Supporting Information for

Electron transfer control in soluble methane monooxygenase

Weixue Wang¹, Roxana E. Iacob², Rebecca P. Luoh³, John R. Engen², and Stephen J. Lippard^{1*}

¹Department of Chemistry and ³Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. ²Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States.

Contents

Figure S1. Amino acid sequence and peptic peptide coverage for MMOH.

Figure S2. Deuterium incorporation graphs for the peptic peptides that were followed by HDX MS for MMOH free (red) and bound to MMOR-Fd (blue).

Figure S3. Fluorescence anisotropy titration of MMOH into MMOB $\Delta 2$ -33 labeled with IAEDANS, for K_d determination.

Figure S4. Fluorescence anisotropy titration of MMOR into a mixture of 1 μ M MMOH and 1 μ M IADEANS labeled full length MMOB.

Figure S5. MMOB inhibits electron transfer using chemically reduced full length MMOR as the electron source.

Table S1. Primers used for making mutant proteins

Figure S1. Amino acid sequence and peptic peptide coverage for MMOH. Each colored bar under the sequence corresponds to a peptic peptide that was identified and followed by HDX MS analysis. A total of 93.9% linear coverage was obtained for the α -subunit, 93.5% for β -subunit and 96.4% for the γ -subunit. This protein coverage map was generated using the DynamX 2.0 software package (Waters Corp).

Figure S2. Deuterium incorporation graphs for the peptic peptides that were followed by HDX MS for MMOH free (red) and bound to MMOR-Fd (blue). Each data point represents the average of three independent measurements. The magenta stars indicate the regions where differences in deuterium uptake were observed between free MMOH and Fd-bound. The graphs were produced by DynamX 2.0 software (Waters Corp.).

Figure S3. Fluorescence anisotropy titration of MMOH into MMOB $\Delta 2$ -33 labeled with IAEDANS, for K_d determination.

Figure S4. Fluorescence anisotropy titration of MMOR into a mixture of 1 μ M MMOH and 1 μ M IADEANS labeled full length MMOB.

Figure S5. MMOB inhibits electron transfer using chemically reduced full length MMOR as the electron source. a) Schematic diagrams for the experimental setups. b) Electron transfer kinetic curves. Wavelength monitored, 458 nm; T = 15 °C.

mutant	Primers	
MMOR ferredoxin	Forward	5- GTT TTG GTG AGGTCG GCT AGT AGG AGG CGG AGGTCG -3
domain (1-107)	Reverse	5- CGA CCT CCG CCT CCT ACT AGC CGA CCT CAC CAA AAC -3
MMOB	Forward	5- GGA GGT ATT ACG ATG GAA AGC GAC ACG GTC GTT C -3
Δ2-33 D36C	Reverse	5- GAA CGA CCGTGT CGCTTT CCATCG TAATAC CTC C -3

Table S1. Primers used for making mutant proteins.