
Landes Bioscience www.landesbioscience.com

Supplemental Material to:

 Pullen N, Jaeger KE, Wigge PA, Morris RJ

Simple network motifs can capture key characteristics of
the � oral transition in Arabidopsis

 Plant Signaling & Behavior 2013; 8(11)
http://dx.doi.org/10.4161/psb.26149

www.landesbioscience.com/journals/psb/article/26149

Supplemental Information

S1 Introduction
We describe the details of an IPython notebook implementation (Fernando Pérez, Brian E.
Granger, IPython: A System for Interactive Scientific Computing, Computing in Science and
Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL:
http://ipython.org) for the simple flowering time models mentioned in the main paper.
Details on the underlying network motifs can be found in http://www.pnas.org/content/
100/21/11980.full.pdf+html and “An Introduction to Systems Biology: Design Principles
of Biological Circuits” by Uri Alon. The notebook can be started with
ipython notebook --pylab=inline

to get inline plots. The following common Python libraries are used: NumPy, SciPy, Mat-
plotlib (versions shown at the end).

import necessary libraries
import matplotlib.pyplot as plt #for plotting
import numpy as np
from scipy.integrate import odeint # routine to solve the ODEs

Preferred figure format to get PDF images in LaTeX documents
%config InlineBackend.figure_format = 'svg'

S1.1 Input signal
The FT input signal to the system in this work was modelled as a binary function. We have
used a long signal but also a small blip in these examples which might represent, for example,
a one-off short exposure to sunlight.

blipStart = 3
blipEnd = 3.5
signalStart = 10.0
signalEnd = 15.0

def FTsignal(t):
if (t>=signalStart) and (t<signalEnd):

return 1.0
elif (t>=blipStart) and (t<blipEnd):

return 1.0
else:

return 0.0

1

http://ipython.org
http://www.pnas.org/content/100/21/11980.full.pdf+html
http://www.pnas.org/content/100/21/11980.full.pdf+html

S2 Coherent feed-forward loop
We write θFT.LFY (FT) to mean that when FT crosses the binding threshold it binds to the
promoter site of LFY and thus activates LFY transcription. Similarly θFT.AP1(FT) means
AP1 is activated when FT crosses the threshold. In the code the threshold for the activation
of LFY and AP1 is set to FT = 1. θLFY.AP1(LFY) means that when LFY passes the binding
threshold it binds the AP1 promoter and thus activates AP1 transcription. In the code below
k1 = the LFY.AP1 threshold value, which is set to 0.5. The activation constants, ν, and
degradation constants, δ, were set to 1. The equations for this system, which exhibits noise
filtering, are as follows:

dLFY

dt
= νLFY θFT.LFY (FT)− δLFYLFY

dAP1

dt
= νAP1θFT.AP1(FT)θLFY.AP1 (LFY)− δAP1AP1

deltaLFY = 1.0
deltaAP1 = 1.0
nuLFY = 1.0
nuAP1 = 1.0
k1 = 0.5

def coffl(y, t):
LFYi = y[0]
AP1i = y[1]
coherent FFL equations
LFYdot = nuLFY*FTsignal(t) - deltaLFY*LFYi
if LFYi>k1:

AP1dot = nuAP1*FTsignal(t)*1.0 - deltaAP1*AP1i
else:

AP1dot = - deltaAP1*AP1i

return [LFYdot, AP1dot]

Next we set up the initial conditions, time grid and then solve the ODEs using SciPy’s
odeint function.

initial conditions
LFY0 = 0.0 #
AP10 = 0.0 #
y0 = [LFY0, AP10] # initial condition vector
t = np.linspace(0, 20.0, 500) # time grid

solve the DEs
soln = odeint(coffl, y0, t, hmax = 0.1) #need hmax as can get wrong results o/wise - I

think to do with adaptive step sizes in numerical method missing important points

2

LFY = soln[:, 0]
AP1 = soln[:, 1]
#for i in range(len(AP1)): print t[i],stepfn(t[i]),LFY[i],AP1[i]

Below we plot the FT signal, and output LFY and AP1.

f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=False)
Fine-tune figure; make subplots close to each other and hide x ticks for
all plots.
f.subplots_adjust(hspace=0)
plt.setp([a.get_xticklabels() for a in f.axes[:]], visible=False)

steps = np.zeros(len(t))
for i in range(len(t)): steps[i]=FTsignal(t[i])
ax1.fill_between(t, 0, steps,color='magenta')
ax1.margins(0, 0.05)
ax1.set_ylabel("FT")
ax1.set_yticklabels(['','0'])

ax2.plot(t, LFY, label='LFY',color='blue')
ax2.margins(0, 0.05)
ax2.set_ylabel("LFY")
ax2.set_yticklabels(['','0'])

ax3.plot(t, AP1, label='AP1',color='red')
ax3.margins(0, 0.05)
ax3.set_xlabel("Time")
ax3.set_ylabel("AP1")
ax3.set_yticklabels(['','0'])

[<matplotlib.text.Text at 0x4341950>, <matplotlib.text.Text at 0x434c510>]

3

S3 Regulated feed-forward loop
The notation is identical to that for the coherent feed-forward loop. θAP1.LFY (AP1) means
that when AP1 passes the binding threshold it binds to the LFY promoter and thus activates
LFY transcription. In the code below k2 = the LFY.AP1 and the AP1.LFY threshold values,
which are both set to 0.45. The equations are:

dLFY

dt
= νLFY max (θFT.LFY (FT), θAP1.LFY (AP1))− δLFYLFY

dAP1

dt
= νAP1 max (θFT.AP1(FT), θLFY.AP1(LFY))− δAP1AP1

The regulated feed-forward loop uses OR logic rather than AND logic and hence this system
can show memory.

deltaLFY = 1.0
deltaAP1 = 1.0
nuLFY = 1.0
nuAP1 = 1.0
k2 = 0.45

def regffl(y, t):
LFYi = y[0]
AP1i = y[1]
the regulated FFL model equations
if (FTsignal(t)==1) or (AP1i>k2):

LFYdot = nuLFY*(1) - deltaLFY*LFYi

4

else:
LFYdot = -deltaLFY*LFYi

if (FTsignal(t)==1) or (LFYi>k2):
AP1dot = nuAP1*(1) - deltaAP1*AP1i

else:
AP1dot = -deltaAP1*AP1i

return [LFYdot, AP1dot]

Below we solve the equations as before . . .

initial conditions
LFY0 = 0.0 #
AP10 = 0.0 #
y0 = [LFY0, AP10] # initial condition vector
t = np.linspace(0, 20.0, 500) # time grid

solve the DEs
soln = odeint(regffl, y0, t, hmax = 0.1) #need hmax as can get wrong results o/wise - to

do with adaptive step sizes in numerical method missing important points
LFY = soln[:, 0]
AP1 = soln[:, 1]
#for i in range(len(AP1)): print t[i],stepfn(t[i]),LFY[i],AP1[i]

. . . and produce the plots again.

f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=False)
Fine-tune figure; make subplots close to each other and hide x ticks for
all plots.
f.subplots_adjust(hspace=0)
plt.setp([a.get_xticklabels() for a in f.axes[:]], visible=False)

steps = np.zeros(len(t))
for i in range(len(t)): steps[i]=FTsignal(t[i])
ax1.fill_between(t, 0, steps,color='magenta')
ax1.margins(0, 0.05)
ax1.set_ylabel("FT")
ax1.set_yticklabels(['','0'])

ax2.plot(t, LFY, label='LFY',color='blue')
ax2.margins(0, 0.05)
ax2.set_ylabel("LFY")
ax2.set_yticklabels(['','0'])

ax3.plot(t, AP1, label='AP1',color='red')

5

ax3.margins(0, 0.05)
ax3.set_xlabel("Time")
ax3.set_ylabel("AP1")
ax3.set_yticklabels(['','0'])

[<matplotlib.text.Text at 0x481a210>, <matplotlib.text.Text at 0x4821250>]

S4 Compromise feed-forward loop
The notation is identical to that previously. In the code below k3 = the LFY.AP1 and the
AP1.LFY threshold values, which are set to 0.45 as before. We use two different levels of
activation depending on the number of activators bound. The higher levels, νLFY,1 and νAP1,1,
are set to 1, and the lower levels, νLFY,2 and νAP1,2, are set to 0.5. Because there are both
AND and OR logic gates, we get some noise filtering and sufficient memory for the system
to continue to flower.

The equations are:

dLFY

dt
=

νLFY,1 − δLFYLFY

if θFT.LFY (FT) = 1 and
θAP1.LFY (AP1) = 1

νLFY,2 max (θFT.LFY (FT) , θAP1.LFY (AP1))

− δLFYLFY
otherwise

6

dAP1

dt
=

νAP1,1 − δAP1AP1

if θFT.AP1 (FT) = 1 and
θLFY.AP1 (LFY) = 1

νAP1,2 max (θFT.AP1 (FT) , θLFY.AP1 (LFY))

− δAP1AP1
otherwise

nuLFY_1 = 1.0
nuLFY_2 = 0.5
nuAP1_1 = 1.0
nuAP1_2 = 0.5
deltaLFY = 1.0
deltaAP1 = 1.0
k3 = 0.45

def compromiseffl(y,t):
LFYi = y[0]
AP1i = y[1]
a compromise FFL model equations
if (FTsignal(t)==1) and (AP1i>k3):

LFYdot = nuLFY_1*FTsignal(t)*1.0 - deltaLFY*LFYi
elif ((FTsignal(t)==0) and (AP1i>k3)) or ((FTsignal(t)==1) and (AP1i<=k3)):

LFYdot = nuLFY_2*1.0 - deltaLFY*LFYi
else:

LFYdot = -deltaLFY*LFYi

if (FTsignal(t)==1) and (LFYi>k3):
AP1dot = nuAP1_1*FTsignal(t)*1.0 - deltaAP1*AP1i

elif ((FTsignal(t)==0) and (LFYi>k3)) or ((FTsignal(t)==1) and (LFYi<=k3)):
AP1dot = nuAP1_2*1.0 - deltaAP1*AP1i

else:
AP1dot = -deltaAP1*AP1i

return [LFYdot, AP1dot]

We solve the equations as previously. . .

initial conditions
LFY0 = 0.0 #
AP10 = 0.0 #
y0 = [LFY0, AP10] # initial condition vector
t = np.linspace(0, 20.0, 500) # time grid

solve the DEs
soln = odeint(compromiseffl, y0, t, hmax = 0.1) #need hmax as can get wrong results o/

wise - to do with adaptive step sizes in numerical method missing important points
LFY = soln[:, 0]

7

AP1 = soln[:, 1]
#for i in range(len(AP1)): print t[i],stepfn(t[i]),LFY[i],AP1[i]

. . . and produce the plots as before.

f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=False)
Fine-tune figure; make subplots close to each other and hide x ticks for
all plots.
f.subplots_adjust(hspace=0)
plt.setp([a.get_xticklabels() for a in f.axes[:]], visible=False)

steps = np.zeros(len(t))
for i in range(len(t)): steps[i]=FTsignal(t[i])
ax1.fill_between(t, 0, steps,color='magenta')
ax1.margins(0, 0.05)
ax1.set_ylabel("FT")
ax1.set_yticklabels(['','0'])

ax2.plot(t, LFY, label='LFY',color='blue')
ax2.margins(0, 0.05)
ax2.set_ylabel("LFY")
ax2.set_yticklabels(['','0'])

ax3.plot(t, AP1, label='AP1',color='red')
ax3.margins(0, 0.05)
ax3.set_xlabel("Time")
ax3.set_ylabel("AP1")
ax3.set_yticklabels(['','0'])

[<matplotlib.text.Text at 0x4bece90>, <matplotlib.text.Text at 0x4bf3990>]

8

S5 Versions used for reproducibility

Versions used for reproducibility
import platform
print "Python", platform.python_version()
import IPython
print "IPython", IPython.__version__
print "Numpy", np.__version__
import scipy
print "Scipy", scipy.__version__
import matplotlib
print "Matplotlib", matplotlib.__version__

Python 2.7.3
IPython 1.0.0
Numpy 1.7.1
Scipy 0.12.0
Matplotlib 1.2.0

9

	2012PSB048R-Sup.pdf
	2013PSB0274R-Sup
	Introduction
	Input signal

	Coherent feed-forward loop
	Regulated feed-forward loop
	Compromise feed-forward loop
	Versions used for reproducibility

