

H. DOPC

I. DAG8

S. 8K6-1

F. DAG5

D. MGDG

E. DAG4

n-side

n-side

SUPPLEMENTAL INFORMATION

Supplemental Figure Legends

Figure S1 (Related to Figures 2, 3, and 4). Electron density (2Fo-Fc map, 1.0 σ) of lipids, a detergent, and a partially ordered acyl tail located proximal to the β -carotene. (A) DAG6, (B) UDM2, (C) DAG7, (D) MGDG, (E) DAG4, (F) DAG5, (G) OCT, (H) DOPC, (I) DAG8, (J) DAG2, (K) DAG1, (L) DAG3, (M) SQDG, (N) DAG9, (O) UDM1, (P) 8K6-4 and UDM5, (Q) 8K6-2 and 8K6-3, (R) UDM3 and UDM4, (S) 8K6-1, and, (T) MYS.

Figure S2 (Related to Figures 2, 3, and 4). Electron density (2Fo-Fc map, 1.2 σ) of amino acid residues forming binding sites of, (A) DAG6, (B) UDM2, (C) DAG7, (D) MGDG, (E) DAG4, (F) DAG5, (G) OCT, (H) DOPC, (I) DAG8, (J) DAG2, (K) DAG1, (L) DAG3, (M) SQDG, (N) DAG9, (O) UDM1, (P (i)) UDM5, (P (ii)) 8K6-4, (Q (i)) 8K6-2, (Q (ii)) 8K6-3, (R (i)) UDM3, (R (ii)) UDM4, (S) 8K6-1, and, (T) MYS. For details of polypeptide subunits, see Supplemental Information Table T3.

Figure S3 (Related to Figure 4). Lipidic environment in proximity of the Q_p -portal. Panels (**A**) and (**B**) show alternate views of the Q_p -portal entrance (highlighted with broken lines). The chlorophyll phytyl-tail (green sticks) penetrated the Q_p -portal. The quinone analog/inhibitor tridecyl-stigmatellin (TDS, shown as blue sticks; coordinates extracted from the b_6f complex structure PDB ID 2E76) is shown to mark the Q_p -portal. The lipid DAG8, and the alkyl chains MYS (15-carbons), 8K6-1, 8K6-2, and 8K6-3 (18-carbons), occupy the pathway connecting the Q_p -portal with the inter-monomer cavity. Table T1 (Related to Figures 2, 3, and 4). Lipid Sites in Energy-Transducing Hetero-Oligomeric Membrane Protein Complexes. The table lists all the published cytochrome b_6f complex crystal structures, and provides details of the related cytochrome bc_1 complex, NADH dehydrogenase complex (Ndh), cytochrome *c* oxidase (Cco), and photosystems II and I (PSII and I) for comparison. The cytochrome b_6f complex described in the present study is highlighted in blue.

Complex	PDB ID	d _{min} (Å) ¹	Oligomeric State	Polypeptides (per monomer) ²	Molecular Weight (kDa, assembly)	Lipid Sites (per monomer) ³
b ₆ f	40GQ	2.50	Dimer	8	220	23
b ₆ f	1VF5 ⁽¹⁾	3.00	Dimer	8	220	2
b ₆ f	1Q90 ⁽²⁾	3.10	Dimer	8	220	4
b ₆ f	2D2C ⁽³⁾	3.80	Dimer	8	220	2
b ₆ f	2E74 ⁽⁴⁾	3.00	Dimer	8	220	7
b ₆ f	2E75 ⁽⁴⁾	3.55	Dimer	8	220	7
b ₆ f	2E76 ⁽⁴⁾	3.41	Dimer	8	220	7
b ₆ f	2ZT9 ⁽⁵⁾	3.00	Dimer	8	220	6
b ₆ f	4H44 ⁽⁶⁾	2.70	Dimer	8	220	12
b ₆ f	4H13 ⁽⁶⁾	3.07	Dimer	8	220	9
b ₆ f	4H0L ⁽⁶⁾	3.25	Dimer	8	220	7
b ₆ f	4I7Z ⁽⁷⁾	2.80	Dimer	8	220	10
bc ₁	1KB9 ⁽⁸⁾	2.30	Dimer	10	360	6
bc ₁	3CX5 ⁽⁹⁾	1.90	Dimer	10	360	6.5
Ndh	3RKO ⁽¹⁰⁾	3.00	Monomer	6	550	10
Ссо	2GSM ⁽¹¹⁾	2.00	Monomer	2	100	11
Ссо	3DTU ⁽¹²⁾	2.15	Monomer	2	100	23
Ссо	3S8G ⁽¹³⁾	1.80	Monomer	3	80	20
Ссо	2DYR ⁽¹⁴⁾	1.80	Dimer	13	400	19
PSII	3BZ2 ⁽¹⁵⁾	2.90	Dimer	20	550	32
PSII	3ARC ⁽¹⁶⁾	1.90	Dimer	19	550	56
PSI	1JB0 ⁽¹⁷⁾	2.50	Trimer	12	1000	4

 $^{1}d_{min}$, highest reported resolution; 2 From crystal structure, without F_{ab}-fragments (PDB IDs 1KB9, 3CX5) and cytochrome *c* (PDB ID 3CX5); 3 Including lipids, detergents and poly-carbon alkyl chains, with complete as well as partial crystallographic order.

Table T2 (Related to Figures 2, 3, and 4). Lipids, Detergents, and Acyl Chains Associated with the Cytochrome b_6f Complex Monomer. First column: (*Lipid/Detergent/Acyl Chain*) lists symbols used in the present study for lipidic molecules; second column (*Residue ID*): residue codes and IDs for each lipidic molecule in the PDB file; third column (*Sidedness (n or p*)) describes the location of lipidic molecules; fourth column (*Location (Boundary or Cavity)*): lipidic sites are classified into two groups, boundary or cavity, based on location; fifth column (*Lipid-Associated Trans-Membrane Helices*) lists protein segments within the interaction distance (4.0 Å) of each lipidic site.

Abbrevations- Cyt, cytochrome; ISP, Rieske iron-sulfur protein; SubIV, subunit IV; TMH, transmembrane helix.

Lipid/Detergent/	Residue ID	Sidedness	Location	Lipid-Associated Trans-
Acyl Chain		(n or p)	(Boundary	Membrane Helices
			or Cavity)	
DAG1	2WD (D206)	р	Boundary	ISP, cd-loop (cyt b ₆)
DAG2	7PH (D203)	р	Boundary	Cyt f, ISP, E-TMH (subIV)
DAG3	7PH (C303)	р	Boundary	Cyt f, PetN
DAG4	3WM (E101)	р	Boundary	A, B-TMH (cyt b ₆), E-TMH
				(subIV), PetL, PetM, PetG and
				PetN
DAG5	2WA (F101)	р	Boundary	B-TMH (cyt b ₆), ef-loop and G-
				TMH (subIV), PetM, PetG
8-carbon chain	OCT (F102)	р	Boundary	PetM
(OCT)				
10-carbon chain	MYS (D202)	р	Cavity	ISP, <i>cd</i> -loop (cyt <i>b</i> ₆)
(MYS)				
18-carbon chain	8K6 (A308)	р	Cavity	C, D-TMH, cd -loop (cyt b_6),
(8K6-1)				
DOPC	OPC (B204)	n	Boundary	F, G-TMH
				(subIV)
MGDG	1O2 (F103)	n	Boundary	PetL, PetM
DAG6	7PH (F104)	n	Boundary	PetM, PetG

DAG7	7PH (B205)	n	Boundary	G-TMH (subIV), PetG
UDM1	UMQ (D201)	n	Boundary	Cyt f, ISP, PetL
UDM2	UMQ (G101)	n	Boundary	fg-loop (subIV), PetG
UDM3	UMQ (A304)	n	Boundary/	N-terminal surface helix (cyt b_6)
			Cavity	
UDM4	UMQ (B201)	n	Boundary/	N-terminal surface helix (cyt
			Cavity	<i>b</i> ₆), E-TMH
				(subIV)
18-carbon chain	8K6 (A307)	n	Boundary/	C, D-TMH (cyt <i>b</i> ₆)
(8K6-2)			Cavity	
18-carbon chain	8K6 (A306)	n	Boundary/	C, D-TMH (cyt <i>b</i> ₆)
(8K6-3)			Cavity	
DAG8	7PH (A305)	n	Boundary/	N-terminal TMH, C-TMH (cyt
			Cavity	b ₆), F-TMH
				(subIV)
SQDG	SQD (D204)	n	Cavity	Cyt f, ISP
DAG9	2WM (A309)	n	Cavity	A, D-TMH (cyt <i>b</i> ₆), E-TMH
				(subIV), ISP
UDM5	UMQ (B202)	n	Cavity	A, D-TMH (cyt <i>b</i> ₆), E-TMH
				(subIV)
18-carbon chain	8K6 (B202)	n	Cavity	E-TMH (subIV)
(8K6-4)				

Table T3 (Related to Figures 2, 3, and 4). Residues Forming Lipidic-Sites (within 4.0 Å). The residue code for each lipid/lipid-like molecule in the PDB file is provided in parenthesis.

Detergents-

1. UDM1 (UMQ, D201)-

Cytochrome f (chain C)- L267

Iron sulfur protein (chain D)- G14, F18, L22

PetL (chain E)- L25, I30

2. UDM2 (UMQ, G101)-

Subunit IV (chain B)- F124

PetG (chain G)- A19, Y26, Y29

3. UDM3 (UMQ, A304)-

Cytchrome b₆ (chain A)- Y5, A18

4. UDM4 (UMQ, B201)-

Cytochrome *b*₆ (chain A)- Q15, A18, E19, V21, T22

Subunit IV (chain B)- W32

5. UDM5 (UMQ, B202)-

Cytochrome b₆ (chain A)- K24, R207

Subunit IV (chain B)- A31, L36, F40, P41, M45

Iron-sulfur protein (chain D)- V30

Lipids-

6. DAG1 (2WD, D206)-

Cytochrome b_6 (chain A)- L164

Iron-sulfur protein (chain D)- L35, Y36, V39, N40, I43

7. DAG2 (7PH, D203)-

Cytochrome b_6 (chain A)- F78

Subunit IV (chain B)- V52, V56

Cytochrome f (chain C)- D251, N253, R254, W257, F261

Iron-sulfur protein (chain D)- G33, Y36

8. DAG3 (7PH, C303)-

Cytochrome f (chain C)- A252, N253, G256, W257, I259, A260

PetN (chain H)- I3

9. DAG4 (3WM, E101)-

Cytochrome *b*₆ (chain A)- I39, C43, M92, M96

Subunit IV (chain B)- C50

Cytochrome f (chain C)- Q38, S39

PetL (chain E)- A3, I4, Y7, I8

PetM (chain F)- E4, A8, L11, S12, V18

PetG (chain G)- L5

PetN (chain H)- T5, W8, L12, F15

10. DAG5 (2WA, F101)-

Cytochrome b_6 (chain A)- F102

Subunit IV (chain B)- W79, T140, L141, G144, I145, A148

PetM (chain F)- S2, L5, A9, F13

PetG (chain G)- V2, L11, I14

11. DAG6 (7PH, F104)-

PetM (chain F)- F17, W20, A21, A24

PetG (chain G)- Y23

12. DAG7 (7PH, B205)-

Subunit IV (chain B)- F124, P127, T130, T131, L134

PetG (chain G)- L18, A19, F22

13. DAG8 (7PH, A305)-

Cytochrome b_6 (chain A)- V4, W7

Subunit IV (chain B)- F113

14. DAG9 (2WM, A309)-

Cytochrome *b*₆ (chain A)- L41, L45, F48, F52, L194, V197, F203

Subunit IV (chain B)- I44

Iron-sulfur protein (chain D)- A34, V38

15. MGDG (102, F103)-

PetL (chain E)- I8, L11, A12, T15, G16, F23

PetM (chain F)- K28, I29, G31

16. SQDG (SQD, D204)-

Subunit IV (chain B)- W32, P33, Y38

Cytochrome f (chain C)- K275

Iron-sulfur protein (chain D)- R16, N20, F24, G25, T28, G29, A31

17. DOPC (OPC, B204)-

Cytochrome b_6 (chain A)- Y105

Subunit IV (chain B)- I87, A100, S103, G107, L108, V111, I114, E115, N118, R126, P127, V128, A129

Acyl chains-

```
18. 8K6-1 (8K6, A308)-
```

Cytochrome *b*₆ (chain A)- S130, T134, L169, A186

19. 8K6-2 (8K6, A307)-

Cytochrome *b*₆ (chain A)- L12, V119, F201, M205, K208

20. 8K6-3 (8K6, A306)-

Cytochrome b₆ (chain A)- V197, F198, L200, F201

21. 8K6-4 (8K6, B202)-

Subunit IV (chain B)- L36, F40, P41, M45

22. MYS (MYS, D202)-

Cytochrome b₆ (chain A)- L168

Iron-sulfur protein (chain D)- F42

23. OCT (OCT, F102)-

PetM (chain F)- N7, L10, L11, G14

Table T4 (Related to Figures 1, 2, 3, and 4). Lipid composition of thylakoid membranes (expressed as molar percentage).

Lipid	MGDG	DGDG	SQDG	PG
Synechocystis PCC 6803 (18)	62	14	18	6
Spinach ⁽¹⁹⁾	45-50	25-30	10	10

Abbreviations: DGDG, digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol; PG, phosphatidylglycerol; SQDG, sulfoquinovosyldiacylglycerol.

Synechocystis PCC 6803 is a representative cyanobacterium, while spinach is a representative eukaryotic photosynthetic organism.

MGDG and DGDG are neutral lipids, while SQDG and PG are anionic lipids.

Table T5 (Related to Figure 1, 2, 3, and 4). Fatty acid composition of cyanobacterial thylakoid membranes ⁽¹⁸⁾.

Fatty Acid	Synechocystis	Synechococcus	Anabaena	Mastigocladus
(molar %)*	PCC 6803	PCC 7002	variabilis**	laminosus
14:0	Trace	1	0	1
14:1 (9)	0	0	0	0
16:0	51	35	29	19
16:1 (9)	3	19	22	50
16:2 (9, 12)	0	0	3	0
18:0	Trace	Trace	Trace	1
18:1 (9)	2	10	7	27
18:2 (9, 12)	6	25	15	0
18:3 (9, 12, 15)	8	10	24	0
18:3 (6, 9, 12)	21	0	0	0
18:4 (6, 9, 12, 15)	8	0	0	0

*Fatty acids are represented as- length of carbon chain:number of double bonds (position(s) of double bond(s)); ***Anabaena variabilis* is related to *Nostoc* PCC 7120, the source organism for the cytochrome b_6f complex protein crystallized in the present study; *Synechocystis* PCC 6803 and *Synechococcus* PCC 7002 are unicellular cyanobacteria while *Anabaena variabilis* and *Mastigocladus laminosus* are filamentous strains.

SUPPLEMENTAL REFERENCES

- 1. Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Structure of the cytochrome $b_6 f$ complex of oxygenic photosynthesis: Tuning the cavity, *Science 302*, 1009-1014.
- Stroebel, D., Choquet, Y., Popot, J. L., and Picot, D. (2003) An atypical haem in the cytochrome b₆f complex, *Nature 426*, 413-418.
- Yan, J., Kurisu, G., and Cramer, W. A. (2006) Intraprotein transfer of the quinone analogue inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone in the cytochrome b₆f complex, *Proc Natl Acad Sci U. S. A. 103*, 69-74.
- 4. Yamashita, E., Zhang, H., and Cramer, W. A. (2007) Structure of the cytochrome $b_6 f$ complex: quinone analogue inhibitors as ligands of heme c_n , *J Mol Biol* 370, 39-52.
- Baniulis, D., Yamashita, E., Whitelegge, J. P., Zatsman, A. I., Hendrich, M. P., Hasan, S. S., Ryan, C. M., and Cramer, W. A. (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b₆f complex from *Nostoc* sp. PCC 7120, *J Biol Chem 284*, 9861-9869.
- Hasan, S. S., Yamashita, E., Baniulis, D., and Cramer, W. A. (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome *b*₆*f* complex, *Proc Natl Acad Sci U.S.A. 110*, 4297-4302.
- Hasan, S. S., Stofleth, J. T., Yamashita, E., and Cramer, W. A. (2013) Lipid-induced conformational changes within the cytochrome b₆f complex of oxygenic photosynthesis, *Biochemistry* 52, 2649-2654.
- Lange, C., Nett, J. H., Trumpower, B. L., and Hunte, C. (2001) Specific roles of proteinphospholipid interactions in the yeast cytochrome *bc*₁ complex structure, *EMBO J 20*, 6591-6600.
- Solmaz, S. R., and Hunte, C. (2008) Structure of complex III with bound cytochrome *c* in reduced state and definition of a minimal core interface for electron transfer, *J Biol Chem 283*, 17542-17549.

- 10. Efremov, R. G., and Sazanov, L. A. (2011) Structure of the membrane domain of respiratory complex I, *Nature 476*, 414-420.
- 11. Qin, L., Hiser, C., Mulichak, A., Garavito, R. M., and Ferguson-Miller, S. (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome *c* oxidase, *Proc Natl Acad Sci U. S. A. 103*, 16117-16122.
- 12. Qin, L., Mills, D. A., Buhrow, L., Hiser, C., and Ferguson-Miller, S. (2008) A conserved steroid binding site in cytochrome *c* oxidase, *Biochemistry 47*, 9931-9933.
- Tiefenbrunn, T., Liu, W., Chen, Y., Katritch, V., Stout, C. D., Fee, J. A., and Cherezov, V. (2011) High resolution structure of the *ba*₃ cytochrome *c* oxidase from *Thermus thermophilus* in a lipidic environment, *PloS ONE 6*, e22348.
- Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadehara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome *c* oxidase, *EMBO J 26*, 1713-1725.
- Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride, *Nature Str Mol Biol 16*, 334-342.
- 16. Umena, Y., Kawakami, K., Shen, J. R., and Kamiya, N. (2011) Crystal structure of oxygenevolving photosystem II at a resolution of 1.9 A, *Nature 473*, 55-60.
- Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Threedimensional structure of cyanobacterial photosystem I at 2.5 A resolution, *Nature 411*, 909-917.
- 18. Wada, H., and Murata, N. (1998) Membrane lipids in cyanobacteria, *Lipids Photosynth: Str Func Gen* (*Eds.* Siegenthaler, P. A., and Murata, N., Kluwer Academic Publishers) *6*, 65-81.
- 19. Gounaris, K., Barber, J., and Harwood, J. L. (1986) The thylakoid membranes of higher plant chloroplasts, *Biochem J*, 237, 313-326.