Web-based Supplementary Materials for "Assessing the Significance of Global and Local Correlations under Spatial Autocorrelation; a Nonparametric Approach", by Viladomat, Mazumder, McInturff, McCauley, and Hastie.

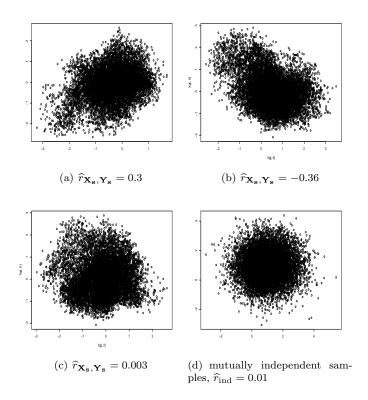


Figure 1: Top left and right, bottom left: three realizations of two pairs of independent and spatially autocorrelated Gaussian random fields $\mathbf{X_s}$ and $\mathbf{Y_s}$, with $\hat{r}_{\mathbf{X_s,Y_s}} = 0.30$, $\hat{r}_{\mathbf{X_s,Y_s}} = -0.36$ and $\hat{r}_{\mathbf{X_s,Y_s}} = 0.003$ respectively. The consequences of spatial autocorrelation is that, by chance, the variance of $r_{\mathbf{X_s,Y_s}}$ is larger. Bottom, right: two independent samples, each mutually independent and normally distributed (no autocorrelation), with $\hat{r}_{\mathrm{ind}} = 0.01$.

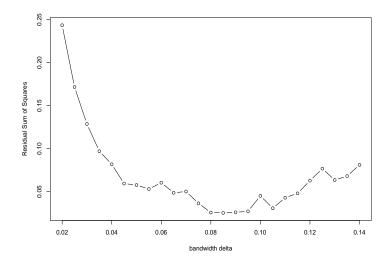


Figure 2: Residual sum of squares of the linear fit between $\widehat{\gamma}(\mathbf{X}_{\mathbf{s}}^{\delta})$ and $\widehat{\gamma}(\mathbf{X}_{\mathbf{s}})$ as a function of the bandwidth δ . The minimum value is reached at $\delta=0.085$.

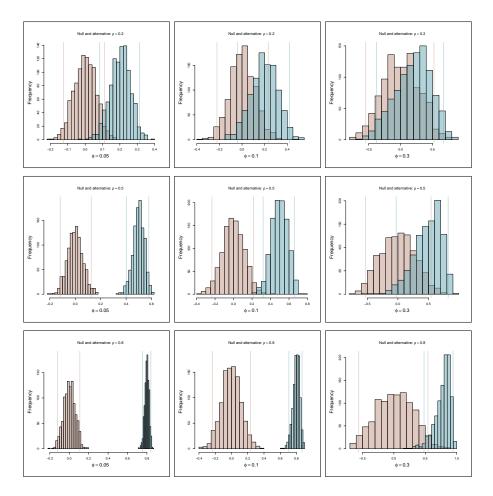


Figure 3: Simulated distributions for $r_{\mathbf{X_s,Y_s}}$ under $H_0: \rho_{\mathbf{X_s,Y_s}}=0$ (pink) and $H_1: \rho_{\mathbf{X_s,Y_s}}=\rho$ (blue). The 9 scenarios correspond to different effect size and spatial autocorrelation: $\rho \in (0.2,0.5,0.8), \ \phi \in (0.05,0.1,0.3)$. The lines in the plots indicate the 95% interval points. The grid size is set to g=0.05 (N=441), but the results are identical for g=0.01 (N=10,201).

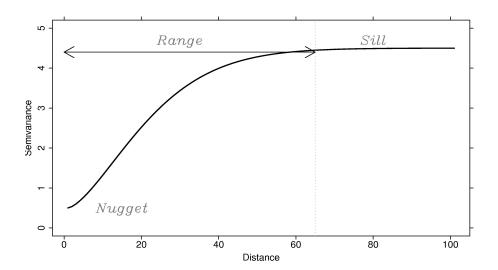


Figure 4: Typical semivariogram of a stationary spatial process: $\gamma(u) = \sigma^2 \{1 - \varphi(u)\} + \tau^2$. The range is the distance u at which $\varphi(u) = 0$; i.e. where the autocorrelation function fades away. The intercept is the nugget variance τ^2 , and the sill is the variance of the process $\tau^2 + \sigma^2$.