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1 Decomposition of the variance in molecule copy numbers

As a first step we use the law of total variance to split the variance into a cell cycle stage dependent
and independent part:

〈δ2x〉 = 〈δ2〈x|a〉〉+ 〈〈δ2x|a〉〉 = 〈δ2〈xa〉〉︸ ︷︷ ︸
variance due to
differences in
cell cycle stage

+〈〈δ2xa〉〉 (S-1)

The variance at cell cycle stage a can further be split into the variance deriving from the molecules that
the cell inherited from its mother and that are not yet degraded, denoted x̄0, the variance that stems
from newly synthesized molecules, and their covariance:

〈δ2xa〉 = 〈δ2x̄0〉+ 〈δ2Xa〉︸ ︷︷ ︸
variance in synthesis and extrin-
sic noise in newly synthesized
molecules (”networking”)

+2cov(x̄0, Xa) (S-2)

where the covariance term becomes non-zero if the synthesis rate depends on “extrinsic” factors. The
first term in eq. S-2 can also be decomposed using the law of total variance: for a given number of
molecules at cell birth the variance at cell cycle stage a equals p(a)(1− p(a))〈x0〉, which is the variance
of a binomial distribution. This is because each molecule has an independent survival probability, giving
rise to a binomial distribution of remaining molecules for a given number of molecules to start with.
Since x0 itself is distributed, the variance of the average at cell cycle stage a must be added to this:

〈δ2x̄0〉 = p(a)(1− p(a))〈x0〉+ p(a)2〈δ2x0〉 (S-3)
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From the law of total variance we obtain for the variance at cell birth:

〈δ2x0〉 = 〈〈δ2x0|xT 〉〉︸ ︷︷ ︸
partitioning variance

+ 〈δ2〈x0|xT 〉〉︸ ︷︷ ︸
variance due to mother cell variability

(S-4)

Combining these equations and taking the appropriate averages yields Eq. 6 in the main text:

〈δ2x〉 =

Growth-induced variance︷ ︸︸ ︷
Decayed variance of molecules at cell
birth, 〈p(a)2〉〈δ2x0〉︷ ︸︸ ︷

〈p(a)2〉〈〈δ2x0|xT 〉〉︸ ︷︷ ︸
partitioning variance

+ 〈p(a)2〉〈δ2〈x0|xT 〉〉︸ ︷︷ ︸
variance due to
mother cell vari-
ability

+ 〈δ2〈xa〉〉︸ ︷︷ ︸
variance
due to
differences
in cell
cycle stage

+ 〈p(a)(1− p(a))〉〈x0〉︸ ︷︷ ︸
variance in the degradation of
molecules obtained at division

+ 〈〈δ2Xa〉〉︸ ︷︷ ︸
variance in synthesis and ex-
trinsic noise in newly syn-
thesized molecules (“network-
ing”)

+ 2〈pacov(x0, Xa)〉︸ ︷︷ ︸
covariance due to de-
pendence on extrinsic
factors︸ ︷︷ ︸

Reaction-induced variance

(S-5)

where we used cov(x̄0, Xa) = p(a)cov(x0, Xa).With p(a) = e−kda, the averages 〈p(a)2〉 and 〈p(a)(1−p(a)〉
can be determined from the cell cycle stage distribution (eq. S-35). For deterministic interdivision times
we obtain:

〈p(a)2〉 =

∫
a

u(a)e−2kdada =

(
2− 4−

kd
µ

)
2kd/µ+ 1

〈p(a)(1− p(a)〉 =

∫
a

u(a)e−kda
(
1− e−kda

)
da

=

(
2− 2−

kd
µ

kd/µ+ 1
+
−2 + 4−

kd
µ

2kd/µ+ 1

)
(S-6)

2 Variance from cell division and partitioning

To calculate the variance at cell birth when the partition ratio, q, is not deterministic but follows a
distribution with mean 〈q〉 = 1/2 and variance 〈δ2q〉, the law of total variance is applied twice under
the assumption that xT and q are independent:
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〈δ2x0〉 = 〈〈δ2x0|q〉〉+ 〈δ2〈x0|q〉〉 (S-7)

〈δ2x0|q〉 = 〈〈δ2x0|xT 〉〉+ 〈δ2〈x0|xT 〉〉 (S-8)

= 〈q(1− q)xT 〉+ 〈δ2〈qxT 〉〉
= q(1− q)〈xT 〉+ q2〈δ2xT 〉

Combining equations S-7, S-8, and 〈q〉 = 1/2 yields:

〈δ2x0〉 = 〈q(1− q)〈xT 〉〉+ 〈q2〈δ2xT 〉〉+ 〈δ2(q〈xT 〉)〉 (S-9)

= 〈q(1− q)〉〈xT 〉+ 〈q2〉〈δ2xT 〉+ 〈δ2q〉〈xT 〉2

= 〈δ2q〉〈xT 〉2 +

(
1

4
− 〈δ2q〉

)
〈xT 〉+

(
1

4
+ 〈δ2q〉

)
〈δ2xT 〉

3 Calculation of total variance from the partitioning mecha-

nism and the variance in the synthesis process

The mechanism of partitioning of molecules at division, together with the condition of balanced growth,
sets the boundary conditions for the distributions (and their moments) of copy numbers at birth and
at division. Under the assumption of deterministic interdivision times (relaxation of this assumption is
discussed in the main text), these boundary conditions can be combined with the kinetics of molecule
turnover to yield a system of equations for the moments of the copy number distribution at cell cycle
stage a:

By setting a = T in eq. S-2 and combining with eqs. S-4, S-5 one can express the population
level variance solely in terms of the variance in the synthesis, 〈δ2Xa〉 (which can include intrinsic and
extrinsic components) and its correlation with the number of molecules at cell birth, the variance in
the partition distribution, 〈δ2q〉, and the survival probability of molecules:

〈xa〉 =
〈X|T 〉〈q〉

1− p(T )〈q〉︸ ︷︷ ︸
〈x0〉

p(a) + 〈X|a〉 (S-10)

〈δ2xa〉 = p(a)2〈δ2x0〉+ p(a)(1− p(a))
〈X|T 〉〈q〉

1− p(T )〈q〉 + 〈δ2Xa〉+ 2p(a)cov(x0|Xa) (S-11)

〈δ2x0〉 =
〈xT 〉〈q〉 − 〈xT 〉〈q2〉+ 〈δ2q〉〈xT 〉2

1− 〈q2〉p(T )2
+
〈q2〉(p(T )− p(T )2)〈x0〉+ 〈q2〉〈δ2XT 〉+ 2p(T )cov(x0|XT )

1− 〈q2〉p(T )2

Marginalizing out the cell cycle stage contribution the total variance, 〈δ2x〉, can be calculated from
these equations. While the variance decomposition is meant to be used on time-resolved data, the
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above equations allow for an estimation of the relative magnitude of the different variance contributions
in a sample of extant cells (as would be observed in a typical FACS or FISH experiment).

3.1 Contribution of partitioning variance for a stable molecule

Here we calculate the variance for a stable molecule (kdeg = 0) that is synthesized by a zero order
reaction (with rate constant ks), where the partitioning ratio at cell division, q, fluctuates. The average
and variance at cell birth are given by

〈x0〉 = 〈q〉〈xT 〉 = 〈q〉(〈x0〉+ 〈X|T 〉) = 〈X|T 〉 (S-12)

〈δ2x0〉 = 〈δ2q〉〈xT 〉2 + (1/4− 〈δ2q〉)〈xT 〉+ (1/4 + 〈δ2q〉) 〈δ2xT 〉︸ ︷︷ ︸
= 〈δ2x0〉+ 〈δ2X|T 〉

(S-13)

With 〈xT 〉 = 2〈x0〉 = 2ksT and 〈δ2X|T 〉 = ksT this yields:

〈δ2x0〉 =
ksT (−3 + (4− 16ksT )〈δ2q〉)

−3 + 4〈δ2q〉 (S-14)

Combining this with equations S-1 and S-2 yields for the population level variance:

〈δ2x〉 = 〈x〉+ 〈x〉2(1− 2 ln(2)2) + 〈x〉216 ln(2)2〈δ2q〉)
3− 4〈δ2q〉 (S-15)

4 Contribution of the cell cycle stage distribution to variance

in copy numbers

If the synthesis and degradation rates are constant throughout the cell cycle, the cell cycle stage de-
pendent average of net production is given by

〈Xa〉 =
ks
kd

(1− e−kda) (S-16)

With 〈xa〉 = p(a)〈x0〉+ 〈Xa〉 and 〈x0〉 = 1/2〈xT 〉 the average number of molecules at cell birth equals:

〈x0〉 =
ks
2kd

(1− e−kdT )

1− e−kdT/2 (S-17)
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Figure S-1: Noise contribution of differences in average copy number throughout the cell
cycle A) constant synthesis rate throughout the cell cycle. B) synthesis rate doubles at time tr (kd = 0)

From this, the cell cycle stage contribution to variance can be calculated as (Fig. S-1 A):

〈δ2〈xa〉〉 =

∫ T

0

u(a)(〈xa〉 − 〈x〉)2da

=

∫ T

0

u(a)

(
e−kda

ks
2kd

(
1− e−kdT

)
1− e−kdT/2 +

ks
kd

(
1− e−kda

)
− ks

kd + log(2)
T

)2

da

= 〈x〉2
(
22kd/µ+1 − 1

)
(kd/µ)2 − 4kd/µ

(
2kd/µ − 1

)2 − 2
(
2kd/µ − 1

)2
(2kd/µ+1 − 1)

2
(kd/µ)2(2(kd/µ) + 1)

(S-18)

with µ = ln(2)/T and 〈x〉 = ks
µ+kd

.
When the synthesis rate doubles at some point during the cell cycle due to replication of the gene,

the cell cycle stage dependent variance for a stable molecule can be expressed as (Fig. S-1 B):

〈xa〉 = ks(a+ 2T − tr) for 0 < a < tr

〈xa〉 = 2ks(a+ T − tr) for t ≤ a < T

〈δ2〈xa〉〉 = 〈x〉2
(
−1 + 2

tr
T (3 + ln(4))

)
−〈x〉24

tr
T

2

((
tr
T

)2

ln(2)2 − 2
tr
T

ln(2)(1 + ln(4))

)

−〈x〉24
tr
T

2

(
2 + 4 ln(2)2 + ln(16)

)
(S-19)
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5 Population level variance decomposition for a simple burst

model

Here we apply the results from the previous sections to a burst model where the times between bursts are
exponentially distributed (with average time between bursts equal to 1/ks), burst sizes with a general
distribution (average burst size 〈b〉 and variance 〈δ2b〉). For simplicity we take the molecule to be stable,
i.e. kd = 0. The average and variance of newly made molecules at cell cycle stage a for this model are
given by [1]:

〈Xa〉 = ksa〈b〉 (S-20)

〈δ2Xa〉 = ksa(〈δ2b〉+ 〈b〉2) (S-21)

First we solve for the mean and variance at cell birth:

〈x0〉 = 〈q〉〈xT 〉 = 〈q〉(〈x0〉+ ksT 〈b〉) =
〈q〉ksT 〈b〉
1− 〈q〉 = ksT 〈b〉 (S-22)

〈δ2x0〉 =

〈δ2〈x0|q〉〉, vari-
ance due to q
fluctuations︷ ︸︸ ︷
〈δ2q〉〈xT 〉2 +

partitioning
variance︷ ︸︸ ︷(
1

4
− 〈δ2q〉

)
〈xT 〉+

variance due to mother
cell heterogeneity︷ ︸︸ ︷(

1

4
+ 〈δ2q〉

)
〈δ2xT 〉 =

〈δ2q〉(2ksT 〈b〉)2 +
(
1
4
− 〈δ2q〉

)
(2ksT 〈b〉) +

(
1
4

+ 〈δ2q〉
)
〈δ2XT 〉

1− 1
4
− 〈δ2q〉 (S-23)

The variance due to the cell cycle stage distribution is given by

〈δ2〈xa〉〉 =

∫
u(a)(〈xa〉 − 〈x〉)2da

=

∫
u(a)

(
x0 + ksa〈b〉 −

ksT 〈b〉
ln(2)

)2

da

= 〈x〉2(1− 2ln(2)2) (S-24)

and the average variance due to new synthesis equals:

〈〈δ2Xa〉〉 =

∫
u(a)ksa(〈δ2b〉+ 〈b〉2)da

=

(
1

ln 2
− 1

)
ksT

(
〈δ2b〉+ 〈b〉2

)
(S-25)
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Combining these equations with S-1 yields:

〈δ2x〉 =

variance due to cell cycle
stage distribution︷ ︸︸ ︷
〈x〉2(1− 2ln(2)2) +

variance due to synthesis︷ ︸︸ ︷(
1

ln 2
− 1

)
ksT

(
〈δ2b〉+ 〈b〉2

)
+

ksT (〈b〉(2 + 〈b〉) + 〈δ2b〉+ 4(〈b〉(−2 + 〈b〉+ 4〈b〉ksT ) + 〈δ2b〉)〈δ2q〉)
3− 4〈δ2q〉︸ ︷︷ ︸

〈δ2x0〉 variance at cell birth

6 Variance decomposition with extrinsic noise

We model extrinsic noise as temporal fluctuations in the synthesis rate, ks(t), of molecule X. Considering
only the net new synthesis, the average and variance at cell cycle state a is given by [2]:

〈Xa〉 =

∫ a

0

p(a− t)〈ks(t)〉 (S-26)

〈δ2Xa〉 =

∫ a

0

p(a− t)(1− p(a− t))〈ks(t)〉dt+∫ a

0

∫ a

0

p(a− t1)p(a− t2)cov(ks(t1), ks(t2))dt1dt2 (S-27)

When modeling synthesis as a modulated Poisson process

∅ ksY (t)→ X
kd→ ∅ (S-28)

where the synthesis rate depends on a fluctuating species, Y, the covariance function equals the sum of
a dirac delta function accounting for the shot noise and a term accounting for the fluctuations in Y (t):

cov(ksY (t1), ksY (t1 + τ)) = ks〈Y (t1)〉δ(τ) + k2scov(Y (t1), Y (t2)) (S-29)

The variance in the number of newly synthesized molecules then equals:

〈δ2Xa〉 = ks

∫ a

0

p(a− t)〈Y (t)〉dt+ k2s

∫ a

0

∫ a

0

p(a− t1)p(a− t2)cov(Y (t1), Y (t2))dt1dt2 (S-30)

The total copy number variance at cell cycle stage a is given by

〈δ2xa〉 = 〈δ2x0〉+ 〈δ2Xa〉+ 2cov(p(a)x0, Xa) (S-31)
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where the covariance term accounts for fluctuations in the synthesis rate that span more than one
generation. If there is no variance in the partition function, i.e. q = 1/2, the variance at cell cycle stage
a can also be calculated as:

〈δ2xa〉 = ks

∫ a

−∞
p(a− t)

(
1

2

)i
〈Y (t)〉dt+

k2s

∫ a

−∞

∫ a

−∞
p(a− t1)p(a− t2)

(
1

2

)j (
1

2

)k
cov(Y (t1), Y (t2))dt1dt2 (S-32)

with i = d−t
T
e, j = d−t1

T
e, k = d−t2

T
e, where d..e denotes the ceiling function. t = 0 defines the time

point of the last cell division. For the system defined in Eq. S-28 assuming that Y varies with an
exponentially decaying autocorrelation function with rate constant kY and 〈δ2Y 〉 = 〈Y 〉 the covariance
equals:

cov(x0, Xa) =
k2s〈Y 〉ea(−(kY +kd))

(
ekY a − ekdt

) (
eT (kY +kd) − 1

)
(k2Y − k2d) (2eT (kY +kd) − 1)

(S-33)

7 Using generating functions to calculate the cell cycle stage

dependent copy number distribution

7.1 Associated cell cycle stage distribution for a discrete interdivision time
distribution

We consider a discrete interdivision time distribution, f(t), which models division after deterministic
time intervals, T :

f(t) = δ(T − t) (S-34)

with δ as the Dirac delta distribution such that f(t = T ) = 1 and f(t 6= T ) = 0. The cell cycle stage
distribution u(a) of an exponential growing population of cells with specific growth rate µ is related to
the interdivision time distribution by (Eq. 8 in reference [3]),

u(a) = 2 · µ · e−µ·a
∫ ∞
a

f(t)dt

=
1

T
21− a

T ln 2 for: 0 ≤ a ≤ T (S-35)

With µ = ln 2
T

.
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Note that we have the following relationships,∫ T

0

u(a)da = 1

〈a〉 =

∫ T

0

a · u(a)da = T

(
1

ln 2
− 1

)
≈ 0.44T

〈δ2a〉 =

∫ T

0

a2 · u(a)da− 〈a〉2 = T 2

(
1

(ln 2)2
− 2

)
〈δ2a〉
〈a〉2 =

1− 2(ln 2)2

(ln 2− 1)2
= 0.41 (S-36)

7.2 Background on generating functions

7.2.1 The probability generating function

Let X be a discrete random variable that takes non-negative integer values X ∈ {0, 1, 2, ..}. The (point)
probability that X takes value i is defined as pi = P (X = i). The (probability) generating function of
X denoted by GX(z) is defined as,

GX(z) =
∞∑
i=0

piz
i = 〈zX〉 (S-37)

The moments can be obtained from,

〈X i〉 =
1

z!

(
d

dz

)i
GX(z)

∣∣∣
z=1

(S-38)

7.2.2 The generating function of a sum of independent random variables, X and Y

The generating function of a sum of independent random variables, X and Y , equals

GX+Y (z) = 〈zX+Y 〉 = 〈zXzY 〉 = 〈δzXδzY 〉︸ ︷︷ ︸
=0; independence

+〈zX〉〈zY 〉

= 〈zX〉〈zY 〉 = GX(z)GY (z) (S-39)

It is said that the probability mass function (pmf) PY (Y ) is obtained from the convolution of the pmfs
of X and Y . Convolution thus means the sum of random variables and can be obtained from the
product of the generating functions.
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7.2.3 A compound distribution and its generating function

Let Y be a sum of independent and identically distributed random variables Xi then

Y = X1 +X2 + ...XN (S-40)

and let N be a positive integer-valued random variable. We define GX(z) and GN(z) and GY (z) now
equals,

GY (z) = 〈zY 〉 = 〈〈zY |N〉〉 = 〈〈zX1+X2+...Xn|N〉〉
= 〈〈zX1zX2 ...zXN |N〉〉
= 〈GX(z)N〉
= GN(GX(z)) (S-41)

7.2.4 Bernoulli distribution and its generating function

A random variable X is Bernoulli distributed if,

X =

{
1 when the event is successful, probability p,

0 when the event is successful, probability q = 1− p (S-42)

The generating function is then GXz = p0z
0 + p1z

1 = q + pz = 1− p+ pz.
We are going to need this generating function to calculate the probability for the number of molecules

obtained at cell division and to calculate the probability for the number of molecules that have not been
degraded within a certain time interval.

7.3 The generating function for the number of molecules in a population
of cells engaged in balanced growth

Denote by G(x,a)(z) the probability generating function (pgf) for the number of molecules, x, at cell
cycle stage a. H(x0,a)(z) is the pgf for the distribution of molecules obtained at cell birth, x0, that have
survived until cell cycle stage a. F(x,a)(z) is the pgf of the number of molecules newly produced that
have not yet been degraded during time a. Here we assume that fluctuations in the synthesis rate are
limited to a single generation so that F(x,a)(z) and H(x0,a)(z) are independent.

At any cell cycle stage a the number of molecules equals the sum of the number of molecules
obtained from birth that have not yet been degraded and those have been newly produced and not yet
been degraded. Thus, the pgf of the number of molecules at cell cycle stage a can be obtained from the
convolution,

G(x,a)(z) = H(x0,a)(z)F(X,a)(z) (S-43)
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H(x0,a)(z) is a compound generating function for the probability of the number of molecules that have
not been degraded until cell cycle stage a of the x0 molecules obtained at birth. With first order
independent degradation of molecules the survival probability for each molecule equals p(t) = e−kdt.
From this and equations S-41 and S-42, H(x0,a)(z) can be expressed as

H(x0,a)(z) = G(x,0)(1− p(a) + p(a)z) (S-44)

We assume independent (binomial) partitioning at division where one daughter cell receives molecules
with probability q (the other daughter with 1 − q). We consider that q follows a probability density
function g(q). The ”partitioning probability” q can be influenced by the volume ratio of the two daugh-
ter cells or binding of molecules to intracellular compartments. The copy number probabilities at birth
(a=0) in a daughter cell is related to the copy number probability at the time of division, T , in the
mother cell,

H(x0,0)(z) = G(x,0)(z) = 〈G(x,T ) (1− q + qz)︸ ︷︷ ︸
binomial partitioning
of the x molecules at
time T in the mother

〉 (S-45)

Combining equations S-43 to S-45 yields

H(x0,a)(z) = G(x,0)(1− p(a) + p(a)z)

= 〈G(x,T )(1− q + q(1− p(a) + p(a)z))〉
= 〈G(x,T )(1− qp(a)(1− z))〉 (S-46)

G(x,a)(z) = 〈G(x,T )(1− qp(a)(1− z))〉F(X,a)(z) (S-47)

If q = 1/2 (i.e. g(q = 1/2) = 1) eq. S-47 can be solved by iteration for G(x,T ) (if q follows a distribution,
the moments of the copy number distribution can still be obtained from eq. S-47):

G(x,T )(z) = G(x,T )(1−
1

2
p(T )(1− z))F(X,T )(z) (S-48)

= G(x,T )(1− (
1

2
p(T ))2(1− z)))× F(X,T )(1−

1

2
p(T )(1− z))F(X,T )(z)

= G(x,T )(1− (
1

2
p(T ))n(1− z)))×

n∏
i=0

F(X,T )(1− (
1

2
p(T ))i(1− z)) (S-49)

In the limit of n→∞ the first term in equation S-49 becomes one resulting in:

G(x,T )(z) =
∞∏
i=0

F(X,T )(1− (
1

2
p(T ))i(1− z)) (S-50)
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Combining this with eq. S-47 and F(X,0)(z) = 1 yields:

G(x,0)(z) =
∞∏
i=0

F(X,T )(1−
1

2
(
1

2
p(T ))i(1− z)) (S-51)

G(x,a)(z) = F(X,a)(z)×
∞∏
i=0

F(X,T )(1−
1

2
p(a)(

1

2
p(T ))i(1− z)) (S-52)

8 Simulation of cell populations in balanced growth

Reactions were simulated using the next reaction method with extension to volume dependent reactions
[4]. The time of cell division (calculated from the volume at cell birth, the volume at division, and the
cell’s rate of volume increase) was added to the list of reaction times. Upon division, all molecules were
distributed binomially over the two daughter cells with a probability equal to the ratio of daughter to
mother volume. The complete lineage tree was simulated, either starting with a single cell (cell divisions
with a distributed division fraction and with distributed rate of volume increase) or with a collection of
cells where the remaining life length was calculated from the theoretically calculated interdivision time
distribution according to [3] (cell divisions with distribution of volumes at division). The reason for
this is that the latter mechanism on its own doesn’t lead to a time invariant cell cycle stage distribution
when starting with a single cell. Simulations were run until all distributions (cell cycle stage, copy
number, volume) became stationary.
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