
Supporting Information
Gennaretti et al. 10.1073/pnas.1324220111
SI Methods
Superimposed Epoch Analysis. The Superimposed Epoch Analysis
(SEA) is a statistical method that can be used to verify the presence
and the significance of systematic responses in a dataset related to
particular events occurring during key dates. We used SEA to test
the striking agreement between the occurrence of the major vol-
canic eruptions of the last millennium and some cooling episodes
inferred by STREC (summer temperature reconstruction for
Eastern Canada). Our analysis was implemented as proposed by ref.
1, which used SEA to study connections between explosive volcanic
eruptions and subsequent El Niño climate episodes. Our SEA was
performed in the R environment according to the following steps:
First, two subsets of key volcanic dates from the last millennium

were selected using the reconstruction of the global stratospheric
volcanic sulfate aerosol injections of ref. 2. The 10 y with the
highest sulfate aerosol loadings and the 10 y with loading values
just below the preceding ones were considered as key dates
corresponding to the 10 strongest and the 10 next strongest
volcanic eruptions, respectively.
Second, the key volcanic dates were then used to generate

two “eruption matrices” with the number of rows equal to the
number of eruptions. In each row, we stacked the 30 STREC
reconstructed values before and after each eruption date. In this
way, two matrices were created with each composed of 10 rows
and 61 columns. The values in the matrices were then normal-
ized to attenuate the influence of large anomalies that could
have occurred before or after a particular key volcanic date. To
do so, the values in each row were divided by the maximum value
of the row and, subsequently, the overall mean of the values in
each matrix was subtracted from all values.
Third, dimensionless normalized composites, which represent

the mean response of summer temperatures in Eastern Canada to
each subset of volcanic eruptions, were obtained by averaging the
values of each column for each matrix. To evaluate the signifi-
cance of the obtained composites, we used a Monte Carlo ran-
domization procedure that reshuffles blocks of two values in each
row of an eruption matrix, thus creating 10,000 randomly gen-
erated eruption matrices. These matrices can then be used to
generate 10,000 sets of composites and, subsequently, a random
composite distribution for any specific year from a volcanic
eruption (in our case, 61 distributions). We used these dis-
tributions to test the significance of the obtained composites at
the 90%, 95%, and 99% confidence levels. The Monte Carlo
randomization procedure is based on reshuffling blocks of two
values rather than individual values because this allows randomly
generated eruption matrices to be obtained with first-order
autocorrelations similar to the original ones.
Fourth, to smooth out annual variations in the results of the

SEA, we generated 3-y mean composites from the obtained
composites and random 3-y mean composite distributions from
the 10,000 randomly generated sets of composites. The final
results are illustrated in Fig. 4 and show that the 10 major volcanic
eruptions of the last millennium have produced highly significant
cooling episodes in Eastern Canada that lasted for about two
decades, while less intense volcanic eruptions had a shorter in-
fluence. For this reason, we decided also to test whether the 20
or 10 postevent summers were significantly colder than the pre-
ceding ones, for each of the 10 strongest and each of the 10 next
strongest volcanic eruptions, respectively. The statistical test used
was a one-tailed Wilcoxon rank−sum test (Table S2).

Bayesian Analysis of Regime Shifts. Regime shifts in the STREC
time series were analyzed using a mixture of probability dis-
tributions to which a persistence structure was added. Such
probabilistic models are often called hidden Markov models
(HMM). Here, they provided an explicit and formal mechanism
to detect shifts in the STREC time series and the length of
“warm” and “cold” sequences (i.e., the regimes).
HMM are useful when it is suspected that observations in time

exhibit persistence in several regimes with occasional transitions
between them. While the observations come from distinct pop-
ulations, it is not possible to identify exactly when the changes
took place. HMM are typically specified through a hierarchical
structure. In the first level, the way in which the transitions from
one state to another occur is formalized. This is done by assuming
that the “hidden” states follow a Markov process. The shifts and
the persistence of each regime are governed by state transition
probabilities. The second level represents the process that gen-
erates the data, given the current regime. For a given year, the
data are generated from a statistical distribution whose param-
eters depend upon the current regime. In this study, two statis-
tical probability distributions have been considered: a normal
distribution and a lognormal distribution.
The parameters of the models (means, SDs, transition prob-

abilities) are estimated using a Bayesian approach, as presented in
detail in ref. 3. The estimation process involves Monte Carlo
Markov Chain simulations, since no explicit algebraic solutions
are available for the parameter estimates of such models. More
specifically, we used Gibbs sampling.
Twelve configurations were considered to model the STREC

time series. Bayesian HMM with one to six regimes and two
probability distributions were applied (normal and lognormal). In
this paper, we chose to compute the Schwarz information cri-
terion (4) to select the best representation of the STREC time
series between the competing models. The Schwarz criterion was
calculated for each of the 12 configurations and allowed us to
formally identify both the number of regimes and which proba-
bility distribution best fits the STREC time series. It is im-
portant to mention that this criterion takes into account both
the statistical goodness of fit and the number of parameters
that have to be estimated to achieve this particular degree of
fit by imposing a penalty for increasing the number of pa-
rameters. We gave preference to the model that maximized the
Schwarz criterion.
The estimation of the twelve HMM and the computation

of their respective Schwarz criterion were performed in the
MATLAB environment using codes developed by Évin et al. (3).
The first step in Bayesian analysis is to set up a full probability
model. That is, in addition to modeling the observable quantities
(i.e., the STREC data) using a HMM, we must represent the
prior degree of belief concerning all of the unknowns (i.e., the
parameters of the model: means, SDs, and transition probabili-
ties). Here we considered noninformative prior distributions for
each parameter and let the data talk for itself. In our case, the
Schwarz criterion reported evidence in favor of a four-state
Bayesian HMM with normal distributions. This result, which
states that a normal distribution is more suitable than a lognor-
mal distribution for our data, is not surprising. In fact, in most
meteorological and climatological studies, temperatures are as-
sumed to be normally distributed.
In the Bayesian framework, all statistical inferences about the

unknown parameters are based on the posterior distribution. Just
as the prior distribution reflects beliefs about the parameters
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of the HMM before experimentation, the posterior distribution
reflects the updated beliefs after observing the sample data. Fig. 3C
represents the posterior distributions of the mean temperature of
each regime. These distributions do not superimpose, which in-
dicates significant differences between the average temperatures of
the four regimes. Furthermore, Fig. S4 (Lower) show the posterior
distributions of the transition probability pkk of each regime and

indicate a strong persistence with a probability to stay in a given
regime k greater than 0.8 for all regimes.
Finally, the posterior probabilities that each observation belongs

to a given regime can be evaluated. These are presented in Fig. S4
for each regime. These graphs can be used to locate sudden
changes from one regime to another and to identify historical
sequences of warm or cold temperatures that may have occurred.

1. Brad Adams J, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like
response to volcanic forcing. Nature 426(6964):274–278.

2. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500
years: An improved ice core-based index for climate models. J Geophys Res 113(23):
D23111, 10.1029/2008JD010239.

3. Évin G, Merleau J, Perreault L (2011) Two-component mixtures of normal, gamma, and
Gumbel distributions for hydrological applications. Water Resour Res 47(8):W08525,
10.1029/2010WR010266.

4. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464.
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Fig. S1. Local growth curves and homogenization of subfossil and living tree materials. (A) The local growth curves of the subfossil and living trees at L1 (site
chosen as example), (B) their sample replication (logarithmic y axis), (C) the bias due to sampling height (i.e., difference between local growth curves of living
and subfossil trees), and (D) the local growth curves after the bias is removed from all ring-width series of living trees.
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Fig. S2. Effects of removing the sampling height bias from the tree-ring series of living trees. (A) The Regional Curve Standardization (RCS) chronologies of L1
(site chosen as example) derived from only living trees over the last century. The local RCS chronology from uncorrected ring-width series of living trees is in
black, while the same chronology from corrected series (i.e., the bias due to sampling height is removed from all ring-width series and the local growth curve of
subfossil trees is used for standardization) is in gray. A shows that the correction of the sampling height bias is not affecting the RCS standardization results
(i.e., sampling height bias can be removed and the local RCS chronology remains unchanged). The corrected ring-width series of living trees can subsequently
be used together with those of subfossil samples to develop an unbiased RCS chronology (black line in B). The local RCS chronologies of L1 without correction
of sampling height bias on the tree-ring series of living trees is shown for comparison (red line in B). In B, 20-y splines were used to smooth the values.
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Fig. S3. The network of millennial-long tree-ring chronologies and comparison between STREC and other Northern Hemisphere records. (A and B) The six
local RCS chronologies (one per lake and composed of living and subfossil trees) over the 1,102 y retained for STREC before (A) and after (B) the reconstruction
of the nonrobust time intervals (i.e., intervals for each local chronology where the Rbar statistic calculated over the 31-y moving windows is lower or equal to
zero or noncomputable because of low replication) using the analog method. (C and D) The comparison between STREC and seven Northern Hemisphere
temperature reconstructions [refs. 1–7 (C)] and six Northern Hemisphere temperature simulations [three models, refs. 8–10, running twice with weak and
strong solar irradiance variations and smoothed as plotted in figure 6.14 in ref. 11 (D)]. All records in C and D are expressed as anomalies from their 1500–1899
means. STREC has a larger variability than all other records due to its regional domain, so it is scaled on the y axis to improve the comparison (see blue labels).
Vertical dashed lines highlight the beginning of synchronous cooling episodes in most records.
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Fig. S4. Regime likelihood. Probability of STREC reconstructed temperature values to belong to any given regime of the four-component Bayesian hidden
Markov model with normal distributions. (Upper) Regimes are ordered from the coldest to the warmest (A–D). (Lower) The posterior probability density
functions of the transition probability pkk of each regime. Regimes are ordered from the coldest (Left) to the warmest (Right).
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Fig. S5. Trends in STREC. In A, linear regression coefficients are obtained considering time periods starting from A.D. 910 (black) or A.D. 1257 (green) and
increased by successive 25-y time steps (e.g., 910–950 with dot in 950, 910–975 with dot in 975...). In B, linear regression coefficients are obtained considering
time periods starting from A.D. 2011 (red) or A.D. 1809 (blue) and lengthened backward by 25-y time steps (e.g., 1975–2011 with dot in 1975, 1950–2011 with
dot in 1950...). The vertical dashed lines show the dates of the A.D. 1257 Samalas and A.D. 1809 (the event preceding the Tambora) eruptions, while the
horizontal dashed line shows the trend over the entire time period covered by STREC (A.D. 910–2011; −1.6 °C per 1,000 y).
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Fig. S6. (Upper) Time course of the mean and median cambial age for each local chronology (L1, L12, L16, L18, L20, and L22). Gray shadows show the time
periods discarded for each chronology and reconstructed with the analog method. The dashed areas after A.D. 1900 show the time periods strongly influenced
by living trees. The corrections applied on the ring-width series of living trees reduce possible biases in the RCS chronologies during these periods. The vertical
dashed lines show the A.D. 1257 Samalas and A.D. 1815 Tambora eruptions. We tested if the most important regime shifts in STREC (i.e., post-A.D. 1257 and
post-A.D. 1815) are artifacts due to local disturbances (mostly wildfires; see ref. 1) that changed the sample age structure through time in our chronologies [see
Lower (July−August temperature)]. First, we compared STREC with an alternative reconstruction obtained by excluding those sites with unstable mean cambial
age around A.D. 1257 (i.e., L1, L18, and L22). Second, we did the same exercise, but we excluded those sites with unstable mean cambial age around A.D. 1815
(i.e., L18 and L20). Smoothed values are 20-y splines. These alternative reconstructions show similar or even larger shifts at A.D. 1257 and A.D. 1815 compared
with STREC suggesting that the regime shifts in STREC are robust.

1. Gennaretti F, Arseneault D, Bégin Y (2014) Millennial stocks and fluxes of large woody debris in lakes of the North American taiga. J Ecol 102(2):367–380.
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Fig. S7. Effect of autocorrelation on temperature anomalies after volcanic eruptions. (A and B) The estimates of the partial autocorrelation functions (partial
ACF) fitted to STREC (A) and fitted to the July−August temperature data over the study area (B; 15 cells of the CRU TS3.20 dataset). The orders of the au-
toregressive model (AR order) selected by the Akaike Information Criterion are 9 and 5 for STREC and the temperature data, respectively. (C) The real mean
(red) and median (black) responses of STREC to the 10 strongest volcanic eruptions of the last 1,100 y deduced by ref. 2, along with simulated temperature data
(green) and simulated STREC (dark blue) after applying three different climate inputs (light blue) chosen to reduce the mean squared error between observed
(red) and simulated (dark blue) STREC. Simulated temperature data were obtained with the formula SimTi = ðPn

k=0Inputði−kÞACkÞ=ð
Pn

k=0ACkÞ, where SimTi is the
simulated temperature in the year i, n is the order of the autoregressive model fitted to the July−August temperature data over the study area, k is the lag of
the partial autocorrelation function, Input(i−k) is the climate input in the year (i−k), and ACk is the estimate of lag k for the partial autocorrelation function
fitted to the July−August temperature data over the study area (note that ACo = 1). Here, we chose a two-step climate input composed of a constant
reduction over 10 y starting from year 2 from eruptions (constant values were −1.1 °C, −1.2 °C, and −1.3 °C) followed by another constant reduction
over 10 y (40% of the first reduction). Once the simulated temperatures were obtained, simulated STREC data were obtained with the formula SimSTRECi =
ðPn_STREC

k=0 SimTði−kÞAC_STRECkÞ=ð
Pn STREC

k=0 AC_STRECkÞ. The effect of autocorrelation of tree-ring data on STREC can be considered as the difference between the
simulated temperatures (green) and the simulated STREC (dark blue).

Table S1. Summary of the cross-calibration verification results for the reconstruction of July−August temperatures using two different
reconstruction methods

Statistics
Calibration over 1905–1957

(STREC/PLS-R)
Calibration over 1958–2011

(STREC/PLS-R)
Calibration over 1905–2011

(STREC/PLS-R)

Mean temperature of the 1905–2011
period, °C ± SD

11.9 ± 0.8/11.7 ± 0.5 11.8 ± 1.0/11.7 ± 0.8 11.9 ± 0.8/11.9 ± 0.7

Correlation over verification period 0.55/0.51 0.50/0.40
Correlation over calibration period 0.44/0.53 0.55/0.68
Correlation over total period 0.60/0.60 0.61/0.65 0.61/0.68
RMSE over verification period, °C 0.88/0.93 0.81/0.79
RMSE over calibration period, °C 0.77/0.66 0.92/0.77
RMSE over total period, °C 0.83/0.81 0.87/0.78 0.81/0.73
Significance of FDST over verification 1.00/1.00 0.76/0.99
Significance of FDST over calibration 0.96/0.96 0.99/1.00
Significance of FDST over total 1.00/1.00 0.98/1.00 1.00/1.00
RE 0.52/0.47 0.44/0.46 0.34/0.46*
CE 0.28/0.19 −0.07/-0.02
RE on smoothed datasets (20-y spline) 0.85/0.73 0.90/0.70 0.83/0.90*
CE on smoothed datasets (20-y spline) 0.66/0.40 0.58/-0.17

Reconstruction methods: a linear scaling procedure as in STREC and a reconstruction based on a partial least squares regression (PLS-R). Fifteen cells of the
CRU TS3.20 dataset (1) covering our sampling sites are used as climate reference. FDST, first difference sign test (2); RE, reduction of error (3); CE, coefficient of
efficiency (4).
*Computed over the total period and using the corresponding mean temperature as a reference.

1. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712.
2. Cook ER, Kairiukstis LA (1990) Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer, Dordrecht, The Netherlands).
3. Fritts HC (1976) Tree Rings and Climate (Academic, London).
4. Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in northern Fennoscandinavia back to AD 1700 using tree-ring data from Scots pine. Arct Alp

Res 20(4):385–394.
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Table S2. Results of the Wilcoxon rank−sum test (one-tailed)

Year of sulfate peak Sulfate aerosol, Tg
10 or 20 y preevent

mean (A), °C
10 or 20 y postevent

mean (B), °C B − A, °C P value

10 strongest volcanic eruptions
1167* 52.11 14.89 14.07 −0.83 0.02
1227* 67.52 13.06 13.18 0.12 0.54
1258* 257.91 13.70 12.43 −1.26 0.00
1275* 63.72 12.69 12.16 −0.53 0.06
1284* 54.70 12.47 11.90 −0.57 0.03
1452* 137.50 13.03 11.32 −1.71 0.00
1600* 56.59 11.97 11.44 −0.52 0.09
1783* 92.96 11.77 12.61 0.84 0.98
1809* 53.74 13.11 11.06 −2.05 0.00
1815* 109.72 13.55 10.58 −2.98 0.00
Composite* NA 0.03† −0.03† −0.06† 0.00

10 next strongest volcanic eruptions
1001‡ 21.01 12.93 13.07 0.15 0.60
1176‡ 45.76 14.84 13.49 −1.35 0.02
1341‡ 31.14 12.46 12.46 0.00 0.43
1459‡ 21.92 12.56 10.80 −1.76 0.00
1584‡ 24.23 12.32 12.47 0.15 0.63
1641‡ 51.59 12.47 11.37 −1.09 0.02
1693‡ 27.10 12.85 11.07 −1.78 0.00
1719‡ 31.48 12.99 13.08 0.09 0.76
1835‡ 40.16 10.91 9.90 −1.01 0.01
1883‡ 21.86 12.92 12.35 −0.57 0.02
Composite‡ NA 0.02† −0.03† −0.05† 0.00

The test was used to verify if the 20 or 10 postevent summers inferred by STREC were significantly colder than the preceding ones
for each of the 10 strongest and each of the 10 next strongest volcanic eruptions of the last millennium (deduced by ref. 2), re-
spectively. Composite, the average result of 10 eruptions as obtained by the SEA.
*Twenty years before and after the volcanic eruption are considered.
†Dimensionless normalized units.
‡Ten years before and after the volcanic eruption are considered.

Table S3. Extreme decades and temperature increases reconstructed by STREC

10 warmest decades 10 coldest decades
10 strongest temperature
increases on a 30-y period

Rank Decade
Anomaly relative
to 2002–2011, °C Rank Decade

Anomaly relative
to 2002–2011, °C Rank Period Increase, °C/10 y ± SE

1/90 1161–1170 1.80 1/90 1835–1844 −3.58 1/26 1128–1157 1.48 ± 0.20
2/90 1151–1160 1.68 2/90 1818–1827 −3.21 2/26 1600–1629 1.25 ± 0.21
3/90 1086–1095 1.19 3/90 1465–1474 −2.94 3/26 1462–1491 1.15 ± 0.23
4/90 1072–1081 1.00 4/90 1848–1857 −2.76 4/26 1778–1807 1.06 ± 0.20
5/90 1141–1150 0.89 5/90 1602–1611 −2.69 5/26 1852–1881 1.06 ± 0.15
6/90 1798–1807 0.87 6/90 1920–1929 −2.52 6/26 1697–1726 0.84 ± 0.20
7/90 1061–1070 0.87 7/90 1695–1704 −2.41 7/26 1293–1322 0.83 ± 0.15
8/90 1243–1252 0.83 8/90 1384–1393 −2.17 8/26 1982–2011 0.78 ± 0.11
9/90 1184–1193 0.73 9/90 1905–1914 −2.14 9/26 1414–1443 0.74 ± 0.15
10/90 910–919 0.61 10/90 1644–1653 −2.12 10/26 1229–1258 0.69 ± 0.20
19/90 2002–2011 0.00 78/90 2002–2011 0.00

Overlapping decades or periods are excluded from the analysis. Intervals ending in 2011 are in bold.
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