Supplementary Information:

Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2⁺ glial cells Zizhen Kang,^{1,2} Chenhui Wang,² Jarod Zepp,² Ling Wu,² Kevin Sun², Junjie Zhao², Unni Chandrasekharan,³ Paul E. DiCorleto,³Bruce D. Trapp,⁴ Richard M. Ransohoff,^{4,5,6} Xiaoxia Li^{2,*}

¹Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

²Department of Immunology

³Department of Cellular and Molecular Medicine

⁴Department of Neuroscience

⁵Neuroinflammation Research Center

⁶Mellen Center for MS Treatment and Research

Cleveland Clinic, Cleveland, OH, USA

*Correspondence should be addressed to Xiaoxia Li, lix@ccf.org

Supplementary Figure 1 Th17 cells from NG2Cre Act1^{fl/-} mice can induce EAE. (a) Flow cytometric analysis show the frequency of different subsets of infiltrated leucocytes in brains of NG2Cre Act1^{fl/+} and NG2CreAct1^{fl/-} mice 20 days after Th17 cell transfer. (b)Draining lymph node cells from NG2CreAct1^{fl/+} and NG2CreAct1^{fl/-} mice 10 days after immunization with MOG₃₅₋₅₅ were re-stimulated with MOG₃₅₋₅₅ in vitro for 4 days, followed by ELISA assay of IL-17 and IFN- γ . (c) Mean clinical score of EAE in wild-type recipient mice induced by MOG₃₅₋₅₅-specific NG2CreAct1^{fl/-} Th17 or NG2CreAct1^{fl/+} Th17 cells. (d) Absolute number of immune cell infiltration in the brains of EAE mice as indicated (19 days after Th17 transfer). (e) Real-time PCR analysis of inflammatory gene expression in the spinal cords of EAE mice as indicated. Data are representative of three independent experiments. n=5/group in each experiment. Error bars, SEM. p>0.05 at b-d.

Supplementary Figure 2 Change of oligodendroglia in the NG2CreAct1^{n/+}</sup> and NG2CreAct1^{n/-} mice before and after EAE. NG2CreAct1^{n/+} and NG2CreAct1^{n/-}</sup> mice subjected to EAE by Th17 adoptive transfer(a-c) or Th1 adoptive transfer(d). (a) GST-pi⁺ cells per section were counted from lumber spinal cords of NG2Cre Act1^{n/+}</sup> and NG2Cre Act1^{n/-}</sup> mice before and after EAE(7 days after onset of EAE). (b) NG2⁺ cells/mm² in the dorsal region were counted from lumber spinal cords of NG2Cre Act1^{n/-}</sup> mice before and after EAE(7 days after onset of EAE). (b) NG2⁺ cells/mm² in the dorsal region were counted from lumber spinal cords of NG2Cre Act1^{n/-}</sup> and NG2Cre Act1^{n/-}</sup> mice before and after EAE(7 days after onset of EAE). (c) EAE mice were injected with BrdU at 1mg/mouse 24 hours before sacrifice, then spinal cords were collected from NG2CreAct1^{n/-}</sup> and NG2CreAct1^{n/+}</sup> EAE mice(7 days after onset of EAE), ratio of BrdU cells to NG2⁺ cell are shown. (d) MBP myelination in lumber spinal cords of NG2CreAct1^{n/-}</sup> and NG2CreAct1^{<math>n/+}</sup> mice before and after Th1 EAE(20 days after Th1 transfer) were analyzed by immunohistochemical staining. Data are representative of three independent experiments. n=5/group in each experiment. Error bars, SEM. *p<0.05.</sup>

Supplementary Figure 3 Olig2 Cre-mediated ablation of Act1 in oligodendrocyte lineage ameliorates autoimmune encephalomyelitis. (a) Immunoblot analysis for the Act1 expression in cultured Olig2⁺ cells from embryonic brains. Full-length blots are presented in Supplementary Figue 5. (b) Mean clinical score of EAE in Olig2CreAct1^{fl/-}and Olig2CreAct1^{fl/+} mice induced by active immunization with MOG₃₅₋₅₅(p<0.05, two-way ANOVA). (c) Mean clinical score of EAE in Olig2CreAct1^{fl/-}and Olig2CreAct1^{fl/+} mice induced by Th1 adoptive transfer (p>0.05, two-way ANOVA). (d) Mean clinical score of EAE in Olig2CreAct1^{fl/-}and Olig2CreAct1^{fl/+} mice induced by Th17 adoptive transfer (p<0.05, two-way ANOVA). (e) Absolute cell numbers of infiltrated immune cells in the brains of Olig2CreAct1^{fl/-}and Olig2CreAct1^{fl/+} mice (20 days after Th17 cell transfer). (f) Real-time PCR analysis of inflammatory gene expression in the spinal cords of Olig2Cre Act1^{fl/-} and Olig2CreAct1^{fl/+} mice transferred with MOG₃₅₋₅₅-specific Th17 cells. Data are representative of three independent experiments. n=5/group in each experiment. Error bars, SEM; *p<0.05.

b

С

Oligodendrocyte progenitor cells(day4)

Supplementary Figure 4 Characterization of oligodendroglia cells. (a) Flow chart of oligodendroglia culture. (b) Characterization of OPCs(upper panel) and mature oligodendrocytes(lower panel). OPCs are $Olig2^+CNPase^-$ cells and mature oligodendrocytes are $CNPase^+GFAP^-\beta$ -tubulin-III⁻ cells. (c) TUNEL and cleaved caspase 3 assays indicate the apoptotic cells after a 4-day culture of wild-type OPCs with/without IL-17 as indicated. n=5 mice, Data are representative of three independent experiments.

Supplementary Figure 5: Full-length immunoblots presented in Fig.1a, Fig.2a, Fig.3a and Supplemental Fig.3a. (a) Full size immunoblot for Fig.1a. (b)Full size immunoblot for Fig.2a. (c) Full size immunoblot for Fig.3a. (d) Full size immunoblot for Supplementary Fig.3a.

а

Supplementary Figure 6: Full-length immunoblots presented in Fig.6a

Supplementary Figure 6: Full-length immunoblots presented in Fig.6b

Supplementary Figure 6: Full-length immunoblots presented in Fig.6c

Supplementary Figure 6: Full-length immunoblots presented in Fig.6d

d

Supplementary Figure 6: Full-length immunoblots presented in Fig.6e