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Abstract

Background: Besides having an impact on human health, the porcine muscle fatty acid profile determines meat quality and
taste. The RNA-Seq technologies allowed us to explore the pig muscle transcriptome with an unprecedented detail. The aim
of this study was to identify differentially-expressed genes between two groups of 6 sows belonging to an Iberian 6
Landrace backcross with extreme phenotypes according to FA profile.

Results: We sequenced the muscle transcriptome acquiring 787.5 M of 75 bp paired-end reads. About 85.1% of reads were
mapped to the reference genome. Of the total reads, 79.1% were located in exons, 6.0% in introns and 14.9% in intergenic
regions, indicating expressed regions not annotated in the reference genome. We identified a 34.5% of the intergenic
regions as interspersed repetitive regions. We predicted a total of 2,372 putative proteins. Pathway analysis with 131
differentially-expressed genes revealed that the most statistically-significant metabolic pathways were related with lipid
metabolism. Moreover, 18 of the differentially-expressed genes were located in genomic regions associated with IMF
composition in an independent GWAS study in the same genetic background. Thus, our results indicate that the lipid
metabolism of FAs is differently modulated when the FA composition in muscle differs. For instance, a high content of PUFA
may reduce FA and glucose uptake resulting in an inhibition of the lipogenesis. These results are consistent with previous
studies of our group analysing the liver and the adipose tissue transcriptomes providing a view of each of the main organs
involved in lipid metabolism.

Conclusions: The results obtained in the muscle transcriptome analysis increase the knowledge of the gene regulation of
IMF deposition, FA profile and meat quality, in terms of taste and nutritional value. Besides, our results may be important in
terms of human health.
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Introduction

High-throughput sequencing technologies are rapidly evolving

and its application to transcriptome analysis (RNA-Seq), with the

adapted bioinformatic tools, allow the exploration of the

transcriptome in an unprecedented manner in terms of accuracy

and data insight [1]. In addition, RNA-Seq technology is useful,

not only to detect variation in gene expression patterns, but also to

identify new isoforms, splicing events, and different promoter and

polyadenylation signal usage. Currently, only a few RNA-Seq

studies have been conducted in livestock species such as pigs [2–6].

According to the Food and Agriculture Organization (FAO) [7],

pork is the major source of meat intake by human, accounting for

the 43% of the consumed meat worldwide. The taste and the

quality of the cooked and the cured meat products depend on the

oxidative stability of the muscle which is related to the fatty acid

(FA) composition [8,9]. Furthermore, it is well known that genetic

and environmental factors such as diet, are responsible for FA

composition variation [10]. Besides its influence on meat taste, the

FA composition in muscle has taken additional importance due to

their nutritional value and human health-related benefits [11,12],

particularly for its effects on human diseases such as cancers,
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coronary heart diseases and atherosclerosis [11]. It has been

reported that omega-3 FAs, such as a-linolenic acid (C18:3 n-3),

are associated with the reduction of low density lipoprotein (LDL)

cholesterol and blood triacylglycerols, as well as with the

modulation of immune functions and inflammatory processes

[13,14]. Artificial selection to increase meat production in pigs has

caused a reduction of intramuscular fat (IMF) and changes in meat

FA composition in some breeds. Hereby, there is an increasing

interest in the pork industry on producing meat products with a

higher IMF content and with a healthier FA profile, while

maintaining a reduced amount of backfat [15].

In a recent genome-wide association study (GWAS) [16],

genomic regions associated with the IMF (Longissimus dorsi) FA

composition were identified in a backcross population (BC1_LD;

25% Iberian and 75% Landrace). A combined linkage QTL scan

and GWAS performed in the same backcross revealed significant

pleiotropic regions with effects on both IMF and backfat tissues

[17,18]. Moreover, the transcriptome of the other two major

organs regulating lipid metabolism, liver and adipose tissue

(backfat), have been studied using RNA-Seq in the BC1_LD

animals [4,5]. In these studies, a shift towards the oxidation of FAs

in liver [4] and an inhibition of de novo lipogenesis in adipose tissue

[5] was observed in animals with higher content of polyunsatu-

rated FA (PUFA). Since the adipose and liver tissues have

previously been analysed using animals belonging to the same

population, with the addition of the muscle transcriptome we aim

to have a more complete view of the genetic regulation of lipid

metabolism in pigs [4,5]. The goal of the current study was to

identify differentially-expressed genes and pathways in the

Longissimus dorsi muscle of Iberian 6 Landrace backcrossed pigs

with extreme phenotypes for muscle FA profile to better

understand the differences in this meat quality trait.

Results

Phenotypic differences among the analysed animals
In a previous work [4], a Principal Component Analysis (PCA)

was performed to select animals of an Iberian 6 Landrace

backcross (BC1_LD) with extreme phenotypes for IMF FA

composition. Using the same classification and the first principal

component, six females belonging to the extreme High (H) group

and six from the Low (L) group were selected for muscle RNA-Seq

analysis. Animal selection considered the parental genetic diversity

according to the pedigree. Significant statistical differences (P-

value ,0.05) were identified between the H and L groups in 18

out of 26 evaluated traits (Table 1). The H group had, in

comparison to the L group, a higher content of PUFA including

linolenic (C18:2 n-6), a-linolenic, eicosadienoic (C20:2 n-6),

eicosatrienoic (C20:3 n-6) and arachidonic (C20:4 n-6) FAs.

Conversely, the L group had a higher content of monounsaturated

FA (MUFA) like palmitoleic (C16:1 n-7) and oleic (C18:1 n-9) FAs

and saturated FAs (SFA) such as myristic (C14:0) and palmitic

(C16:0) FAs. The two groups of pigs did not differ significantly in

either IMF content or backfat thickness.

Transcriptome analysis of swine muscle tissue
As described above, the Longissimus dorsi (LD) muscle transcrip-

tome was sequenced in twelve sows (H = 6, L = 6) with extreme

phenotypes for intramuscular FA composition. A total amount of

787.5 M of 75 bp paired-end reads were acquired from the RNA-

Seq experiment. Sequence alignment was performed against the

reference pig genome (Sscrofa10.2) by using Tophat [19]. About

85.1% (76.5%–86.6%) of reads were mapped to the reference

genome, of which 14.5% (12.4%–16.1%) did not map to unique

genomic locations. A total of 85.1% (84.0%–87.6%) of the

mapped reads correspond to annotated genes, 79.1% (77.5%–

84.1%) of them were located in exons and 6.0% (3.6%–6.8%) in

introns. The remaining 14.9% (12.4%–16.0%) of reads mapped to

intergenic regions, indicating that they were not annotated in the

reference genome (Table S1).

The transcripts generated when assembling the short reads with

Cufflinks [20] resulted in a mean of 43,255 transcripts expressed in

muscle (Table S2). Transcripts were classified in different

categories, being the most abundant the exonic transcripts

(60.4%), the putative new isoforms (20.5%) and the intergenic

transcripts (10.1%) (Table S2). A total of 9,887 new isoforms were

identified corresponding to 9,805 known genes.

Transposable elements identification and novel coding
gene discovery

The percentage of interspersed repeats identified with the

Repeat Masker [21] in the intergenic transcripts was about 34.5%.

Moreover, SINEs and LINEs were the most abundant repetitive

elements identified (14.1% and 14.9%, respectively) (Table S3).

With the aim of improving the current porcine genome

annotation, we took into account the intergenic transcripts

identified with cufflinks (a mean of 4,440 transcripts) to determine

whether these transcripts potentially codified for proteins. A total

of 2,372 putative proteins were predicted by Augustus [22]

corresponding to non-annotated transcripts of the Sscrofa10.2

genome assembly version. Among the 2,372 novel predicted

proteins, only 1,406 (59.2%) had at least one orthologous gene

identified with BLASTP option of Blast2GO, representing a total

of 577 known genes (Table S4) [23]. These proteins corresponded

to: 720 Sus scrofa, 17 Homo sapiens and 247 Bos taurus in silico

predicted protein, and 476 Sus scrofa, 933 Homo sapiens, and 403 Bos

taurus known proteins. The pig species was the only one showing a

higher percentage of computationally predicted protein (60.2%) in

comparison to known proteins (39.8%).

Moreover, 918 of the predicted novel proteins were successfully

annotated with Blast2GO [23]. To summarize the functional

annotation, a GO Slim analysis was performed. The most relevant

molecular functions identified were ‘‘protein binding’’ (25%), ‘‘ion

binding’’ (19%), ‘‘nucleic acid binding’’ (17%), ‘‘small molecular

binding’’ (10%) and, interestingly, ‘‘lipid binding’’ (2%). These

new transcripts were mainly involved in the following biological

processes: ‘‘primary metabolic process’’ (9%), ‘‘cellular metabolic

process’’ (9%), ‘‘macromolecule metabolic process’’ (8%) and

‘‘regulation of biological process’’ (7%). Using the Enzime code

and KEGG, the main metabolic pathways represented were the

‘‘phosphatidylinositol signalling system’’ (12 sequences), ‘‘inositol

phosphate metabolism’’ (11) and the ‘‘pyrimidine (9) and purine (8)

metabolism’’.

Differential gene expression analysis
A high correlation (r = 0.98, P-value ,2.2610216) between H

and L groups in the mean gene expression was found, showing

that most of the genes had a similar behaviour. A total of 11,945

transcripts were used to perform the differential expression

analysis after filtering. Using EdgeR program [24], 314 genes

were identified as significantly differentially expressed between H

and L groups. Whereas, employing DESeq [25], 208 genes were

detected. Figure 1 shows the P-value distribution and how among

the transcripts accepted as differentially expressed the selected cut-

off of P-value ,0.01 is clearly departing from the expected P-value

(equivalent to a FDR #0.12).

A total of 131 genes (Table S5) overlapping in both analyses

were selected as differentially expressed between H and L groups
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and, thereafter, used for pathway analysis (Figure 2). Fifty genes

had a higher expression and 81 a lower expression in the H group

(in comparison with L group). Remarkably, eighteen (CLCA4,

ANGPT1, PLEKHH1, SDR16C5, PIK3R1, INTU, MAL2, NCEH1,

PLN, C4orf29, FABP3, TBX3, MCT1, ESF1, POLR3GL, DBT,

C6orf165 and CHAC1) of the 131 genes were also present in the

annotated QTL intervals of a GWAS study for the IMF FA profile

performed in the same population [16]. Three of these genes

(PIK3R1, NCEH1 and FABP3) have been directly related with lipid

metabolism [26], being clear candidate genes to study the genetic

contribution of IMF FA composition. Intriguingly, only two

(C6orf165 and CHAC1) of the 18 genes were over-expressed in the

H group. Moreover, two of the differentially-expressed genes in

muscle (AQP7 and FOS) were also identified as differentially

expressed in liver [4], and seventeen of them (AQP4, SCD,

PLEKHB1, CTSF, CIDEC, ALDOC, CXCL2, KIAA0408, SLPI, ALB,

C14H10orf116, ITPR2, TRIP10, BANF1, HIF1AN, CHAC1 and

FHL3) were identified as differentially expressed in adipose tissue

[5]. In addition, three of the differentially-expressed genes in our

analysis (ATF3, ENAH and SLPI) were also identified in a muscle

microarray study of extreme animals for FA composition from the

same backcross [27]. Other genes such as DNAJA4, ANKRD1,

MYH10 and TNFRSF12A were also common, but they were only

detected by the DESeq program [25] in the RNA-Seq data.

Functional analysis
With the aim of having a more complete functional view of our

differentially-expressed genes in the H and L groups, we used

Babelomics [28] and Ingenuity Pathways Analysis [29] programs,

who have related capabilities but use different databases. The top

canonical pathways overrepresented according to IPA were

related with nitric oxide signalling in the cardiovascular system

Table 1. Mean comparison between High and Low groups (six animals per group) of the traits included in the principal
component analysis (PCA).

Characters H Mean L Mean Significance P-value

Carcass quality

Carcass weight (CW) (kg) 66.22610.52 70.5067.91 NS 4.4461021

Ham weight (HW) (kg) 18.7962.32 18.9762.41 NS 8.9661021

Shoulder weight (SW) (kg) 6.660.95 6.3260.97 NS 6.1661021

Intramuscular fat (IMF) (%) 1.9460.65 1.6960.64 NS 5.2561021

Fatty acids in intramuscular fat

Saturated FAa

Myristic acid (C14:0) 1.1160.12 1.2860.12 * 3,0861022

Palmitic acid (C16:0) 21.2960.57 24.1660.54 *** 4.3561026

Heptadecanoic acid (C17:0) 0.3560.06 0.2060.03 *** 3.0961024

Stearic acid (C18:0) 13.5060.94 14.1661.11 NS 2.9161021

Arachidic acid (C20:0) 0.2560.09 0.2360.05 NS 5.8361021

Monounsaturated FAa

Palmitoleic acid (C16:1 n-7) 2.3360.30 2.9760.41 * 1.0361022

Heptadecenoic acid (C17:1) 0.3360.08 0.2260.05 * 2.0461022

Oleic acid (C18:1 n-9) 36.7863.10 42.7761.07 ** 1.1861023

Octadecenoic acid (C18:1 n-7) 3.8560.20 4.1460.27 NS 6.2961022

Eicosenoic acid (C20:1 n-9) 0.8260.13 0.8260.07 NS 9.9561021

Polyunsaturated FAa

Linoleic acid (C18:2 n-6) 13.7061.30 6.8360.40 *** 2.1461027

a-Linolenic acid (C18:3 n-3) 1.1460.42 0.4760.07 ** 3.2361023

Eicosadienoic acid (C20:2 n-6) 0.6160.16 0.3860.05 ** 8.3961023

Eicosatrienoic acid (C20:3 n-6) 0.4260.17 0.1560.02 ** 3.5861023

Arachidonic acid (C20:4 n-6) 2.7961.26 0.7660.18 ** 2.9661023

Metabolic ratios

Average Chain Length (ACL) 17.4460.02 17.3760.02 *** 2.4161027

Saturated FA (SFA) 36.4961.08 40.0261.28 *** 4.2061024

Monounsaturated FA (MUFA) 44.4962.90 51.2161.41 *** 4.6761024

Polyunsaturated FA (PUFA) 18.6762.75 8.5960.53 *** 4.9561026

Peroxidability index (PI) 30.9266.66 13.5361.02 *** 8.6061025

Double-bond index (DBI) 0.4460.08 0.1960.01 *** 2.8561025

Unsaturated index (UI) 0.8960.06 0.7060.01 *** 1.8261025

NS: P-value .0.05; * P-value ,0.05; ** P-value ,0.01; *** P-value ,0.001
aThe percentage of each FA, relative to the total FA
doi:10.1371/journal.pone.0099720.t001
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(7 genes, P-value = 7.7561027) and endothelial nitric oxide

synthase signalling (eNOS, 8 genes, P-value = 2.3461026). On the

other hand, using Babelomics we observed an overrepresentation

of lipids and lipoproteins metabolism (6 genes, P-value

= 1.6461023), and also the peroxisome proliferator-activated

receptors (PPAR, 4 genes, P-value = 7.2561024) and the insulin

(5 genes, P-value = 1.0061023) signalling and the hemostasis (7

genes, P-value = 1.6461023) pathway (Table 2).

Among the top molecular and cellular functions significantly

overrepresented when comparing H relative to L groups with

Babelomics, we identified the response to organic substance (18

genes, P-value = 3.861027), the muscle organ development (5

genes, P-value = 3.861025), the energy derivation by oxidation of

organic compounds (5 genes, P-value = 1.061024) and the

response to hormone stimulus (9 genes, P-value = 2.661024).

Whereas with IPA, the most relevant functions were involved in

lipid metabolism (30 genes, P-value = 1.0461026), molecular

transport (36 genes, P-value = 1.04610206), small molecule

biochemistry (47 genes, P-value = 1.0461026), cell death and

survival (38 genes, P-value = 1.5561026), carbohydrate metabo-

lism (30 genes, P-value = 2.2561026), energy production (10

genes, P-value = 5.861025) and skeletal and muscular system

development and function (23 genes, P-value = 2.4761024)

(Table S6).

Among the related specific functions for lipid metabolism, the

top molecular functions identified with IPA were the oxidation

(ACADVL, ACOX2, FABP3, PLIN1, PLIN5, PON2, SCD; P-value

= 3.5961024), accumulation (ACADVL, AQP7, FH, IDH1, PLIN1,

PON2, RETSAT, SCD; P-value = 7.90610204), synthesis

Figure 1. Q-Q plot representing the DESeq [25] P-value
distribution of the differentially expression analysis. The
expected distribution of the P-values is indicated with a red line,
whereas black points represent the observed distribution. The selected
cut-off is represented with a green discontinuous line (-log10 (P-value)
.2).
doi:10.1371/journal.pone.0099720.g001

Figure 2. Plot of the 131 differentially-expressed genes identified between the two groups High and Low. X-axis values correspond to
base mean expression values and y-axis values are the log2(fold change). The colour for the differentially-expressed genes is related to their function
in lipid metabolism (red), carbohydrate metabolism (blue), both lipid and carbohydrate metabolism (orange), muscle development (green) or others
(black).
doi:10.1371/journal.pone.0099720.g002
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(ACADVL, ACOX2, ALB, BDKRB2, CNTFR, FABP3, FGF1, FOS,

IDI1, PIK3R1, PLIN1, PON2, SCD; P-value = 2.2861023),

concentration (DUSP1, EXTL1, FABP3, FOS, IDH1, NCEH1,

PLIN1, PON2, PPP1R3C, SCD; P-value = 2.4861025) and

homeostasis (ACADVL, FABP3, GOT1, NCEH1, PIK3R1, PLIN1,

SCD; P-value = 1.9661024) of lipids (Table S7). Other related

pathways were identified such as concentration of bile acids (ALB,

ATF3, SCD; P-value = 3.8761024), obesity (ABAT, AQP7 ARID5B,

ATF3, DESP1, HBEGF, IDH1, PLIN1, RETSAT, SCD; P-value

= 5.7661024), and insulin resistance (ACOX2, ALB, AQP7,

ATP2A2, FGF1, PIK3R1, PON2, PPP1R3C, SCD; P-value

= 5.4161023) and sensitivity (FABP3, HIF1AN, PIK3R1, SCD; P-

value = 7.3961023). In addition, interesting functions such as

heart disease, blood pressure, glucose tolerance, synthesis of

carbohydrate and glucose metabolism disorder, biogenesis of

cholesterol, differentiation of muscle cells and adiposity were also

identified (Table S7).

Finally, a total of nine direct and nine indirect networks were

obtained with IPA (Table S8). The top direct network was

associated with cell death and survival, cellular development,

connective tissue development and function (Figure 3). It showed a

score of 55 and contained 29 molecules (Table S8). The top

indirect network was related to metabolic disease, lipid metabolism

and molecular transport (Figure S1). A total of 21 molecules were

associated to this network having a score of 36 (Table S8).

Discussion

To date, muscle transcriptome analyses concerning meat quality

in swine have mainly been conducted using microarrays [3,27,30–

32]. Compared with microarrays, RNA-Seq enables to determine

the transcript abundance with a larger dynamic range of expression

levels, it is not limited by the available genomic sequencing

information during microarray production and can provide

information about new isoforms. However, the main RNA-Seq

drawback when compared with microarrays is that the analysis

relies on the current pig genome assembly (in this study 10.2), in

which interesting genes involved in lipid metabolism are still

incorrectly annotated or not present. Therefore, the improvement

of the annotation is transcendental for further RNA-Seq studies.

Muscle transcriptome description
In the present study, using RNA-Seq analysis we were able to

map a high percentage of reads to the current pig genome

assembly (Sscrofa10.2). Our percentage of mapped reads (85.1%)

was similar to the described in the pig adipose tissue transcriptome

(80%–87%) [5] performed with the Sscrofa10.2 annotation

version, however it was higher than the percentage found in the

pig muscle transcriptome (64,8%) [6] performed with the

Sscrofa9.2 version or the pig liver transcriptome (71.4%–77.7%)

[4] using the Sscrofa9.61 annotation version. The high amount of

transcripts mapping to intergenic regions and the novel coding

gene discovery, showing a higher percentage of computationally

predicted proteins (60.2%) versus known proteins (39.8%) in pig in

comparison to other species such as bovine and human, reinforces

the need to improve the current pig annotation. Similar results

were shown in the porcine liver [4] and adipose tissue [5]

transcriptomes, in which the 86.0% and 62.5% of the novel

proteins identified respectively were computationally-predicted. As

expected, the major overlap of predicted novel proteins was

between muscle and adipose tissue [5] because unlike the liver and

gonads [2,4], both analyses were performed using the most recent

annotation of the genome. Hence, a total of 40% novel predicted

proteins in the muscle tissue transcriptome have also been found in

adipose tissue, either realised with the Sscrofa10.2. Of the 2,372

predicted novel proteins, 972 were validated in silico being present

in at least one of the three tissues compared [2,4,5]. Interestingly,

36 of the novel predicted proteins were also identified in four

different tissues (liver [4], gonads [2], adipose [5], and muscle

tissue) (Figure 4). When analysing the main metabolic pathways for

the novel transcripts identified, the ‘‘phosphatidylinositol signalling

system’’ and ‘‘inositol phosphate metabolism’’ were among the

most represented categories. The phosphatidylinositol signalling

system plays a critical role in the regulation of diverse processes

such as muscle contraction, cell secretion, cell growth and

differentiation [33]. Moreover, phosphatidylinositol is an essential

component of the lipid membrane, where the total amount of

phospholipids remains fairly constant, or increases little, as the

animal increases in fatness [9,34]. Not surprisingly, these pathways

were also identified when analyzing the adipose tissue novel

transcripts [5]. Interestingly, the phosphatidylinositol signalling

was also found within the most significantly overrepresented

pathways in animals differing in FA composition in an study using

microarrays [35]. Finally, we detected a high percentage (34.5%)

of new repetitive elements present in the porcine genome. This

result was similar to those obtained in adipose tissue (36%) using

the Sscrofa10.2 genome annotation, but higher than those

obtained in gonads (7.3%) and liver (approximately 5.8–7.3%)

Table 2. Summary of the most significantly-overrepresented pathways of the differentially-expressed genes in muscle between
High and Low groups for fatty acid composition traits.

Babelomics IPA

Category Genes P-value Category Genes P-value

Metabolism of Lipids and
Lipoproteins

SCD, ACADVL,
ACOX2, IDH1, IDI1, ALB

5.1261024 Nitric Oxid Signalling in the
Cardiovascular System

BDKRB2, PIK3R3, PRKG1,
PLN, ITPR2, PIK3R1, ATP2A2

7.7561027

Alanine, Aspartate and
Glutamate Metabolism

ABAT, GOT1, ASNS 6.3861024 eNOS Signalling BDK4B2, PIK3R3, AQP7, PRKG1,
ITPR2, PIK3R1, CHRNA9, AQP4

2.3461026

PPAR Signalling Pathway ACOX2, AQP7, FABP3,
SCD

7.2561024 Clathrin-mediated
Endocytosis Signalling

PIK3R3, ALB, CD2AP, TF, PIK3R1,
TFRC, ITGB6, FGF1

2.9561025

Insulin Signalling Pathway GYS2, PIK3R1, TRIP10,
PIK3R3, PPP1R3C

1.0061023 ILK Signalling PIK3R3, FOS, RND3, PIK3R1,
ITGB6, MYL6B, MYH7B, ACTN3

2.9561025

Hemostasis ANGPT1, PIK3R1, ALDOA,
ITPR2, PLEK, TF, ALB

1.6461023 CXCR4 Signalling PIK3R3, FOS, RND3, ITPR2,
PIK3R1, MYL6B

4.7961024

doi:10.1371/journal.pone.0099720.t002
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that used an older version of the pig genome assembly [2,4,5].

This higher content of repetitive elements can be explained by the

improvement of the current assembly (Sscrofa10.2) of the pig

genome being the repetitive regions the most difficult to assemble

[36].

Differential Expression analysis
Apart from describing the transcriptome of the Longissimus dorsi

muscle, this study aimed to identify genes that can be implicated in

determining the phenotypic differences of animals with extreme

IMF FA composition belonging to an Iberian x Landrace

backcross (BC1_LD). Iberian pigs are a local Mediterranean

breed, and in comparison with Landrace, they have an extreme

trend to obesity, with a higher IMF content and a strongest

development of backfat tissue [8]. In contrast to the Iberian pigs,

commercial breeds such as Landrace have suffered a strong

selection towards a lean meat content, muscularity and enhanced

reproduction [37]. Moreover, these two breeds are extreme for FA

composition, showing the Iberian pigs a higher content of SFA and

MUFA (specially C16 and C18:1) and the Landrace pigs a higher

content of PUFA [8,38]. In our study, animals belonging to L

group had a higher content of SFA and MUFA similarly to the

Iberian pigs, whereas animals from H group had higher content of

PUFA, as observed in the Landrace animals. Thus, this animal

material suits very well to studies aiming at identifying the

molecular factors influencing the FA metabolism in pigs.

For the differential-expression analysis we intersected the two

lists of genes, obtained by DEseq [25] and EdgeR [24], to obtain a

Figure 3. Network (direct, score 55) generated by IPA of 35 focus genes corresponding to the cell death and survival, cellular
development, connective tissue and function pathways. Node colours indicate gene expression, being the red nodes higher-expressed genes
and the green nodes lower-expressed genes in the H group relative to the L group. Colour intensity is related to the degree of expression. Node
shapes indicate the biological function of the protein.
doi:10.1371/journal.pone.0099720.g003
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single list in order to avoid false positives [39]. For the same reason

we used a strict P-value #0.01, based on the Q-Q plot and

equivalent to a FDR #0.12, and a fold change $1.2 as used in the

adipose transcriptome analysis [5,40]. We identified a lower

number of differentially-expressed genes with DESeq (208 genes)

when compared to EdgeR (314 genes) what is in accordance with

the observations reported by Soneson & Delorenzi [40]. DESeq

uses conservative default settings and performs well when outliers

are introduced, having a better false discovery rate (FDR) control

for large sample sizes than EdgeR [40]. Notice that some relevant

genes identified using microarrays in the muscle transcriptome of

animals extreme for FA metabolism [27,35] such as ACACA,

FABP4 or PPARGC1A remained incorrectly or non-annotated in

the Sscrofa10.2 annotation version. On the other hand, interesting

genes detected in our RNA-Seq study that may determine

differences in FA composition in muscle such as ChREBP, GYS2,

PLIN1, PLIN5 and AQP7 could not be detected in microarray

studies since probes for these genes were not included.

Differentially modulated metabolic pathways between
groups

Among the top canonical pathways overrepresented between

both groups of animals, we found hemostasis, nitric oxide (NO),

metabolism of lipids and lipoproteins and PPAR and insulin

signalling pathways (Table 2). Remarkably, most of the genes

represented in these pathways were down-expressed in the H

group. When compared with a previous study using microarrays of

animals of BC1_LD population [27], the insulin and the calcium

signalling, the regulation of the cytoskeleton, the focal adhesion

dynamics, the leukocyte accumulation and cardiomyopathies-

related pathways (Table S7) were found in common. Interestingly,

our analysis identified other relevant pathways related to lipid

metabolism, PPAR and NO signalling. On the other hand, most of

the main overrepresented pathways identified in our study were

also present in Duroc animals displaying divergent MUFA and

PUFA fatty acids percentages (Table 2) [35], thus supporting a

relevant role of these metabolic pathways in determining

intramuscular FA composition. However, a feedback loop in

which FA composition modifies these metabolic pathways that in

turn cause a change in FA composition cannot be ruled out as we

described below (i.e. differences in C16:1 n-7 FA or PUFA).

Besides, in our analysis two other interesting pathways were found:

(i) the clathrin-mediated endocytosis signalling, which is used for

molecules such as low density lipoproteins, transferrins or growth

factors and (ii) the C-X-C chemokine receptor type 4 (CXCR4)

signalling, involved in the endocytosis of the glucose transporter

protein 4 (GLUT4), specially in myocytes [41].

In the following sections a detailed explanation of differentially-

expressed genes belonging to each of the main overrepresented

pathways will be discussed.

N NO and insulin signalling pathways. The skeletal muscle

is a target organ for the insulin-induced glucose uptake and for

the maintenance of glucose homeostasis in blood [42]. Insulin

acts in the carbohydrate metabolism facilitating the glucose

diffusion into adipose and muscle cells via glucose transporter

proteins (GLUT) and stimulates FA synthesis and the storage

of triglycerides by the esterification of glycerol phosphate.

Notably, the C16:1 n-7 FA, observed to be decreased in the H

group (Table 1), can act as a lipokine that jointly with the

expression of the peroxisome proliferator-activated receptor gamma

(PPAR-c) can strongly stimulate the muscle insulin action

[43,44]. Interestingly, PPAR-c and solute carrier family 2, member 4

(SLC2A4; also called GLUT4) were identified as over-expressed

in the L group animals when using EdgeR program.

Supporting these results, Cánovas et al. [35] identified a higher

expression of myocyte enhancer factor 2A (MEF2A) gene which

upregulates GLUT4 in Duroc animals having a higher MUFA

and SFA content. Furthermore, insulin stimulates eNOS, the

enzyme responsible for synthesizing NO by calcium-indepen-

dent phosphorylation via phosphoinositide 3-kinases (PI3

kinases) and the downstream effector serine/threonine kinase

(Akt) [45]. NO is a signalling molecule synthesized from L-

arginine that plays an important role in regulating energy

metabolism in mammals [46]. It has been reported that a

chronic exposure of NO may decrease whole-body energy

metabolism, increasing the adiposity and obesity [46]. For

instance, PI3 kinases, down-expressed in the H group, have

been reported to be necessary for the insulin-stimulated

glucose uptake and glycogen synthesis, meanwhile, Akt

regulates cell growth and metabolism and it is involved in

glucose transport and lipogenesis (Figure 4) [16,47]. In the

same direction, the glycogen synthase (GYS) gene was down-

expressed in animals belonging to the H group (Figure S1),

what might be a downstream effect of the Akt pathway [48].

Thus, the GYS inhibition may decrease the synthesis of

glycogen necessary for glucose storage.

N PPAR and metabolism of lipids and lipoproteins
pathways. In concordance with the low glucose-uptake that

seems to occur in the H group of animals, we observed a

down-expression of lipogenic genes most probably due to the

lack of activation of carbohydrate responsive-element binding

protein (ChREBP) [49]. The stearoyl-CoA desaturase (SCD) gene

(Table S5) is responsible for the biosynthesis of MUFA from

SFA, and its deficiency has been associated with lean mice

[50]. Furthermore, polymorphisms in SCD gene have been

strongly associated with FA composition in pigs and cows

[12,51–53]. It has been suggested that an inhibition of this

enzyme produces an increase in fatty acid oxidation through

the inhibition of acetyl-CoA carboxylase (ACACA), regulated via

Figure 4. Venn diagram of the novel predicted proteins
expressed in muscle, liver [4], gonads [2] and adipose tissue [5].
doi:10.1371/journal.pone.0099720.g004
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ChREBP, and de novo lipogenesis [50,54]. Interestingly, the SCD

gene was identified as down-expressed in the adipose tissue of

animals with higher content of PUFA in the Iberian x

Landrace crossbred [5] and over-expressed in animals with

higher IMF accumulation [31,35]. Our results support the

hypothesis of Corominas et al. [5], that suggested that higher

PUFA content in the H group suppresses the ChREBP gene

function in a LXR-dependent manner inhibiting glycolytic and

lipogenic genes. Although not present in the overlapping list

(Table S5), the ChREBP gene was identified as down-expressed

in the H group for EdgeR program.

Another gene whose disruption is associated with lean mice

and was also down-expressed in H group is the perilipin [55].

Perilipins modulate the hydrolysis of triglycerides by hormone-

sensitive lipase (LIPE) [56]. Specifically, perilipin 5 (PLIN5) may

play a role of ‘‘master lipolytic regulator’’ in muscle, and its

over-expression can increase lipid droplet size and triacylgly-

cerol storage [57]. We also identified the lipid transporter Fatty

acid binding protein 3, muscle and heart (FABP3) and the Aquoporins

(AQP4 and AQP7) as down-expressed in the H group (Table

S4). FABP3 is more expressed in the skeletal muscle than in

other tissues and participates in FA uptake and cytosolic

transport, having a high binding affinity for palmitic, oleic and

stearic acids. Furthermore, FABP3 acts as a transcription factor

in the nucleus for the control of lipid-mediated transcriptional

programs via nuclear hormone receptors or other transcription

factors that respond to lipids [58]. This gene has also been

found in a genomic region significantly associated with FA

composition in a GWAS performed in the Iberian x Landrace

cross, being a clear candidate to explain the differences in FA

composition observed between the two groups of animals [16].

Besides, it has been suggested as a candidate gene for the

control of IMF deposition as it was identified as over-expressed

in animals with higher IMF content [59]. The Aquaporins are

modulated by the PI3K/Akt signalling and they are involved

in glycerol uptake, particularly AQP4 is localized in muscle

fibers and it is important for energy supply in the skeletal

muscle [46,60,61]. The AQP7 which is higher expressed in fat

tissue was also identified in the liver transcriptome study as

being also down-expressed in animals with a higher content of

PUFA [4,61]. Another differentially-expressed gene between

the two groups of animals was the very long-chain specific acyl-CoA

dehydrogenase gene (ACADVL), a PPAR target gene which was

down-expressed in the H group. This gene catalyzes the first

step of the mitochondrial FA b-oxidation pathway, mainly in

muscle, having preference for C16:0, C16:1, C18:0 and C18:1

[62,63]. Moreover, ACADVL deficiency in humans produced a

defective oxidation of oleic FA and knock-out mice for

ACADVL fed in high-fat diet had a decrease in whole body

fat content [64]. Overall, these results agree with a previous

study in which the transcriptome of two groups of Duroc pigs

with different IMF composition was analysed using micro-

arrays and concluded that the IMF accumulation in animals

having more IMF, MUFA and SFA may result from a balance

between uptake, synthesis and degradation of triglycerides

[35].

N Hemostasis. Alterations in fat metabolism play a role in the

development of cardiovascular disease. Not surprisingly, our

data set revealed several differentially-expressed transcripts

which could be classified as potential regulators of hemostasis

(Table S2). For instance, the angiopoietin-1 (ANGPT1) gene

which has been reported to increase vessel formation causing

an enhanced glucose uptake and also the glycogen and lipid

synthesis [65] was over-expressed in the L group and present

in a QTL interval of the GWAS for IMF FA profile in the

same population (Table S5) [16]. Furthermore, and consistent

with our results, the angiogenesis promoted by ANGPT1 has

been reported to increase NO production accompanied by an

activation of the Akt and the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) signalling pathways

[66,67] (Figure 4). Accordingly, the hypoxia-inducible factor-1,

alpha subunit inhibitor (HIF1AN), which is regulated through the

NF-kB inflammatory pathway and serves as an oxygen sensor

regulating heart’s oxygen supply, was down-expressed in the L

group (Table S5). Thus, the L group animals having more SFA

and MUFA content may have boosted the angiogenesis and

improved the inflammatory response through the activation of

the ANGPT1 gene. A decreased essential PUFA content may

lead to a proinflammatory eicosanoids synthesis and vasocon-

strictors activation as has been reported in other studies [68].

In this direction, an over-expression of genes encoding for the

inositol 1,4,5-triphosphate receptor 2 (ITPR2) protein which

activates the release of Ca(2+) in the vessels acting as

vasoconstrictor and aldosterone A (ALDOA) which increases

blood pressure when activated by angiotensin [69,70] was

observed in L group.

Pig lipid metabolism affected by intramuscular FA
composition

In general, our results show that differences in FA composition

may influence the lipid metabolism determining the phenotypic

variation observed between the two groups of animals. In previous

studies of our group, we observed that in liver [4], a high content

of PUFA (H group phenotype) shifted the metabolism towards the

FA oxidation; meanwhile, in adipose tissue [5] inhibited lipogen-

esis. Accordingly, in other studies analyzing the muscle tran-

scriptome using microarrays a favored FA oxidation and a reduced

fatty acid uptake, lipogenesis and triacylglycerol synthesis was

generally observed in the group with higher intramuscular PUFA

content [27,35]. In our RNA-Seq study in muscle we observed an

inhibition of glucose uptake and lipogenesis in the H group, which

would produce a decrease in the triglyceride storage. Noteworthy,

in adipose and muscle transcriptome analysis, the albumin (ALB)

gene was identified as over-expressed in animals having a higher

content of PUFA (H group) [5]. The ALB is a long chain FA

transporter that enhances FA mobilization affecting cellular

uptake and also plays an antioxidant function in plasma. In

adipose tissue, we hypothesized that ALB was supplying the FFAs

used for the oxidation in liver in pre-slaughtering fasting

conditions [5]. In the same direction, our results suggested that

in muscle there is also an increased input of FFAs from blood and

adipose tissue in order to fulfil the high-energy requirements in the

H group. We hypothesize that animals having a high content of

SFA and MUFA such as the Iberian pig, which is a rustic and

slow-growing breed, may have an enhanced adaptation to fasting

thanks to their high availability of muscle energy stores. Thus,

selection towards a fast growth in commercial pigs such as

Landrace, may have affected the ability to adapt to food disposal

fluctuations [71].

Implications
In conclusion, the genes identified here as differentially-

expressed between extreme animals, the pathways and the gene

networks, contribute to understand the differences in gene

regulation between the two groups differing in the muscle FA
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composition. The functional analysis showed a different regulation

of the lipid metabolism between groups, being more prone either

to lipolisis or to lipogenesis depending on their FA composition.

Moreover, the enrichment analysis showed that muscle plays a key

role in energy metabolism, mainly in glucose and lipid metabo-

lism, observing that animals having more PUFA, had a shift of the

metabolism towards the lipolisis and also a lower glucose uptake.

There are also evidences that the joint metabolism of the liver,

adipose tissue and muscle may have an integrated role in

determining the final FA composition of muscle. Therefore, the

study of the muscle transcriptome may provide clues to decipher

the genetic basis of meat quality traits. Moreover, this study may

be of high relevance since FA composition in meat has important

consequences in human health [72]. Besides, we observed that

among the DE genes there was an overrepresentation of the

obesity and the insulin resistance pathways. The results here

exposed are particularly interesting because these diseases have a

high prevalence and the pig has been described as a suitable

biomodel for human lipid-related metabolic diseases [73].

Methods

Animal samples and phenotypes
The IBMAP population was originated by the cross of 3 Iberian

boars (Guadyerbas) with 31 Landrace sows [74]. In this study we

used 144 animals from the BC1_LD generation obtained by

crossing five F1 boars with 26 Landrace sows. Animals were fed ad

libitum with a cereal-based commercial diet (see [8] for diet details)

and slaughtered at 179.862.6 days. Animal care and procedures

were performed following national and institutional guidelines for

the Good Experimental Practices and approved by the Ethical

Committee of the Institution (IRTA- Institut de Recerca i

Tecnologia Agroalimentàries). Samples of the Longissimus dorsi

muscle were collected, snap frozen in liquid nitrogen and stored at

280uC until RNA extraction.

A Principal Component Analysis (PCA) was performed for

characters related with the FA profile in muscle (see [4] for

detailed description of this analysis). Twelve extreme animals were

selected according to the first principal component (6 H and 6 L)

[4]. Only females were taken into account in order to remove the

sex effect on FA composition. The R language [75] was used to

perform the statistical analysis of phenotypic mean comparison

using a linear model.

RNA isolation
Total RNA was isolated from the Longissimus dorsi muscle of 12

samples with RiboPure Isolation of High Quality Total RNA

(Ambion, Austin, TX, USA). Total RNA was quantified in a

NanoDrop ND-1000 spectrophotometer (NanoDrop products,

Wilmington, DE, USA) and Qubit (Invitrogen, Carlsbad, CA,

USA). RNA purity and integrity was checked employing a

Bioanalyzer-2100 (Agilent Technologies, Inc., Santa Clara, CA,

USA). All samples had a RNA Integrity Number (RIN) above 8.5.

Paired-end raw sequences (75 bp) were generated using a Hi-

Seq 2000 instrument (Illumina, Inc., San Diego, CA, USA) in

CNAG institute (Centro Nacional de Análisis Genómico,

Barcelona, España).

Mapping and annotation
We ran FastQC [76] for the quality control. Indexed reads were

then mapped to the reference pig genome version 10.2

(Sscrofa10.2) and the annotation database Ensembl Genes 67

[77] using TopHat v2.0.1 [19] with an allowance of two

mismatches for each read. The resulting bam files containing the

aligned sequences, were subsequently merged with Samtools [78].

Reads were annotated using the intersectBed option of BEDtools

[79]. Cufflinks v2.0.2 program [20] was used to assemble the

transcripts with a minimum of 10 reads per alignment. Finally,

Samtools [78] was employed to compute descriptive statistics.

Gene expression quantification and differential-
expression analysis

The number of reads mapping to each gene was determined

with the comp-counts option in Qualimap v5.0 program [80]. We

discarded those genes with a group mean less than 20 counts. We

calculated the Pearson correlation coefficient between the mean

expression values of the H and L group using the cor.test function of

R. For the differential expression analysis we used DESeq [25] and

EdgeR [24] packages implemented in R. We considered as

differentially expressed between H and L groups those genes

identified by both programs (DESeq and EdgeR) with a fold

change $1.2 and P-value #0.01, the same parameters used in

Corominas et al. [5], these case for both programs. FDR was

calculated using the R package qvalue [81].

Transposable elements and orthology analysis
We used RepeatMasker version open-3.3.0 [21] with the rm-

20120418 database in order to identify repetitive and transposable

elements in the pig muscle transcriptome. We used ‘‘quick search’’

and ‘‘pig’’ species options and the Search Engine NCBI/

RMBLAST.

Intergenic expressed regions not annotated in the Sscrofa10.2

version assembly were identified using Cuffcompare [82] and

extracted using our own Python and R scripts. Novel putative

proteins were predicted with Augustus program [22]. Afterwards,

using Blast2GO [23], we mapped and annotated the novel protein

coding genes. Using BLASTP option (E-value hit filter 1.00E-6,

annotation cutoff 55, gene ontology (GO) weight 5 and HSP-hit

coverage cutoff 0) we checked their orthology with already

annotated proteins in Homo sapiens, Bos taurus and Sus scrofa protein

databases. The InterProScan specific tool implemented in

Blast2GO was employed to refine the functional annotations.

With the GO Slim options we selected the relevant GO terms

belonging to the cellular component, biological process and

molecular function categories. Parameters were set to 10 for the

seq filter and 20 for node score filter. Finally the ontology level was

set to 3.

Gene ontologies and pathways
The Ingenuity Pathways Analysis software [29] and FatiGO

tools from Babelomics 4.3 [28] were used to identify the most

relevant biological functions and pathways in which the differen-

tially-expressed genes (between the H and L groups) were

involved. IPA, which uses its own private databases, allowed us

to identify biological relevant information, identifying overrepre-

sented pathways using the BH multiple testing correction (FDR) at

P-value ,0.05, and generating biological networks. For FatiGO,

we used KEGG [83] and Reactome [84] databases setting the cut-

off FDR ,0.1. The Mouse Genome Database (MGD) [26] was

used in order to identify how mutant alleles driven in mice for the

18 identified genes common in GWAS and RNA-Seq analysis

affected the phenotype.

Data Availability

The full data sets have been submitted to NCBI Sequence Read

Archive (SRA) under Accession SRP039424, Bioproject:

PRJNA240057.
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Supporting Information

Figure S1 Network (indirect, score 36) generated by IPA
of 35 focus genes corresponding to metabolic disease,
lipid metabolism and molecular transport. Node colours

indicate gene expression, being the red nodes higher-expressed

genes and the green nodes lower-expressed genes in the H group

relative to the L group. Colour intensity is related to the degree of

expression. Node shapes indicate the biological function of the

protein.

(TIF)

Table S1 Percentage of reads mapped for each sample and their

localization (exonic, intronic or intergenic) regarding the pig

reference genome sequence.

(DOCX)

Table S2 Total number of assembled transcripts with cufflinks.

(DOCX)

Table S3 Description of the repetitive elements identified in the

intergenic transcripts of the swine muscle transcriptome.

(DOCX)

Table S4 New predicted novel proteins with Augustus which

have orthologous known genes identified with BLASTP option of

Blast2GO.

(XLSX)

Table S5 Differentially-expressed genes identified among ex-

treme groups (High and Low) for fatty acid composition in muscle.

(DOCX)

Table S6 Overrepresented categories identified with Babelomics

and IPA for the differentially-expressed genes.

(XLSX)

Table S7 Specific functions table identified with IPA for the

differentially-expressed genes.

(XLSX)

Table S8 Top networks identified with IPA from the differential

expressed genes between High and Low animals.

(XLS)
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