Supplementary Information

Bears in a forest of gene trees: Phylogenetic inference is complicated by incomplete lineage sorting and gene flow

Verena E. Kutschera, Tobias Bidon, Frank Hailer, Julia L. Rodi, Steven R. Fain, Axel Janke

Corresponding authors:

Verena E. Kutschera, Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. Email: <u>v.kutschera@gmx.net</u>

Axel Janke, Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany and Goethe University Frankfurt, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany. Email: <u>axel.janke@senckenberg.de</u>

Phylogenetic analyses of concatenated data

We conducted phylogenetic analyses of concatenated autosomal data to highlight the extent of reduction in variation resulting from the concatenation procedure, and for comparison with the multi-locus species tree (fig. 2A) and phylogenetic trees from previous studies. Intraspecific and intra-individual polymorphisms were disregarded, because for concatenation, for each species all variation within and among individuals had to be collapsed into one single 50% majority-rule-consensus sequence. Unresolved sites with each variant occurring 50% were deleted from the alignments. Phylogenetic trees from concatenated nuclear data were calculated in MrBayes 3.2 (Ronquist et al. 2012) and in Treefinder version 2008 (Jobb et al. 2004). For Bayesian inferences in MrBayes we used one cold and three heated chains and ran the analyses for 10,000,000 Markov chain Monte Carlo generations sampling every 2,000th generation, with a burnin of 25%. We confirmed convergence in Tracer v1.5 (effective sampling size >200). Maximum likelihood analyses were performed in Treefinder with 10,000 bootstrap replicates. In Bayesian and maximum likelihood analyses of concatenated (1) Y-chromosomal, (2) autosomal, and (3) autosomal/Y-chromosomal markers combined, the American black bear was placed as sister-taxon to the brown and polar bear lineage with high statistical support, and the sun bear was sister-taxon to a clade including the sloth and Asian black bear (supplementary figure S2, Supplementary Material online). When analyzing the autosomal and Y-chromosomal data separately, support for the sun/sloth/Asian black bear clade was limited, but it was high in the combined analyses. Statistical support for Ursinae forming a monophyletic group and for the spectacled bear as sister-taxon to all ursines was high for all three datasets (Y-chromosomal, autosomal, autosomal/Y-chromosomal combined); the giant panda was the outgroup.

Supplementary tables

Supplementary table S1: Details of samples and sequences used in the study.

		Sciontific				Accession numbers and/or source study		udy
	Species name	name	Lab ID	Geographic origin	Sex	Autosomal markers	Y-chromosomal markers	Mitochondrial genomes
			14 autoso	omal introns and 5.9 kb Y-chr	omosomal s	equence (present study)	-	
1	Giant panda	Ailuropoda melanoleuca	AmeC85	unknown	male	HG974607-HG974634	HG975027-HG975031	
2	Giant panda	Ailuropoda melanoleuca	Amegenom	unknown	female	Giant panda genome (Li et al. 2010)		
3	Spectacled bear	Tremarctos ornatus	TorCha	Zoo Basel, Switzerland; ISO Fdx 250229600006729	I, Switzerland; ISO D229600006729 male HG974803-HG974830 HG423284-HG423285 (Bidon et al. 2014)		HG975052-HG975056; HG423284-HG423285 (Bidon et al. 2014)	
4	Spectacled bear	Tremarctos ornatus	TorNob	Zoo Basel, Switzerland; ISO Fdx 968000002054943	male	HG974831-HG974858	HG975057-HG975061	
5	Sloth bear	Melursus ursinus	MURL42	Sunset Zoo Manhattan, KS, USA; Studbook# 460	male	HG974719-HG974746	HG975042-HG975046	
6	Sloth bear	Melursus ursinus	MURL43	Philadelphia Zoo, PA, USA	male	HG974747-HG974774	HG975047-HG975051	
7	Sloth bear	Melursus ursinus	MURL44	India; Studbook# 442	female	HG974775-HG974802		
8	Sun bear	Helarctos malayanus	HMAL45	Miami Metro Zoo, FL, USA; Studbook# 635	male	HG974635-HG974662	HG975032-HG975036	
9	Sun bear	Helarctos malayanus	HMAL46	San Diego Zoo, CA, USA; Studbook# 617	male	HG974663-HG974690	HG975037-HG975041	
10	Sun bear	Helarctos malayanus	HMAL47	St. Louis Zoo, MO, USA; Studbook# 644	female	HG974691-HG974718		
11	Asian black bear	Ursus thibethanus	UTHL48	John Ball Zoo, MI, USA; Studbook# 401	male	HG974943-HG974970	HG975077-HG975081	
12	Asian black bear	Ursus thibethanus	UTHL49	Southwick's Zoo, MA, USA	female	HG974971-HG974998		
13	Asian black bear	Ursus thibethanus	UTHL50	Denver Zoo, CO, USA; Studbook# 585	female	HG974999-HG975026		
14	American black bear	Ursus americanus	Uam1203	Yosemite NP, Mariposa, CA, USA	male	see Hailer et al. (2012)		
15	American black bear	Ursus americanus	Uam13724	Wesley, Washington, ME, USA	female	see Hailer et al. (2012)		
16	American black bear	Ursus americanus	Uam16103	Tanana Flats, AK, USA	female	see Hailer et al. (2012)		

						Accession numbers and/or source study		
	Species name	Scientific name	Lab ID	Geographic origin	Sex	Autosomal markers	Y-chromosomal markers	Mitochondrial genomes
17	American black bear	Ursus americanus	Uam24064	Sixes, Curry, OR, USA	female	see Hailer et al. (2012)		
18	American black bear	Ursus americanus	Uam6586	Garfield, CO, USA	female	see Hailer et al. (2012)		
19	American black bear	Ursus americanus	Uam6616	Humboldt, CA, USA	female	see Hailer et al. (2012)		
20	American black bear	Ursus americanus	UamC122	unknown	male	see Hailer et al. (2012)		
21	American black bear	Ursus americanus	UamMTM33	MT, USA	male		HG975062-HG975066; HG423286-HG423287 (Bidon et al. 2014)	
22	Brown bear	Ursus arctos	Uar001	Rumania	female	see Hailer et al. (2012)		
23	Brown bear	Ursus arctos	UarKamK05	Kamchatka, Russia	male	HG974859-HG974886		
24	Brown bear	Ursus arctos	Uar1254	Shoshone NF Park, WY, USA	female	see Hailer et al. (2012)		
25	Brown bear	Ursus arctos	UarA9106	Admiralty Island, AK, USA	male	see Hailer et al. (2012)		
26	Brown bear	Ursus arctos	UarBT1-8	Norway	male	see Hailer et al. (2012)	HG975067-HG975071; HG423290-HG423291 (Bidon et al. 2014)	
27	Polar bear	Ursus maritimus	UmaB26	Turner Island, eastern Greenland	female	see Hailer et al. (2012)		
28	Polar bear	Ursus maritimus	UmaB38	Savissivik, western Greenland	male	see Hailer et al. (2012)		
29	Polar bear	Ursus maritimus	UmaAKL29	Chukchi Sea population, AK, USA	male	HG974887-HG974914		
30	Polar bear	Ursus maritimus	UmaDSL57	Davis Strait population, Canada	male	HG974915-HG974942		
31	Polar bear	Ursus maritimus	Uma009	Point Lay, AK, USA	male	see Hailer et al. (2012)		
32	Polar bear	Ursus maritimus	UmaDSL51	Davis Strait population, Canada	male		HG975072-HG975076; HG423302-HG423303 (Bidon et al. 2014)	

						Accession numbers and/or source study		
	Species name	Scientific name	Lab ID	Geographic origin	Sex	Autosomal markers	Y-chromosomal markers	Mitochondrial genomes
			Α	utosomal and Y-chromosoma	l markers (p	revious studies)		
33	Giant panda	Ailuropoda melanoleuca		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
34	Giant panda	Ailuropoda melanoleuca		unknown	unknown		see Nakagome et al. 2008	
35	Spectacled bear	Tremarctos ornatus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
36	Spectacled bear	Tremarctos ornatus		unknown	unknown		see Nakagome et al. 2008	
37	Sloth bear	Melursus ursinus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
38	Sloth bear	Melursus ursinus		unknown	unknown		see Nakagome et al. 2008	
39	Sun bear	Helarctos malayanus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
40	Sun bear	Helarctos malayanus		unknown	unknown		see Nakagome et al. 2008	
41	Asian black bear	Ursus thibethanus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
42	Asian black bear	Ursus thibethanus		unknown	unknown		see Nakagome et al. 2008	
43	American black bear	Ursus americanus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
44	American black bear	Ursus americanus		unknown	unknown		see Nakagome et al. 2008	
45	Brown bear	Ursus arctos		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
46	Brown bear	Ursus arctos		unknown	unknown		see Nakagome et al. 2008	
47	Polar bear	Ursus maritimus		unknown	unknown	see Pagès et al. (2008)	see Pagès et al. (2008)	
48	Polar bear	Ursus maritimus		unknown	unknown		see Nakagome et al. 2008	

						Accession numbers and/or source study		
	Species name	Scientific name	Lab ID	Geographic origin	Sex	Autosomal markers	Y-chromosomal markers	Mitochondrial genomes
				Mitochondrial genome	es (previous	studies)		
49	Giant panda	Ailuropoda melanoleuca		unknown	unknown			NC_009492 (Peng et al. 2007)
50	Spectacled bear	Tremarctos ornatus		unknown	unknown			NC_009969 (Yu et al. 2007)
51	Sloth bear	Melursus ursinus		unknown	unknown			NC_009970 (Yu et al. 2007)
52	Sun bear	Helarctos malayanus		unknown	unknown			NC_009968 (Yu et al. 2007)
53	Asian black bear	Ursus thibethanus		unknown	unknown			NC_009971 (Yu et al. 2007)
54	American black bear	Ursus americanus		unknown	unknown			NC_003426 (Delisle and Strobeck 2002)
55	Brown bear	Ursus arctos		unknown	unknown			NC_003427 (Delisle and Strobeck 2002)
56	Polar bear	Ursus maritimus		unknown	unknown			NC_003428 (Delisle and Strobeck 2002)

iengenj.			
	14 autosomal	14 autosomal	11 autosomal exon
Species pairs	introns	introns – consensus	and intron markers
	(present study)	(present study)	(Pagès et al. 2008)
Giant Panda – Spectacled bear	0.033	0.032	0.022
Giant Panda – Sun bear	0.033	0.032	0.021
Giant Panda – Sloth bear	0.032	0.031	0.021
Giant Panda – Asian black bear	0.033	0.032	0.020
Giant Panda – American black bear	0.031	0.030	0.020
Giant Panda – Brown bear	0.032	0.031	0.021
Giant Panda – Polar bear	0.033	0.032	0.021
Spectacled – Sun bear	0.017	0.016	0.011
Spectacled – Sloth bear	0.017	0.016	0.012
Spectacled – Asian black bear	0.017	0.016	0.012
Spectacled – American black bear	0.016	0.015	0.011
Spectacled – Brown bear	0.017	0.015	0.013
Spectacled – Polar bear	0.017	0.016	0.013
Sun – Sloth bear	0.008	0.007	0.004
Sun – Asian black bear	0.009	0.007	0.004
Sun – American black bear	0.009	0.008	0.005
Sun – Brown bear	0.009	0.007	0.005
Sun – Polar bear	0.009	0.008	0.005
Sloth – Asian black bear	0.007	0.005	0.004
Sloth – American black bear	0.008	0.007	0.005
Sloth – Brown bear	0.009	0.007	0.005
Sloth – Polar bear	0.009	0.008	0.005
Asian black – American black bear	0.007	0.006	0.003
Asian black – Brown bear	0.008	0.006	0.003
Asian black – Polar bear	0.008	0.007	0.003
American black – Brown bear	0.007	0.006	0.003
American black – Polar bear	0.007	0.007	0.003
Brown – Polar bear	0.005	0.003	0.003

Supplementary table S2: Mean p-distances between species (number of differences/total length).

Calculations are based on (1) 14 autosomal introns (present study; 30 phased individuals), (2) 14 autosomal introns (present study; eight 50% majority-rule consensus individuals), and (3) 11 autosomal exon and intron markers from Pagès et al. (2008) (eight consensus individuals).

	Y chromosome	Autosomal introns								
Species pairs	Mean distance	Mean distance	Fixed differences	Shared polymorphisms	Polymorphic in species 1, fixed in 2	Polymorphic in species 2, fixed in 1	Sum of polymorphic sites			
Giant Panda – Spectacled bear	212	259.8	253	0	12	7	19			
Giant Panda – Sun bear	215.5	266.5	253	0	12	24	36			
Giant Panda – Sloth bear	207	258.5	251	0	12	10	22			
Giant Panda – Asian black bear	205	262.8	235	0	12	56	68			
Giant Panda – American black bear	208	250.4	232	0	12	34	46			
Giant Panda – Brown bear	208	258	232	0	12	64	76			
Giant Panda – Polar bear	209	262.7	255	0	12	13	25			
Spectacled – Sun bear	115.5	136.6	124	0	7	24	31			
Spectacled – Sloth bear	107	133.3	127	0	7	10	17			
Spectacled – Asian black bear	108	134.1	108	0	7	56	63			
Spectacled – American black bear	111	126	110	0	7	33	40			
Spectacled – Brown bear	111	133.2	107	0	7	63	70			
Spectacled – Polar bear	112	136.8	130	0	7	13	20			
Sun – Sloth bear	34.5	62.3	49	0	24	10	34			
Sun – Asian black bear	34.5	68.2	34	0	24	56	80			
Sun – American black bear	40.5	73.6	52	0	24	34	58			
Sun – Brown bear	40.5	69.6	36	1	23	63	87			
Sun – Polar bear	41.5	70.1	57	1	23	12	36			
Sloth – Asian black bear	24	55.1	32	1	9	55	65			
Sloth – American black bear	32	63.3	47	0	10	34	44			
Sloth – Brown bear	32	74.3	48	0	10	64	74			
Sloth – Polar bear	33	73.5	66	0	10	13	23			
Asian black – American black bear	30	58.1	23	4	52	30	86			
Asian black – Brown bear	30	61.6	21	10	46	54	110			
Asian black – Polar bear	31	65.7	38	0	56	13	69			
American black – Brown bear	16	56.6	20	3	31	61	95			
American black – Polar bear	17	59.6	42	0	34	13	47			
Brown – Polar bear	13	38.9	14	1	63	12	76			

Supplementary table S3: Pairwise divergence statistics for 5.9 kb from the Y chromosome and at 14 autosomal introns.

	Giant panda	Spectacled bear	Sun bear	Sloth bear	Asian black bear	American black bear	Brown bear	Polar bear
Giant panda								
Spectacled bear	-							
Sun bear	-	-						
Sloth bear	-	-	2 loci, 2 haplotypes					
Asian black bear	-	-	2 loci, 2 haplotypes	-				
American black bear	-	-	-	-	2 loci, 2 haplotypes			
Brown bear	-	-	-	-	2 loci, 2 haplotypes	3 loci, 4 haplotypes		
Polar bear	-	-	2 loci, 2 haplotypes	-	-	1 locus, 1 haplotype	5 loci, 5 haplotypes	

Supplementary table S4: Haplotype sharing among bear species (fig. 1, supplementary figure S1).

Dataset	Alignment length [bp]						
A. Concatenated alignments reconstructed for traditional phylogenetic analyses							
14 autosomal introns	14 autosomal introns (present study)	7,991					
5.9 kb Y-chromosomal sequence	9 Y-chromosomal markers (present study)	5,907					
15 nuclear markers	14 autosomal introns (present study) + 9 Y-chromosomal markers (present study)	13,898					
9.7 kb Y-chromosomal sequence (total evidence)	9 Y-chromosomal markers (present study) + 2 Y-chromosomal markers from Nakagome et al. (2008) + 3 Y-chromosomal markers from Pagès et al. (2008)	9,794					
Mitochondrial genomes	10,807						
B. Alignments included in multi-locus species	s tree analyses (*BEAST) and population genetic analyses under the isolation-with-migration	model (IMa2)					
14 autosomal introns	14 autosomal introns (present study)	7,991					
14 autosomal introns (non-recombining)	Largest non-recombining sections from 14 autosomal introns (present study) as reconstructed in IMgc (Woerner et al. 2007)	5,127					
15 nuclear markers	14 autosomal introns (present study) + 5.9 kb Y-chromosomal sequence (present study)	13,898					
30 nuclear markers (total evidence)	14 autosomal introns (present study) + 9.7 kb Y-chromosomal sequence (total evidence) + 4 X chromosomal markers from Nakagome et al. (2008) + 11 autosomal markers from Pagès et al. (2008)	28,681					

Supplementary table S5: Datasets analyzed in the present study.

A. Concatenated alignments reconstructed for traditional phylogenetic analyses and for topology tests. For concatenation, one 50%-majority-ruleconsensus individual was reconstructed per species from sequence data generated in the present study. B. Alignments included in multi-locus species tree analyses (*BEAST) and population genetic analyses under the isolation-with-migration model (IMa2).

Supplementary table S6: Results from approximately unbiased (AU) topology tests.

Topologies	p-value AU test	LogL	ΔLogL
Top 5 topologies, ranked according to p-va	lue		
((((Uma,Uar),Mur),((Uam,Uth),Hma)),Tor,Ame);	0.75	-36097.13	0.00
(((Uma,Uar),(((Uam,Uth),Hma),Mur)),Tor,Ame);	0.65	-36097.02	-0.11
((((Uma,Uar),((Uam,Uth),Hma)),Mur),Tor,Ame); (Krause et al. 2008)	0.44	-36096.99	-0.14
((((Uma,Uar),((Uam,Hma),Uth)),Mur),Tor,Ame);	0.26	-36101.45	4.32
((((Uma,Uar),Mur),((Uam,Hma),Uth)),Tor,Ame);	0.21	-36101.57	4.44
Nuclear DNA topologies			
((((Uma,Uar),Uam),(Uth,(Hma,Mur))),Tor,Ame); (fig. 2A)	0.00	-36131.84	34.71
((((Uma,Uar),Uam),((Uth,Mur),Hma)),Tor,Ame); (fig. 2 <i>B</i> , suppl. fig. S2)	0.00	-36131.86	34.73
(((((Uma,Uar),Uam),Uth),(Hma,Mur)),Tor,Ame); (Nakagome et al. 2008; Pagès et al. 2008)	0.00	-36131.79	34.66
((((((Uma,Uar),Uam),Uth),Mur),Hma),Tor,Ame); (Pagès et al. 2008)	0.00	-36131.53	34.40
((((((Uma,Uar),Uam),Uth),Hma),Mur),Tor,Ame); (Pagès et al. 2008)	0.00	-36128.41	31.28

A. Mitochondrial genomes (protein-coding regions, excl. ND6).

B. 5.9 kb Y-chromosomal sequence (present study).

Topologies	p-value AU test	LogL	ΔLogL
Top 5 topologies, ranked according to p-va	lue		
((((Uma,Uar),Uam),((Uth,Mur),Hma)),Tor,Ame); (fig. 2 <i>B</i> , suppl. fig. S2)	0.89	-10141.62	0.00
((((Uma,Uar),Uam),(Uth,(Hma,Mur))),Tor,Ame); (fig. 2A)	0.71	-10142.80	1.18
((((((Uma,Uar),Uam),Uth),Hma),Mur),Tor,Ame); (Pagès et al. 2008)	0.44	-10144.61	2.99
(((((Uma,Uar),Uam),Uth),(Hma,Mur)),Tor,Ame); (Nakagome et al. 2008;	0.34	-10144.77	3.15
Pagès et al. 2008)			
(((((Uma,Uar),Uam),Hma),(Uth,Mur)),Tor,Ame);	0.30	-10143.67	2.05
Additional nuclear topologies			
((((((Uma,Uar),Uam),Uth),Mur),Hma),Tor,Ame); (Pagès et al. 2008)	0.00	-10144.6	2.98
mtDNA topologies			
((((Uma,Uar),Mur),((Uam,Uth),Hma)),Tor,Ame);	0.00	-10214.81	73.19
(((Uma,Uar),(((Uam,Uth),Hma),Mur)),Tor,Ame);	0.00	-10213.06	71.44
((((Uma,Uar),((Uam,Uth),Hma)),Mur),Tor,Ame); (Krause et al. 2008)	0.00	-10214.85	73.23

C. 9.7 kb of Y-chromosomal sequence (total evidence): 5.9 kb Y-chromosomal sequence (present study) concatenated with five Y-linked markers from Pagès et al. (2008) and Nakagome et al. (2008).

Topologies	p-value AU test	LogL	ΔLogL
Top 5 topologies, ranked according to p-va	lue		
((((Uma,Uar),Uam),((Uth,Mur),Hma)),Tor,Ame); (fig. 2 <i>B</i> , suppl. fig. S2)	0.92	-16672.99	0.00
(((((Uma,Uar),Uam),(Uth,Mur)),Hma),Tor,Ame);	0.75	-16674.60	1.61
((((Uma,Uar),Uam),(Uth,(Hma,Mur))),Tor,Ame); (fig. 2A)	0.62	-16674.33	1.34
((((((Uma,Uar),Uam),Uth),Mur),Hma),Tor,Ame); (Pagès et al. 2008)	0.32	-16675.57	2.58
((((((Uma,Uar),Uam),Uth),Hma),Mur),Tor,Ame); (Pagès et al. 2008)	0.19	-16675.57	2.58
Additional nuclear topologies			
(((((Uma,Uar),Uam),Uth),(Hma,Mur)),Tor,Ame); (Nakagome et al. 2008; Pagès et al. 2008)	0.14	-16676.03	3.04
mtDNA topologies			
((((Uma,Uar),Mur),((Uam,Uth),Hma)),Tor,Ame);	0.00	-16795.51	122.52
(((Uma,Uar),(((Uam,Uth),Hma),Mur)),Tor,Ame);	0.00	-16794.17	121.18
((((Uma,Uar),((Uam,Uth),Hma)),Mur),Tor,Ame); (Krause et al. 2008)	0.00	-16795.70	122.71

Ame: giant panda, Tor: spectacled bear, Hma: sun bear, Mur: sloth bear, Uth: Asian black bear,

Uam: American black bear, Uar: brown bear, Uma: polar bear.

Snecies	n (total)	Autosomes			Y chromosome			
species	" (total)	n	S	π (x 10 ⁻³)	n	S	π (x 10 ⁻³)	
Giant panda	2	2	12	1.4 ± 1.0	1	-	-	
Spectacled bear	2	2	7	0.6 ± 0.5	2	0	0.0 ± 0.0	
Sun bear	3	3	24	2.0 ± 1.2	2	1	0.2 ± 0.2	
Sloth bear	3	3	10	1.1 ± 0.7	2	0	0.0 ± 0.0	
Asian black bear	3	3	55	5.1 ± 3.0	1	-	-	
American black bear	8	7	34	2.1 ± 1.1	1	-	-	
Brown bear	5	5	64	4.4 ± 2.4	1	-	-	
Polar bear	6	5	13	0.8 ± 0.5	1	-	-	

Supplementary table S7: Genetic diversity within bear species based on 14 autosomal introns and 5.9 kb from the Y chromosome.

n = number of analyzed individuals; S = number of segregating sites; π = Tamura-Nei-corrected nucleotide diversity (π ± S.D.). Note that for American black bears and polar bears, different individuals were sequenced for autosomal and Y-chromosomal markers (see supplementary table S1).

Marker	Forward primer	Reverse primer	gene (intron#)	size [bp]	T [°C]
1247	TATTGGTGGAGGCTTCACAG	AGACATCCAACAAAGGGCTG	AZIN1(6)	805	65-58 ^d
2331	CCAGGATATTTTGAYGCAATC	CTCAGCTTTYGGTAGGCAAC	LRGUK(14)	674	63-56 ^d
3471	AKACTGAGTCCCAGCAGCAG	CCRTTCTGGGAAACTTGCTC	SPTBN1(31)	712	67-60 ^d
4464	TCCTTTCCCAGAGCAARAAG	TGGTCCTTGGCGAAGTTTAC	ABCA1(49)	738	58
4779	TTTGCAAATCTRAGAGCAGAG	CAGTTGCTGCTTAACTTGTTCC	CCDC90B(4)	708	63-56 ^d
7545	GGGAAAGTTCCGGTTTTTG	TTTCTCAGACACCCTGTCCC	GGA3(3)	726	58
9072	TTTCATCGGTGTCATCATCG	TGTCATGAAGATGTCCTGGC	SCN5A(24)	694	65-58 ^d
9205	CYAAATGTCGGAGTGCRGGG	CTTGGCAATAGCTTTGGCTG	ATP12A(12)	817	65-58 ^d
11080	AAGGGCAAGCTGTTGTAAGR	TCAGCTTTRGTTCCATTTCC	PREX2(29)	753	67-60 ^d
13102	ACACYGTGGGKTTATGGAGC	TCCACACAGATAGCCCAAGG	TRAPPC10(8)	690	65-58 ^d
15923 a	CTGAGCCCAAGTTCGAGAAG ^a	GTGTAGTCCTCCAGGGAGATATAG ^a	SPTA1(51)	739	68-58 ^d
17701 ^b	CTCAGTGGTAGCCAAGGACC	GCTGGAGTTGGAGGAATCAG	IGSF22(15)	692	67-60 ^d
22245	TTCYTGGAAATTGACCCAAC	GGCTGAAGGACTCCTCRCTG	SEL1L3(20)	714	58
OSTA-5	TGMWGGYCATGGTGGAAGGCTTTG	AGATGCCRTCRGGGAYGAGRAACA	OSTA(5)	724	67-60 ^d
318.2C_Ame ^c	AAGAACTGTATTCCATCTRTCCC	AGKAAATGTGAAAGTACTGGTTTAC	Y chr. ^g	979	69-62 ^d
318.3C	CGACCTTGACCAACAAGAGG	GAGATGGTCTCTGCAAGATGG	Y chr.	1216	66-61 ^e
318.3C_Ame ^c	CCCTRTGCCATCATAAATCCC	TTAAGGCTGTGTTTGAGTGCC	Y chr.	724	69-62 ^d
318.7C	TCTTCGTCTTCATGCTGTGG	CCAGCTCCTTATATGCTGAACC	Y chr.	1095	68-58 ^f
318.7C_Ame ^c	TTGGAGGAGTCAGCTGATGAG	TGTTGGTGTTTCAGTTGTATGTTG	Y chr.	766	69-62 ^d
579.3C	TTAACTGCTCTGACCTTCATCG	GTGCACAGGCAAGTGTTAGG	Y chr.	1157	68-58 ^f
579.3C_Ame ^c	AATGAACTGCTTGACCTTCG	TGATGGAGGAAATTGAGTGC	Y chr.	1174	68-61 ^d
318.10B	TGCACAGTTCAATGGCTACAG	TCAGCAGACATTTTCTTGGAAC	Y chr.	529	66-61 ^b
318.11C	GATGATGCATAAGCAATCCTTG	TGCAACCATAACTTGTTTACTTCC	Y chr.	1012	69-64 ^e
389	ACCCACTGCTGTTCTGTATCC	CCAACAGTGTAGTGGTTGTGC	Y chr.	679	68-61 ^d
322	GAGTAGAGCTGGTGCTTGTGAG	GAAGCAGAGCTCAAGTCTGAAG	Y chr.	821	70-63 ^d
403	CACTCAGGAGAGCACAGGTC	TGTGTGTCGTAAGCAGAGGTC	Y chr.	796	69-62 ^d

Supplementary table S8: Primers (in 5' to 3' orientation) and amplification conditions of 14 autosomal introns and nine Y-linked markers.

Markers are named consecutively based on our list of aligned giant panda and dog sequences, with the numbering reflecting their relative position along the dog chromosomes. Gene and intron numbers in the giant panda are given; size for nuclear markers denotes expected amplicon size in base pairs in the giant panda; and T is the annealing temperature used in PCR. Y-specific markers are indicated in the column "gene" and named based on the scaffold they were obtained from.

- ^a The primers for this locus were newly designed compared to Hailer et al. (2012), to improve specificity.
- ^b These sequences correct an error in the primer sequences given in Hailer et al. (2012).
- ^{*c*} Panda-specific primers were designed, in case no PCR product was obtained in any of giant panda, spectacled bear, Asian black bear, sun bear or sloth bear.
- ^d Touchdown PCR, during which the annealing temperature was lowered by 0.5°C in each of 14 cycles, followed by 26 normal cycles.
- ^e Touchdown PCR, during which the annealing temperature was lowered by 0.5°C in each of 10 cycles, followed by 30 normal cycles.
- ^f Touchdown PCR, during which the annealing temperature was lowered by 1.0°C in each of 10 cycles, followed by 30 normal cycles.
- ^g This marker includes exon 4 of *Usp9Y*.

Supplementary figures

Supplementary figure S1: Statistical parsimony networks for nine autosomal intron markers in bears. Circle areas are proportional to haplotype frequencies and inferred intermediate states are shown as black dots. For some loci, spectacled bear and giant panda haplotypes were too divergent to be connected at the 95% credibility limit.

Supplementary figure S2: Phylogenetic tree of 14 concatenated autosomal introns and 5.9 kb Ychromosomal sequence obtained from MrBayes. Numbers next to nodes denote branching support (first number: posterior probability values from MrBayes, second number: bootstrap values from maximum likelihood analyses in Treefinder), for three different datasets: (1) A+Y: 14 concatenated autosomal introns concatenated with nine Y-chromosomal markers, (2) A: 14 concatenated autosomal introns, and (3) Y: 5.9 kb Y-chromosomal sequence.

Supplementary figure S3: Posterior probability distributions for parameters in IMa2 pairwise comparison analyses. Curves are shown for (*A*) and (*B*) estimated population migration rates (2NM) between species; (*C*) effective population sizes (N_e) of the analyzed species; (*D*) effective population sizes of ancestral populations of the analyzed species pairs; (*E*) splitting time estimates (in million years).

References

- Bidon T, Janke A, Fain SR, Eiken HG, Hagen SB, Saarma U, Hallström BM, Lecomte N, Hailer F. 2014. Brown and Polar Bear Y Chromosomes Reveal Extensive Male-Biased Gene Flow within Brother Lineages. Mol. Biol. Evol. 31:1353–1363.
- Delisle I, Strobeck C. 2002. Conserved Primers for Rapid Sequencing of the Complete Mitochondrial Genome from Carnivores, Applied to Three Species of Bears. Mol. Biol. Evol. 19:357–361.
- Hailer F, Kutschera VE, Hallström BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A. 2012. Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science 336:344–347.
- Jameson D, Gibson AP, Hudelot C, Higgs PG. 2003. OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res. 31:202–206.
- Jobb G, von Haeseler A, Strimmer K. 2004. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4:18.
- Krause J, Unger T, Nocon A, Malaspinas A-S, Kolokotronis S-O, Stiller M, Soibelzon L, Spriggs H, Dear PH, Briggs AW, et al. 2008. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol. Biol. 8:220.
- Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463:311–317.
- Nakagome S, Pecon-Slattery J, Masuda R. 2008. Unequal Rates of Y Chromosome Gene Divergence During Speciation of the Family Ursidae. Mol. Biol. Evol. 25:1344–1356.
- Pagès M, Calvignac S, Klein C, Paris M, Hughes S, Hänni C. 2008. Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Mol. Phylogenet. Evol. 47:73–83.
- Peng R, Zeng B, Meng X, Yue B, Zhang Z, Zou F. 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (*Ailuropoda melanoleuca*). Gene 397:76–83.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 61:539–542.
- Woerner AE, Cox MP, Hammer MF. 2007. Recombination-Filtered Genomic Datasets by Information Maximization. Bioinformatics 23:1851–1853.
- Yu L, Li Y-W, Ryder O, Zhang Y-P. 2007. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol. Biol. 7:198.