SUPPORTING INFORMATION

Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and its Yeast Ortholog

Scott L. Melideo[§], Michael R. Jackson[§], and Marilyn Schuman Jorns*

Department of Biochemistry and Molecular Biology

Drexel University College of Medicine

Philadelphia, PA 19102

*To whom requests for reprints should be addressed. Phone: (215) 762-7495 FAX: (215) 762-

4452; E-mail: marilyn.jorns@drexelmed.edu

Table S1 Primers used for PCR reactions					
Reaction	Primers				
Amplification of the <i>RDL1</i> gene from <i>S. cerevisiae</i> genomic DNA	5'- GCTAGCCATATGTGGAAGGCCGTGATGAATG-3' 5'- CCTAGAGTATACACTCGAGTAAGTCAAGTTTATCACCC-3'				
Ligation-independent cloning of an optimized synthetic gene encoding human TSTD1 isoform 1	5'-AGATTGGTGGCATGGCCGGGGCGCCG-3' 5'-GAGGAGAGTTTAGACTCACGACTCCTTCTCCAG-3'				
Ligation-independent cloning of an optimized synthetic gene encoding human TSTD1 isoform 2	5'-AGATTGGTGGCATGGCAGGTGTTAGTG-3' 5'-GAGGAGAGTTTAGACTCAGGATTCTTTTTCTAACC-3'				
Ligation-independent cloning of an optimized synthetic gene encoding human TSTD1 isoform 3	5'-AGATTGGTGGCATGGCCGGAGCCCC-3' 5'-GAGGAGAGTTTAGACTCAGCGACCTGCTAATAAC-3'				
Mutation of Cys98 to Ala in yeast RDL1	5'-GGAGCTAATATTTTATGCTGCTTCTGGCAAACGCG-3' 5'-GCGGTTTGCCAGAAGCAGCATAAAATATTAGCTCC-3'				
Mutation of Cys98 to Ser in yeast RDL1	5'- GGAGCTAATATTTTATTGTGCTTCTGGCAAACGCG -3' 5'- CGCGYYYGCCAGAAGCACAATAAAATATTAGCTCC-3'				
Mutation of Cys79 to Ala in human TSTD1 isoform 1	5'- CATCTGGTTTTTTCGCACAGATGGGTAAACGC-3' 5'-GCGTTTACCCATCTGTGCGAAAAAAACCAGATG-3'				
Mutation of Cys79 to Ser in human TSTD1 isoform 1	5'- CATCTGGTTTTTTCTCTCAGATGGGTAAACGC-3' 5'- GCGTTTACCCATCTGAGAGAAAAAAACCAGATG-3'				

Table S2 BLASTp Search of the Bacterial Proteomes that Contain SDO-TSTD1 Fusion Proteins Using Human SQOR as the Query Sequence

Organism (Taxonomy ID)		Highest Scoring Blast Hit					
		GenBank accession number (remarks)	Query Cover (%)	E Value	Identity (%)	Distance (nucleotides) ^a	
1	Nitrosococcus oceani (1229)	YP_343998.1	88	4e ⁻¹⁴⁴	42	73	
2	Nitrosococcus watsonii (473531)	YP_003760988.1	88	5e- ¹¹¹	42	73	
3	Methylocella silvestris (199596)	(no hit obtained)	-	-	-	-	
4	Methylobacter tundripaludum (173365)	WP_006892758.1	87	1e ⁻¹¹⁴	42	21	
5	Methylomicrobium album (39775)	WP_005371245.1	87	4e ⁻¹¹¹	41	45	
6	Methyloglobulus morosus (1410681)	WP_023495229.1	86	5e ⁻¹¹⁵	42	113	
7	Methylocystis rosea (173366)	WP_018406351.1	51	1e ⁻¹⁰	27	nd	
8	Methylosarcina fibrata (105972)	WP_020565271.1	87	7e ⁻¹¹²	41	246	
9	Bradyrhizobiaceae bacterium (709797)	WP_009735658.1	67	0.001	22	nd	
10	Afipia broomeae (56946)	WP_006019594.1	65	$3e^{-6}$	22	nd	
11	γ-proteobacterium HTCC2148 (247634)	(bacterial proteome unavailable)	-	-	-	-	
12	Rhizobium giardinii (56731)	WP_018327723.1	86	5e ⁻⁹⁰	35	nd	
13	Mesorhizobium amorphae (71433)	WP_006203294.1	79	2e ⁻²³	26	nd	

^aThe indicated distance is determined based on the number of intervening nucleotides between the human SQOR homolog gene and the SDO-TSTD1 fusion protein gene in the bacterial chromosome. Complete genomic data are available only for *N. oceani* and *N. watsonii*. Genomic distances in other bacteria, where whole-genome shotgun contigs are available, could be determined when the genes for the SQOR homolog and the SDO-TSTD1 fusion protein were found in the same contig but not when the genes were located in different contigs (nd).

Figure S1 The nucleotide sequence of the synthetic gene used to express recombinant TSTD1 isoform 1 (upper case) is compared with the original gene sequence (lower case). The top line shows the amino acid sequence of isoform 1.

Figure S2 The nucleotide sequence of the synthetic gene used to express recombinant TSTD1 isoform 2 (upper case) is compared with the original gene sequence (lower case). The top line shows the amino acid sequence of isoform 2.

Figure S3 The nucleotide sequence of the synthetic gene used to express recombinant TSTD1 isoform 3 (upper case) is compared with the original gene sequence (lower case). The top line shows the amino acid sequence of isoform 3.

Figure S4 Alignment of human TSTD1 isoforms. Amino acids encoded across a splice junction and cysteines are highlighted in yellow and red, respectively. All isoforms contain a tripeptide at the N-terminus and a central core of 55 amino acids that are encoded by exons 1 and 3, respectively. The N-terminal tripeptide in isoforms 1 and 3 is followed by a stretch of 41 amino acids (encoded by exon 2) that is absent in isoform 2. The 16 amino acids at the C-terminus of isoforms 1 and 2 (encoded by exon 4) are replaced by a decapeptide in isoform 3 (encoded by retained intron 3).

Figure S5 Purification of recombinant human TSTD1 isoform 2 with a cleavable N-terminal His-SUMO tag. The SDS 15% polyacrylamide gel was stained for protein with ProSieve Blue Protein Staining Solution (Lonza); lane M, molecular markers; lane 1, whole cell lysate; lane 2, low speed supernatant; lane 3, Ni affinity column flow-through; lane 4, Ni affinity column wash; lane 5, Ni affinity column eluate; lane 6, Ni affinity column eluate after cleavage with SUMO hydrolase; lane 7, SUMO hydrolase-treated sample after dialysis; lane 8, second Ni affinity column flow-through; lane 9, second Ni affinity column eluate; lane 10, dialyzed sample from lane 8.

Figure S6 Purification of recombinant human TSTD1 isoform 3 with a cleavable N-terminal His-SUMO tag. The SDS 15% polyacrylamide gel was stained for protein with ProSieve Blue Protein Staining Solution (Lonza); lane M, molecular markers; lane 1, whole cell lysate; lane 2, low speed supernatant; lane 3, Ni affinity column flow-through; lane 4, Ni affinity column wash; lane 5, Ni affinity column eluate; lane 6, Ni affinity column eluate after cleavage with SUMO hydrolase; lane 7, SUMO hydrolase-treated sample after dialysis; lane 8, second Ni affinity column flow-through; lane 9, second Ni affinity column eluate; lane 10, dialyzed sample from lane 8.

Figure S7 Spectral properties of *p*-toluenethiosulfonate (p-Tol-SO₂S⁻) and *p*-toluenesulfonite (p-Tol-SO₂-S). Spectra were recorded at 25 °C using a 2 mm cuvette. Curve 1 is the absorption spectrum of p-Tol-SO₂S⁻ in 50 mM potassium/sodium phosphate buffer, pH 8.0, recorded 2 s after addition of 1.6 mM potassium cyanide. Curve 2 is the absorption spectrum of p-Tol-SO₂⁻ in the same buffer, recorded 190 s after addition of 60 nM human rhodanese, an enzyme previously shown to catalyze the transfer of the sulfane sulfur from p-Tol-SO₂S⁻ to cyanide (Sorbo, B. (1953) Acta Chem. Scand. 7, 32-37).

```
MIFRQLFDPESSTYTYLIGDPATKEAVFIDPVNTRVDEYLNLLNKYNLKLKYSLETHAHA
                                                                                   60
N. oceani
M. silvestris
                   MIFRQLFDHVSGTYTYLLASRPGGEALIIDPVLEKVDRYLQLFDELDVKLVKAVDTHLHA
                   {\tt MLFKQLFDQETWTYTYLIADPVSKDAILIDPVNTHIDEYIELLAAHGLQLKYSLETHVHA}
                                                                                   60
M. tundripaludum
M. album
                   MIFKQLFDPETWTYTYFIADTDAKEAVLIDPVKSHIDEYIALLDEHGLKLKYTLETHVHA
                                                                                   60
                   MLFKQLFDQETWTYTYLIADPANKEAVLIDPVNTHIDDYLAMLTEQGLQLKYTLETHVHA
M. morosus
                                                                                   60
                                           :*::**** ::* *: ::
                    *:*:*** : ****::..
                   DHITASGLLRQHTGAKTGIGQACGAQYADYQLKDGVVLAFGQGEEIKVLATPGHTPGSIS
                                                                                   120
N. oceani
M. silvestris
                   DHVTGLGALRDRTHCITVMGEQTKADVVSMRVADGDRIDIE-GLSLEALFTPGHTDDSYS
                                                                                   119
M. tundripaludum
                    DHITASGLLRQRLGAQTAVSGLCGAESADIQIQDGDIFKFAGDEQIKVIATPGHTRGSIS
                                                                                   120
                   DHITASGLLRQKLGAETGVGQLCGAIGADLQLQDGDVLEFGNGEKIKVIATPGHTQGSVS
                                                                                   120
M. album
M. morosus
                   {\tt DHITASGLLRQKLGSQTGVGALCGAETADFQMKDGDLFSFTNGEQIKVIATPGHTKGSMS}
                                                                                   120
                    **:*. * **:: . * :.
                                           * .. :: ** ::
                                                              .::.: *****
                   YLWRDRVFTGDALLINGCGRTDFOGGDPGTLYDSVTOKLFTLPGETIVYPGHDYNGRWVS
N. oceani
                                                                                   180
M. silvestris
                   FLLEGRVFTGDTLLIRGTGRTDFQNGDPRAQYHSIFDRLLKLPDETLVYPAHDYKGDTVS
                                                                                   179
M. tundripaludum
                    {\tt FLWRDRLFTGDSLLIGGCGRTDFQGGDAGALYDCITQRLFTLPDETLVYPGHDYQQRWVS}
                                                                                   180
                   {\tt FLWRDRVFTGDSLFIGGCGRTDFQSGDAGALYDCITRKLFTLPDETLVYPGHDYQQRWVS}
                                                                                   180
M. album
                    FLWRDRVFTGDSLFIGGCGRTDFQGGDAGALYDCITQRLFTLPDDTLVYPGHDYQQRWVS
                                                                                   180
M. morosus
                    :* . *:***:*: * * ***** ** : *..: :*:.** :*:***:
N. oceani
                    SVEQERTGNGRLAGKTRAEFIEIMNNLNLPKPRLIDEAVPANRRCGLTEEE----IRQD
                                                                                   238
                    TIGEERLFNPRLKVRSVDEYVDLMNNLNLPNPKMMDVAVPANMRVGFHQDE
M. silvestris
                                                                                   239
M. tundripaludum
                    SIMOERTTNPRLAGKTREOFIEIMNNLNLPKPRLIDEAVPANRYCGLDENERODAVALRD
                                                                                   240
M. album
                    SIMQERITNPRLAGKTREEFIEIMNNLNLPRPRLIDEAVPANRYCGLDEDERQDAVARRD
                                                                                   240
M. morosus
                   NIVQERTTNPRLAGKTRDEFITIMNNLNLPKPKLIDEAVPANRYCGLEENERQDAVAHRE
                                                                                   240
                    .: :** * ** :: ::: :******.*:::* ****
                                                                                   278
                    TMMG-----EKRVSTPQDLVQEARKQVREIDVATVKQRLGDGKTAIID
N. oceani
M. silvestris
                    WAAQ-----AAEALALFGRPDIAIVD
                                                                                   256
M. tundripaludum
                    A-----DIPVRATTRTEDMVAEAKQHIVEIDVAKSKQLLTKGNVVLVD
                                                                                   283
                    STR-----PERAMISAQDLVSAAKERITEIGHDKARQLLNQSGVAVVD
M. album
                                                                                   283
M. morosus
                   TVRESAKPGDVPVVNCGGDMPKSGGMTVQDLVAAAKQQITEVNVEKAKQLIVQGSITVID
                                                                                   300
                   VREPEEFAA-GHLPGAINVPRGVLEFRLG---NTAELADPNIPIILYCQTGGRAALAAWS
                                                                                   334
N. oceani
M. silvestris
                   LREKREREKQGIIPGSLHAPYPDLRESIGPGGALHELAAAGKTILFYCAFGERSAMAVQA
                                                                                   316
M. tundripaludum
                    TREESEYAA-GHVDGALLVPRGMLEFKIG---NMPELADKSKAVLIYCRLGNRSALAAQT
                                                                                   339
                   {\tt VREESEYAA-GHIDNALPIPRGVLEFKVG---ATPELADKSKTVVVYCRTGGRAALAAQT}
M. album
                                                                                   339
M. morosus
                    TREESEYAA-GHIDNAVLLPRGVLEFRIN---TIPELADKAKPVLIYCRTGGRAALAAQS
                                                                                   356
                             * : :: *
                                          *. :
                                                      ***
                                                              ::.** * *:*:*. :
N. oceani
                   LKCLGYTDATLIAGGYDAWRAAKQNAD-
                                                     361
M. silvestris
                   AQDAGFKSARHIAGGFDAWKKENGAVAP
M. tundripaludum
                   LQQLGYTNVLSMAGGFEAWKKSQEAE--
                                                     365
M. album
                   LQNLGYSNVLSIAGGYEAWQKSL----
                                                     362
M. morosus
                   LKTLGYTNVLSIAGGYETWOKGN-----
                    : *:... :***:::*:
```

Figure S8 Multiple sequence alignment of selected SDO-TSTD1 bacterial fusion proteins. The black box marks a poorly conserved, variable length linker (9 to 52 amino acids) between the N-terminal SDO-like domain (230 or 231 amino acids) and the C-terminal TSTD1-like domain (96 to 105 amino acids). GenBank accession numbers: *Nitrosococcus oceani* (WP_013220760.1); *Methylocella silvestris* (WP_012591638.1); *Methylobacter tundripaludum* (WP_006892756.1); *Methylomicrobium album* (WP_005371248.1); *Methyloglobulus morosus* (WP_023495230.1).

A) N-terminal SDO-like Domain

M. morosus

Human TSTD1

```
-----MIFRQLFDPESSTYTYLIGDPATKEAVFIDPVNTRVDE
N. oceani
                                                                                           38
M. silvestris -----MIFRQLFDHVSGTYTYLLASRPGGEALIIDPVLEKVDR
M. tundripaludum ------MLFKQLFDQETWTYTYLIADPVSKDAILIDPVNTHIDE
                                                                                           38
                     -----MIFKQLFDPETWTYTYFIADTDAKEAVLIDPVKSHIDE
M. album
                                                                                           38
                      -----MLFKQLFDQETWTYTYLIADPANKEAVLIDPVNTHIDD
M. morosus
                                                                                           38
Human SDO
                     MAEAVLRVARRQLSQRGGSGAPILLRQMFEPVSCTFTYLLGDRESREAVLIDPVLETAPR
                                                                                           60
                                             ::::*:*: : *:**::..
                                                                       :*::***
N. oceani

YLNLLNKYNLKLKYSLETHAHADHITASGLLRQHT-GAKTGIGQACGAQYADYQLKDGVV

M. silvestris

M. tundripaludum

M. alb.....

YLNLLNKYNLKLKYSLETHAHADHITASGLLRQHT-GAKTGIGQACGAQYADYQLKDGVV

YLQLFDELDVKLVKAVDTHLHADHITASGLLRQHT-HCITVMGEQTKADVVSMRVADGDR

YIELLAAHGLQLKYSLETHVHADHITASGLLDODI-GACTINAGORIA
                                                                                           97
                                                                                           97
                                                                                           97
                     YIALLDEHGLKLKYTLETHVHADH TASGLLRQKL-GAETGVGQLCGAIGADLQLQDGDV
             YIALLDEHGLKLKYTLETHVHADH<mark>ITASGLLROKL-GAETGVGOLCGAIGADLOLODGDV</mark>
YLAMLTEQGLOLKYTLETHVHADHITASGLLROKL-GSOTGVGALCGAETADFOMKDGDL
DAQLIKELGLRLLYAVNT<mark>HCHADH</mark>ITGSGLLRSLLPGCOSVISRLSGA-QADLHIEDGDS
                                                                                           97
M. album
M. morosus
                                                                                           97
Human SDO
                       . : :.
N. oceani LAFGQGEEIKVLATPGHTPGSISYLWRDR--VFTGDALLINGCGRTDFQGGDPGTLYDSV
M. silvestris IDI-EGLSLEALFTPGHTDDSYSFLLEGR--VFTGDTLLIRGTGRTDFQNGDPRAQYHSI
                                                                                           155
                                                                                           154
M. tundripaludum FKFAGDEQIKVIATPGHTRGSISFLWRDR--LFTGDSLLIGGCGRTDFQGGDAGALYDCI
                                                                                           155
M. album
                 LEFGNGEKIKVIATPGHTQGSVSFLWRDR--VFTGDSLFIGGCGRTDFQSGDAGALYDCI
                                                                                           155
                     FSFTNGEQIKVIATPGHTKGSMSFLWRDR--VFTGDSLFIGGCGRTDFQGGDAGALYDCI
                                                                                           155
M. morosus
Human SDO
                      IRFGRFA-LETRASPGHTPGCVTFVLNDHSMAFTGDALLIRGCGRTDFQQGCAKTLYHSV
                                                                                           178
                              N. oceani
                     TQKLFTLPGETIVYPGHDYNGRWVSSVEQERTGNGRLAGKTRAEFIEIMNNLNLPKPRLI
                                                                                           215
M. silvestris
                     FDRLLKLPDETLVYPAHDYKGDTVSTIGEERLFNPRLKVRSVDEYVDLMNNLNLPNPKMM
                                                                                           214
M. tundripaludum
                      TORLFTLPDETLVYPGHDYQQRWVSSIMQERTTNPRLAGKTREQFIEIMNNLNLPKPRLI
                                                                                           215
              TRKLFTLPDETLVYPGHDYQQKWVSDIFYZEDIINAKARAKTRDEFITIMNNLNLPKPKLI
TQRLFTLPDDTLVYPGHDYQQRWVSNIVQERTTNPRLAGKTRDEFITIMNNLNLPKPKLI
M. album
                                                                                           215
M. morosus
                                                                                           215
                    HEKIFTLPGDCLIYPAHDYHGFTVSTVEEERTLNPRLTL-SCEEFVKIMGNLNLPKPQQI
Human SDO
                                                                                           237
                       :::.** : ::**.*<mark>**</mark>.
                                             **.: :** * ** : ::: :* *****.*: :
N. oceani DEAVPANRRCGLTEEE-
M. silvestris DVAVPANMRVGFHQDE-
                                            231
                                             230
M. tundripaludum DEAVPANRYCGLDENE-
                                             231
M. album
                     DEAVPANRYCGLDEDE-
M. morosus
                     DEAVPANRYCGLEENE-
                                             231
Human SDO
                     DFAVPANMRCGVQTPTA
                                             254
                      * ****
B) C-terminal TSTD1-like Domain
N. oceani
                     -----VATVKORLGDGKTAIIDVREPEEFAA-GHLPGAINVPRGVLEFRLG---NT-
                                                                                           308
M. silvestris -----AAEALALFGRPDIAIVDLREKREREKQGIIPGSLHAPYPDLRESIGPGGALH
                                                                                           290
M. tundripaludum
                     ----VAKSKQLLTKGNVVLVDTREESEYAA-GHVDGALLVPRGMLEFKIG---NM-
                                                                                           313
M. album
                     -----IDKARQLLNQSGVAVVDVREESEYAA-GHIDNALPIPRGVLEFKVG---AT-
                                                                                           313
M. morosus
                     -----VEKAKQLIVQGSITVIDTREESEYAA-GHIDNAVLLPRGVLEFRIN---TI-
                                                                                           330
Human TSTD1 MAGAPTVSLPELRSLLASGRARLFDVRSREEAAA-GTIPGALNIPVSELESALQMEPAAF
                                                                                           59
                                             :.* *. * * : :: * *. :
                     -----AELADPNIPIILYCQTGGRAALAAWSLKCLGYTDATLIAGGYDAWRAAKQNAD-
                                                                                           361
M. silvestris
N. oceani
                     -----ELAAAGKTILFYCAFGERSAMAVQAAQDAGFKSARHIAGGFDAWKKENGAVAP
                                                                                           344
M. tundripaludum -----PELADKSKAVLIYCRLGNRSALAAQTLQQLGYTNVLSMAGGFEAWKKSQEAE--
                                                                                           365
M. album
                     ----PELADKSKTVVVYCRTGGRAALAAQTLQNLGYSNVLSIAGGYEAWQKSL----
                                                                                           362
```

Figure S9 Multiple sequence alignment of human SDO or human TSTD1 with the N-terminal SDO-like or the C-terminal TSTD1-like domain, respectively, in selected bacterial SDO-TSTD1 fusion proteins. Panel A: The black box marks a β-lactamase signature motif. Conserved metal binding and glutathione binding sites, identified in previous studies (Zhang et al. (2013) PLOS ONE, 8, e81885), are highlighted in yellow and magenta, respectively. Panel B: The black boxes mark a six amino acid active site loop and a rhodanese homology domain signature motif. GenBank accession numbers: *Nitrosococcus oceani* (WP_013220760.1); *Methylocella silvestris* (WP_012591638.1); *Methylobacter tundripaludum* (WP_006892756.1); *Methylomicrobium album* (WP_005371248.1); *Methyloglobulus morosus* (WP_023495230.1).

::.:*

----PELADKAKPVLIYCRTGGRAALAAQSLKTLGYTNVLSIAGGYETWDKGN-----

QALYSAEKPKLEDEHLVFFCQMGKRGLQATQLARSLGYTGARNYAGAYREWLEKES----

* *. *. : *:..

379

115