
Extended Experimental Procedure 

 

Echocardiography 

Left ventricular systolic function was determined echocardiographically on 

conscious mice using the Visual Sonics Vevo 2100, equipped with a 40 MHz 

mouse ultrasound probe.  Ejection fraction and fractional shortening were 

calculated based on end diastolic and end systolic dimensions obtained from M-

mode ultrasound. 

Reactive oxygen species determination 

Dihydrorhodamine 123 (Life Technologies, D-23806) or CM-H2DCFDA (Life 

Technologies, C6827) was reconstituted in DMSO.  Freshly made cryosections of 

unfixed hearts were incubated in 10M dihydrorhodamine 123 or CM-H2DCFDA in 

PBS for 20 min in dark and then mounted with vectashield.  

HPLC detection of DHE oxidation products 

The hearts were harvested and cut into 3 pieces for p1 and 4 pieces for p4 

and p7 and weighed.  Each piece was immediately incubated with DHE (100M in 

PBS) at 37oC for 30min. The buffer was removed and the sample washed once 

with PBS.  DHE and oxidized products were extracted with acetonitrile (500l), 

briefly sonicated (3x30sec, 8W).  Samples were spun down (14,000rpm, 10 min at 

4oC), the supernatant were collected, and dried under vacuum.  The samples were 

further dissolved in 120l PBS-DTPA and injected into the HPLC system as 

described previously (Fernandes et al., 2007; Laurindo et al., 2008; Ray et al., 

2011) 

Real-time PCR 

Total RNA was isolated using Qiagen’s RNeasy Mini Kit according to 

manufacturer’s instruction.  cDNA was synthesized from 2g of RNA using 
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SuperScript II RT (Invitrogen).  Quantitative real time PCR was performed with 

SyberGreen (Applied Biosystems) on ABI Prism 7700 Sequence Detector (Applied 

Biosystems) with primers (table S1).  Beta actin, TBP, GAPDH and Cyclophilin A 

were used as housekeeping control to normalize gene expression using the Ct 

method.  

For mtDNA quantification, DNA was extracted from ventricles with Proteinase 

K digestion and subsequent phenol/chloroform extraction.  Mitochondrial DNA 

(mtDNA) was quantified with real-time PCR with primers shown in Table S1 using 

SYBR green PCR Master Mix and a 7000 Sequence Detection System (Applied 

Biosystems).  The relative mtDNA copy number was calculated from the ratio of 

mtDNA copies to nuclear DNA (nucDNA) copies.  The relative fold change was 

then calculated based on the Ct method.  

Short-run SDS-PAGE and In-gel Tryptic Digestion 

Before analyses, freshly frozen hearts were minced and homogenized in 1.0 

mL of ice-cold homogenization buffer (25 mM Mops, 1.0 mM EDTA, pH7.4) using a 

Polytron homogenizer.   Total heart homogenate was then sonicated and frozen at 

-70˚C until further analysis.  Protein concentrations were determined using the 

bicinchoninic acid method (Pierce) with bovine serum albumin as a standard.  

Aliquots of the homogenates containing 60 µg total protein were mixed with SDS 

and an internal standard containing 8pmol bovine serum albumin.  The samples 

were mixed well and heated at 70oC to assure complete dissolution before 

desalting by precipitation in 1mL of acetone overnight at −20°C.  The protein pellet 

was solubilized in 60 µL Laemmli sample buffer and 20 µg protein loaded in a 

12.5% SDS-PAGE gel (BioRad Criterion system).  The gel was run for 

approximately 15 min at 150 V to give a 1.5 cm gel.  The gel was fixed, washed 

with several changes of water, and stained for 5 min with Coomassie blue 

(GelCode blue, Pierce Chemical Company).  Each lane was cut as a single sample 

and the gel piece divided roughly into 8–10 pieces.  The gel pieces were destained 



in 50% ethanol, 40% water, 10% acetic acid overnight at 50°C with several 

changes as needed for complete destaining.  A standard in-gel digestion method 

was used (Kinter M., 2000).  Briefly, proteins were reduced with DTT and alkylated 

with iodoacetamide (15 mg/mL and 30 mg/mL in 10 mM ammonium bicarbonate, 

respectively) for 20 min each.  The reduction and alkylation reagents were 

removed and digestion was carried out by adding 1 µg trypsin (Promega) in 200 µL 

10 mM ammonium bicarbonate for overnight at room temperature.  The peptides 

produced were collected by extraction in 200 µL 50% ethanol, 50% water with 1% 

formic acid.  The extract was evaporated to dryness and reconstituted in 150 µL 

1% acetic acid in water for LC-tandem MS analysis. 

Liquid Chromatography-tandem Mass Spectrometry 

The LC-tandem MS system was a TSQ Vantage triple quadrupole mass 

spectrometry system (ThermoScientific) with a splitless nanoflow HPLC system 

with autoinjector (Eksigent).  A 10 cm C18 column (Phenomenex Jupiter) packed in 

a fused silica electrospray tip (New Objective) was used.  10 µL Volumes of the 

samples were injected and loaded onto the column at 2 µL/min with 0.1% formic 

acid.  The column was eluted at 160 nL/min with a linear gradient of CH3CN in 

water with 0.1% formic acid (3% CH3CN to 63% CH3CN in 30 min).  The triple 

quadrupole mass spectrometer was operated in the selected reaction monitoring 

(SRM) mode.  Ion source conditions were: spray voltage = 2.5 kV, ion transfer tube 

temperature = 300°C, positive ions.  Collision induced dissociation conditions were: 

Q1 and Q3 resolution = 0.7Da, collision cell pressure = 1mTorr, collision energy 

dependent on the m/z of the parent ion and optimized for each reaction, and cycle 

time was set for 1.0 sec.  SRM conditions were managed through the program 

Pinpoint (ThermoScientific) and included 2 to 3 peptides from each protein with 6 

to 8 fragmentation reactions per peptide.  Scheduling was used to monitor each 

peptide in a 4 min time window centered on the elution time of the peptide.  

Integrated chromatographic peak areas for each peptide were determined using 

the Pinpoint program.  The response for each protein was calculated as the total 



integrated area for all peptides monitored for that protein.  Data were analyzed as 

either this raw total integrated area and after normalization to the internal standard 

protein. 

NADH Oxidase Assay 

Electron transport chain (ETC) activity was measured as rotenone inhibitable 

NADH oxidation (340,  = 6,200 M–1 cm–1).  Total sonicated heart homogenate (25 

µg/mL) was analyzed in buffer containing 10 mM Mops, 10 mM KCl, at pH =7.4.  

NADH (200 µM) was added to initiate electron transport and activity is normalized 

to total protein analyzed. 

Quantification of GSH and GSSG 

The levels of GSH in cardiac tissue were quantified using reverse-phase 

HPLC and electrochemical detection (Rebrin et al., 2003).  GSH and GSSG were 

extracted from total heart homogenate by treatment with 5% metaphosphoric acid.  

Proteins were precipitated upon incubation on ice (5.0 min) followed by 

centrifugation (10 min at 16,000 g).  The supernatant was filtered (0.45-µm syringe 

filters) and GSH and GSSG were resolved by HPLC and quantified by 

electrochemical detection (Shimadzu HPLC system, ESA Coularray 

electrochemical detector 5600A set at 750 mV).  GSH and GSSG were eluted 

through a C18 column (Phenomenex Luna C18(2), 100 Å, 3 µm, 150×4.6 mm) at 

0.5 ml/min using an isocratic mobile phase consisting of 25 mM NaH2PO4, 0.5 mM 

1-octane sulfonic acid, 4% acetonitrile, pH 2.7. GSH and GSSG concentrations 

were calculated employing GSH and GSSG standard curves constructed from 

peak areas. 

Cell cycle analysis 

P1 neonatal cardiomyocytes were plated on 24-well plates.  The day after, 

cells were exposed to either 0.5 or 2 M for 16hr.  Cells were then washed in 1× 

PBS at room temperature, fixed in cold 50% ethanol, and stained with anti-alpha-
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actinin primary antibody (Abcam #ab9465), followed by AlexaFluor488, anti-mouse 

secondary antibody (Molecular Probes).  After washing, cells were resuspended in 

1× PBS containing 0.2% NP40, 0.2 mg/ml RNase-A (Roche) and 40 ug/ml PI 

(Sigma-Aldrich) and incubated for at least 10 min before analysis.  PI incorporation 

in cardiomyocytes was evaluated by flow cytometry using a FACSCalibur flow 

cytometer (Becton Dickinson) and BD CellQuest Pro software (Becton Dickinson). 

Protein extraction from heart tissue and western blotting 

Whole-cell extracts from pooled heart tissue samples {pooled P1 (n=15); P4 

(n=6); P7 (n=3); control/mCAT P4 and P7 (n=3)} were prepared in RIPA buffer by 

homogenization using a hand held homogenizer (Fisher) on ice for 30 min.  Cell 

extracts were centrifuged at 14000 RPM for 30 min at 4oC, to remove insoluble 

material.  RIPA buffer contained PMSF, aprotinin, leupeptin, pepstatin A, NaF, and 

NaVO3 at 1 g/mL each.  Aliquots containing 100 µg protein were resolved by 8% 

SDS-PAGE, transferred onto nitrocellulose membrane at 30 V at 4C overnight.  

Membranes were blocked with 5% milk in TBS-T (TBS-0.1% Tween 20) at room 

temperature for 20 min, and reacted with different antibodies in 5% milk in TBS-T 

at 4°C overnight.  Subsequently, membranes were washed three times with TBS-T 

for 5 min each and then incubated with horseradish peroxidase (HRP) conjugated 

secondary antibodies (anti-mouse/rabbit/goat) in 5% milk for two hours at room 

temperature.  The primary antibodies used for western blotting are as follows: 

pATM (10H11.E12) (Santa Cruz, sc-47732, mouse, 1:500), Wee1 (Abcam, 

ab137377, rabbit, 1:2000), cardiac troponin T (Fisher Scientific, 13-11, mouse, 

1:10,000), Ku70 (M-19) (Santa Cruz, sc-1487, goat, 1:1000), Catalase (Cell 

Signaling, 8841, rabbit, 1:1000).  Quantification analysis of the WB signal was 

done using ImageJ (NIH).  

 

 



 

Supplemental Figure Legends 

Figure S1.  (A) Comprehensive quantitative mass spectrometry analysis of 

enzymes involved in glycolysis, Krebs cycle and fatty acid beta-oxidation in P1, P4 

and P7 mouse heart.  Relative amount of proteins normalized by P1 are presented.  

(B) Relative enzyme activity of NADH oxidase in P1, P4 and P7 hearts was 

increased from P1 to P7, indicating the postnatal activation of mitochondrial 

electron transport chain.  Circle graphs indicate percentage of genes showing 

upregulation, no change or downregulation at P7 compared with P1.  (C) Imaging 

of ROS on cryosections with 5-(and-6)-carboxy-2’,7’-dicholorodihydrofluorescein 

deacetate, acetyl ester (CM-H2DCFDA) indicated an increase in cardiomyocyte 

ROS level from P1 to P7 (arrows).  (D) Cellular GSH and GSSG measured based 

on HPLC was decreased postnatally.  (E) Proteomic analysis of antioxidant 

enzymes revealed an increase of superoxide dismutase 2 (SOD2) in 7 days 

postnatally in the heart.   (F) Quantitative real time RT-PCR analysis of genes 

involved in DNA damage response pathway in P1, P7 and P14 heart indicatesd 

activation of both cell cycle arrest and DNA damage repair after birth.  Amongst 11 

genes tested, 9 were upregulated at P7 compared to P1.  Error bars indicate SEM. 

∗p < 0.05; ∗∗p < 0.01. 

 

Figure S2.  DNA damage is low in adult zebrafish cardiomyocytes compared with 

mouse P7 cardiomyocytes.  Co-immunostaining on cryosections with anti-8-oxoG 

and alpha actinin antibodies showed oxidated DNA in P7 mouse cardiomyocyte but 

not in adult zebrafish cardiomyocyte (arrows).  

 

Figure S3.  Injection of ROS generator paraquat accelerated cardiomyocyte cell 

cycle arrest.  (A) 5mg/kg of paraquat was injected subcutaneously for 3 days after 



birth and hearts were harvested at P3.  (B) WGA staining showed significantly 

increased cardiomyocyte cell size in hearts of paraquat injected neonates.  (C) Co-

immunostaining with anti- pH3 and anti-TnT antibodies showed a drastic decrease 

in cardiomyocyte mitosis in paraquat injected neonates.  TUNEL assay showed no 

significant increase in cardiomyocyte apoptosis.  (D) Paraquat injection resulted in 

decreased cardiomyocyte cytokinesis as shown by immunostaining with anti-

Aurora B and anti-TnT antibodies.  Error bars indicate SEM. ∗p < 0.05; ∗∗p < 0.01. 

 

Figure S4.  Injection of hydrogen peroxide (H2O2) induced post-natal 

cardiomyocyte cell cycle arrest.  (A) 1M of H2O2 was injected into the left ventricle 

at P1 and hearts were harvested at P3.  (B) Immunostaining showed nuclear 

accumulation of phosphorylated ATM in H2O2 injected heart.  (C) HW/BW ratio 

showed no statistically significant difference.  (D) Cardiomyocyte cell size was 

significantly increased confirmed with wheat germ agglutinin (WGA) staining.  (E) 

Co-immunostaining with anti-phospho-histone H3 Ser10 (pH3) and anti-Troponin T 

(TnT) antibodies showed drastic decrease in cardiomyocyte mitosis in H2O2 

injected hearts.  (F) TUNEL assay showed increased apoptotic cardiomyocyte cell 

death which occured mostly around the needle track of the H2O2 injection (arrows).  

Error bars indicate SEM. ∗p < 0.05; ∗∗p < 0.01. 

 

Figure S5. NAC treatment (500nM, 2M) increased DNA synthesis and mitosis, 

and suppressed polyploidization in neonatal rat cardiomyocytes in vitro.  Cell cycle 

analysis presented as percentage of viable cardiomyocytes.  Blue letters in the 

table indicate statistically significant increase (p<0.05).  Error bars indicate SEM.  

 

Figure S6.  Effect of ROS scavenging on mitochondrial enzymes and DDR.  (A) 

HPLC detection of fluorescent product from DHE showed decreased superoxides 



(EOH), and other ROS including H2O2 (E) in the heart of NAC treated mice.  (B) 

HPLC detection of fluorescent product from DHE showed no significant change in 

the level of superoxides (EOH), but decreased H2O2 and other ROS (E) in the 

mCAT heart.  (C) Enzymes related to glycolysis, Krebs cycle and beta-oxidation 

were mostly unchanged in control and NAC-treated hearts at P7.  (D) NADH 

oxidase activity in control and NAC-treated P7 hearts similarly increased compared 

with those in P1.  (E) Western blot analysis showed increased catalase and 

reduced pATM and wee1 level in mCAT hearts.  Error bars indicate SEM. ∗p < 

0.05; ∗∗p < 0.01. 
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