (Asymptotic Behavior of the System in the Limit
of Fast Oscillations section) and, therefore, gssaa(r, h) is equal to
the pair correlation function between a particles of the effective
potential, geffaa(r) (pair correlation functions in Fig. S3). Replacing
gssaa(r, h) by geffaa(r) in Eq. S25 yields

«aad =−
Na

2

Z
dr geffaa ðrÞ

Z1
0

dh
∂uaaðr; hÞ

∂h
: [S26]

Evaluating the inner integral over h yields

«aad =−
Na

2

Z
dr geffaa ðrÞ

�
uaaðr; 1Þ− uaaðr; 0Þ

�
; [S27]

which vanishes because uaaðr; 1Þ= uaaðr; 0Þ. The same argument
can be applied to the second and third terms in Eq. S20, which
finally proves that «d → 0 for τ → 0.
It is important to note that whereas the energy dissipation per os-

cillation period, «d, vanishes for τ → 0, our argument provides no in-
formation on the behavior of the energy dissipation per unit time, «d/τ.

Analysis of Energy Dissipation in the Limit of Very Slow
Oscillations
In the limit of very slow oscillations, the system can relax com-
pletely at every stage of the cycle; therefore gssaa(r, h) in Eq. S25 is
equal to the pair correlation function between a particles for an
equilibrium system at h [i.e., a system with pH = pH(h)], gaa

eq(r, h).
Therefore, Eq. S25 becomes

«aad =−
Na

2

Z
dr
Z1
0

dh
∂uaaðr; hÞ

∂h
  geqaaðr; hÞ: [S28]

Oscillating potentials that are h reversible, such as those used in
this work and shown in Fig. 3 in the main text, fulfill the condition

uijðr; hÞ= uijðr; 1− hÞ: [S29]

Moreover, the system can achieve equilibrium for every value of
h, and condition [S29] therefore implies that

geqij ðr; hÞ= geqij ðr; 1− hÞ: [S30]

To apply Eqs. S29 and S30, let us split the integral over h in Eq. S28 as

«aad =−
Na

2

Z
dr

2
64Z

1=2

0

dh
∂uaaðr; hÞ

∂h
  geqaaðr; hÞ

+
Z1
1=2

dh
∂uaaðr; hÞ

∂h
  geqaaðr; hÞ

3
75

[S31]

and use h′ = 1 − h in the second integral to get

«aad =−
Na

2

Z
dr

2
64Z

1=2

0

dh
∂uaaðr; hÞ

∂h
  geqaaðr; hÞ

−
Z1=2
0

dh′
∂uaa

�
r; 1− h′

�
∂h′

  geqaa
�
r; 1− h′

�375:
[S32]

These replacements finally yield

«aad =−
Na

2

Z
dr
Z1=2
0

	
∂uaaðr; hÞ

∂h
  geqaaðr; hÞ

−
∂uaaðr; 1− hÞ

∂h
  geqaaðr; 1− hÞ



dh:

[S33]

The combination of Eqs. S29, S30, and S33 shows that σd → 0 for
oscillating potentials that are h symmetric and τ → ∞. Therefore,
in our system of particles interacting via time-oscillating poten-
tials, the energy dissipation per period is zero in the high-frequency
and slow-frequency limits.

Origin of the Secondary Peak in the σd vs. τ Plot for the
Dimers Morphology
In Fig. 5 of the main text, we showed that the transition between
ordered dissipative structures at high oscillation frequencies and
oscillating disordered structures at low frequencies is characterized
by a peak in the plot of the energy dissipated per period (σd) as a
function of the oscillation period (τ). The plot for the dimers (Fig.
5E) has a primary peak at τ > 100 td ascribed to the nonequilibrium
order/disorder transition of the dimers and a smaller secondary
peak at τ ∼ 0.2 td that, as we show in this section, can be ascribed
to the nonequilibrium order/disorder transition of a small pop-
ulation of trimers in the system.
During the formation of dimers from a disordered initial state,

some trimers are also formed (one can think of these trimers as
kinetically trapped defects in the dimer structure). Fig. S4A shows
a snapshot of the dimers morphology for a high oscillation fre-
quency where the trimers, which encompass ∼8% of the particles
in the system, have been highlighted in blue. The trimers give
rise to a peak in the aa and bb pair correlation functions at about
1.9σ (Fig. S3) (the position of the trimer peak is expected at 2σ
for linear trimers, but it is observed at smaller distances due to
bending). Fig. S4C shows the value of the aa pair correlation
function at the trimer peak as a function of the oscillation pe-
riod. The trimer peak vanishes with decreasing frequency (Fig.
S3), which shows that trimers are stable only for τ < 0.1 td. In-
terestingly, the inflection point of the plot in Fig. S4B is located
at the same period (∼0.02 td) as the secondary peak in the σd vs. τ
plot (Fig. S4A). The order/disorder transition of the trimers is
also evidenced by the plot of 〈ψ2〉τ (the bond-order parameter of
order two) vs. τ, which shows an inflection at ∼0.08 td (Fig. S4D).
Note that 〈ψ1〉τ = 1 and 〈ψ2〉τ = 0 for a system where all particles
form dimers; therefore, the larger 〈ψ2〉τ is, the larger the population
of trimers (or longer oligomers) in the system. In summary, the
trimers in the system present an order/disorder transition at 0.02–
0.08 td (Fig. S4 B and C) that we make responsible for the peak at
0.02 td in the σd vs. τ plot (Fig. S4A).

Model of Size-Switching Colloids
We consider a binary system of size-switching particles as an ex-
ample of dissipative self-assembly via the oscillation of interparticle
potentials different from the one presented in the main text. The
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system is composed of two types of particles, a and b, which model
size-switchable particles, for example pH- or temperature-responsive
microgels (4). These particles can be switched between a collapsed
state (where the particles are small and sticky) and a swollen-
hydrophilic state (where the particles are larger and less sticky
than in the collapsed state). We model the interaction energy
between these particles, using a 12–6 energy-truncated Lennard-
Jones (LJ) potential,

uLJðrÞ=
4«

"	
d
r


12

−
	
d
r


6
#
− 4«

"	
d

rcutoff


12

−
	

d
rcutoff


6
#

for r < rcutoff

0 for r≥ rcutoff ;
[S34]

where r is the distance between the centers of the particles, « is the
interaction strength (« is larger for the interaction between two
hydrophobic particles than for the interaction between two hy-
drophilic ones), rcutoff is the cutoff distance (we used 5σ in the
calculations), and d is the sum of the radii of the two interacting
particles. We denote the time-dependent values of « and d for the
interaction of a particle of type i and one of type j at time t as dij(t)
and «ij(t), respectively. We start the simulation (t = 0) with particles
of type a in the fully collapsed state (daa = 0.5σ, «aa = 12.5 kBT)
and the particles of type b in the fully swollen state (dbb = 2.0σ, «aa =
2.5 kBT). For all times (including t = 0), we determine the interac-
tion uLJ(r) between a and b particles, using the combination rules
dab = (daa + dbb)/2 and «ab = («aa · «bb)

1/2. Fig. S5, Top shows the
interaction potential between the different pairs of particles at t = 0.
As time evolves, a swells and b collapses. We model this pro-

cess by linearly increasing daa and «bb and decreasing «aa and dbb

(Fig. S6). For t = τ/4 (where τ is the period of the perturbation),
a and b are equivalent (Fig. S5, Bottom). For t = τ/2, a is in the
completely swollen state and b in the completely collapsed state.
At this point, a starts to collapse and b to swell until a full cycle is
completed at t = τ. The cycle is then repeated a preestablished
number of times.
Fig. S7 A–C shows the simulated structure of the system upon

applying static potentials corresponding to t = 0, τ/8, and τ/4,
respectively (interparticle potentials in Fig. S5). We observe that
for t = 0 (Fig. S7A), particles of type a form aggregates sur-
rounded by b-type particles. The reason for this behavior is that
particles of type a are small and strongly attract each other and
will try to phase separate from particles of type b to maximize the
number of a–a contacts. We believe that for sufficiently long
simulation times, the system in Fig. S7A should evolve into a
fully phase-separated system. The morphology observed for t =
τ/8 (Fig. S7B) is similar to that observed for t = 0. For t = τ/4
(Fig. S7C), particles a and b become identical and therefore
form a hexagonal lattice with substitutional disorder.
Fig. S7D shows the result of a dynamic simulation for a poten-

tial that is oscillated with a period of 0.008 td. The morphology
observed in this case completely differs from those observed in
static-potential simulations: The system forms an ab square crys-
tal. In other words, the morphology of this dynamic structure
cannot be obtained with a static potential corresponding to any
given time within the oscillation period. As expected, the dissi-
pative structure obtained for a high-frequency oscillation of the
interparticle potentials (Fig. S7D) is equivalent to that obtained
with a time-averaged effective potential (Fig. S7E).
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Fig. S1. Simulations in three dimensions produce dissipative structures. Shown is a snapshot of a 3D simulation for the formation of fibers by pH oscillations.
Simulation conditions: C = 1,000 kBT · σ, ρ = 0.24 particles · σ−3, τ = 0.08 td, linear pH–time program (Fig. 3 B, i of the main text).

Fig. S2. (A and B) Morphology diagrams obtained by analysis of the bond-order parameters ψn (A) and by visual inspection of simulation snapshots (B).
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Fig. S3. Pair-correlation functions between aa and ab pairs of particles for the effective static potential and pH-oscillating potential with different oscillation
periods, τ. The pair-correlation function for the pH-oscillating simulations is an average over a full period; therefore gbb(r) = gaa(r). The values of C and ρ for
each morphology are the same used for the snapshots in Fig. 3 in the main text.

Fig. S4. (A) Snapshot of a simulation of the dimer structure (C = 1,000, ρ = 0.11, and τ = 0.004 td). The trimers are highlighted in blue. (B) Energy dissipation
per oscillation period as a function of the oscillation period (i.e., same plot as in Fig. 5E of the main text), showing the secondary peak at τ ∼ 0.02 td. (C)
Intensity of the trimer peak in the pair correlation function of aa particles located at r ∼ 1.9 σ (Fig. S3) as a function of the oscillation period. (D) Period-
averaged bond-order parameter of order two, 〈ψ2〉τ as a function of the oscillation period. Note that a nonzero parameter 〈ψ2〉τ indicates the presence of
trimers or longer colloidal molecules.
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Fig. S5. Interaction potentials between aa, ab, and bb pairs of particles at different times during the oscillation period (t = 0, τ/8, and τ/4). For t = τ/2, the
potentials are the same as for t = 0, but exchanging a and b. For t = τ, a full cycle is completed and the potentials are the same as for t = 0.

Fig. S6. Values of dij and «ij during an oscillating period.
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Fig. S7. (A–E) Snapshots of simulations of size-switchable colloids for different static potentials discussed in the main text (A–C), the oscillatory potential (D)
with τ = 0.008 td, and the effective time-averaged potential given by Eq. 5 in the main text (E). The density is 0.4 particles · σ−2; a-type and b-type particles are
shown in red and cyan, respectively.

Table S1. Characteristic diffusional timescale for spherical
colloids of different size in water at 298 K

σ, colloid size td

1 nm 3 ns
10 nm 3 μs
100 nm 3 ms
1 μm 3 s
10 μm 3,000 s
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