Supporting Information

A prodigiosin analog designed for metal coordination: Stable zinc and copper pyrrolyldipyrrins

Tsuhen M. Chang[§], Sanhita Sinharay[§], Andrei V. Astashkin, Elisa Tomat*

University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721, USA

Contents

NMR Analysis (Figures S1-S6, Schemes S1-S2) X-Ray Diffraction Analysis (Figure S7, Table S1) EPR and Pulsed ENDOR Analysis (Figure S8)

NMR Analysis

Figure S1. ¹H NMR spectrum of free base ligand H₂PD1 (400 MHz, CDCl₃, 27 °C). Resonances were assigned based on COSY and NOESY correlation data (see below).

Figure S2. 2D COSY NMR plot of H_2PD1 (600 MHz, $CDCl_3$, 27 °C, 40 mM) showing the assignment of observed cross-peaks.

Figure S3. Portions of 2D NOESY NMR plot of H₂PD1 (600 MHz, CDCl₃, 27 °C, 40 mM) showing relevant crosspeaks for the assignment illustrated in Scheme S1.

Scheme S1. Assignment of rotameric structure for H_2PD1 based on observed NOESY crosspeaks.

Figure S4. ¹H NMR spectrum of $Zn(HPD1)_2$ (400 MHz, $CDCl_3$, 27 °C). Resonances were assigned based on COSY and NOESY correlation data (see below).

Figure S5. 2D COSY NMR plots for Zn(HPD1)₂ (600 MHz, CDCl₃, 27 °C, 11 mM).

Figure S6. 2D NOESY NMR plots for Zn(HPD1)₂ (600 MHz, CDCl₃, 27 °C, 11 mM).

Scheme S2. Structure of complex $Zn(HPD1)_2$ based on correlations observed in COSY (a) and NOESY (b) 2D NMR data.

X-Ray Diffraction Analysis

Crystal data for $C_{44}H_{36}N_6O_4Zn$. $M_r = 778.18$, 0.05 × 0.04 × 0.01 mm, triclinic, space group *P*-1 (No. 2), a = 9.7497(6), b = 13.8451(9), c = 13.8646(9) Å, $\alpha = 84.270(2)$, $\beta = 76.557(2)$, $\gamma = 81.568(2)^\circ$, V = 1796.4(2) Å³, Z = 2, $\rho_{calc} = 1.439$ g/cm³, $F_{000} = 808$, Mo-K α radiation, $\lambda = 0.71073$ Å, T = 120(2) K, $2\theta_{max} = 50.1^\circ$, 23528 reflections collected, 6371 unique (R_{int} = 0.1018). Final *GooF* = 1.006, $R_I = 0.0592$, $wR_2 = 0.1051$, *R* indices based on 3866 reflections with $I > 2\sigma[I]$ (refinement on F^2), 498 parameters, 0 restraints. Lp and absorption corrections applied, $\mu = 0.739$ mm⁻¹.

Figure S7. Intermolecular hydrogen bond between two $Zn(HPD1)_2$ complexes (i = x-1, y, z).

Crystal data for $C_{22}H_{20.60}CuN_3O_{3.8}$. $M_r = 450.45$, $0.20 \times 0.02 \times 0.01$ mm, monoclinic, space group $P2_1/c$ (No. 14), a = 16.847(4), b = 16.690(4), c = 7.3211(18) Å, $\beta = 100.475(7)^\circ$, V = 2024.2(8) Å³, Z = 4, $D_c = 1.481$ g/cm³, $F_{000} = 932$, Mo-K α radiation, $\lambda = 0.71073$ Å, T = 120(2)K, $2\theta_{max} = 39.6^\circ$, 13467 reflections collected, 1822 unique (R_{int} = 0.1239). Final *GooF* = 1.080, $R_I = 0.0569$, $wR_2 = 0.2189$, R indices based on 1267 reflections $I > 2\sigma[I]$ (refinement on F^2), 266 parameters, 7 restraints. Lp and absorption corrections applied, $\mu = 1.112$ mm⁻¹.

	Cu(PD1)	Zn(HPD1) ₂
Molecular formula	$C_{22}H_{20.60}CuN_3O_{3.8}$	$C_{44}H_{36}N_6O_4Zn$
Formula weight [g.mol ⁻¹]	450.45	778.16
Temperature [K]	120(2)	120.15
Crystal class	monoclinic	triclinic
Space group	$P2_1/c$	P-1
a [Å]	16.847(4)	9.7497(6)
b [Å]	16.690(4)	13.8451(9)
c [Å]	7.3211(18)	13.8646(9)
α [°]	90.00	84.270(2)
β [°]	100.475(7)	76.557(2)
γ [°]	90.00	81.568(2)
Volume [Å ³]	2024.2(8)	1796.4(2)
Z	4	2
$Q_{calc}[g/cm^3]$	1.481	1.439
$\mu [\mathrm{mm}^{-1}]$	1.112	0.739
F(000)	932.0	808.0
Crystal size [mm]	$0.2 \times 0.02 \times 0.01$	$0.05 \times 0.04 \times 0.01$
Measured reflections	13467	23528
Independent reflections	1822	6371
Independent reflections, $I > 2$	2σ[I] 1267	3866
R _{int}	0.1239	0.1018
R_{σ}	0.0823	0.1248
Goodness-of-fit on F ²	1.080	1.005
$R_1, I > 2\sigma[I]^a$	0.0569	0.0592
wR_{2} , all data ^b	0.2186	0.1251
peak/hole [e Å ⁻³]	0.86/-0.53	0.68/-0.45

Table S1. Crystal data collection parameters for complexes Cu(PD1) and $Zn(HPD1)_2$

EPR and Pulsed ENDOR Analysis of Cu(PD1) in Solution

Figure S8. ¹⁴N Davies ENDOR spectrum of Cu(PD1) solution in toluene. The experiment was performed in a 2D fashion, v_{RF} vs. the RF pulse length, t_{RF} , and the obtained 2D spectrum is shown in the bottom panel. This 2D spectrum was integrated over t_{RF} to obtain the 1D spectrum shown in the top panel. Experimental conditions: mw frequency, 30.360 GHz; magnetic field, B_o = 970 mT (marked by an asterisk in Fig. 4b of the manuscript); mw pulses, 160, 80, and 160 ns; time interval between the 1st and 2nd mw pulses, 36 µs; time interval between the 2nd and 3rd mw pulses, 400 ns; t_{RF} variation range, 2 – 32 µs; temperature, 15 K.