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This file contains 7 supporting figures, a supporting methods section on modeling the shape of isolated 
nanolenses, and a supporting references section. 
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Fig. S1  Larger field of view corresponding to Fig. 2c,d,f,g showing registration among the images. The 
largest landmarks are visible in both the ‘before’ image (a) and the ‘after’ image (b), and can therefore 
be used to register the two images and make sure that we are looking at exactly the same regions of 
interest. 

 

 

 

Fig. S2  Larger fields of view corresponding to Fig. 2o,p showing registration between the two images. 
The largest landmarks are visible in both the ‘before’ images (a and c) and the ‘after’ images (b and d), 
and can therefore be used to register the images and make sure that we are looking at exactly the same 
regions of interest. 
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Fig. S3  Sensitivity and specificity of streptavidin-coated bead capture. These curves are measured using 
fluorescent microscopy, before condensation of nanolenses, and should be considered a supplement to 
Fig. 3 of the main text, where the specific capture of streptavidin-coated green beads is shown.  

(a) Capture sensitivity. The solution green concentration (𝐶𝑠𝑜𝑙) is measured by letting a 0.5 µL drop of 
the second-most dilute solution evaporate on a cover glass, and subsequently counting each green bead 
in this droplet (983 beads). This concentration is then extrapolated to the 8 other dilutions using the 
known dilution ratio between each solution (3X). The captured green concentration (𝐶𝑐𝑎𝑝𝑡) is measured 
for each sample by counting the total number of green beads (𝑛𝑔) in two non-overlapping 20X objective 
fields of view and computing the ratio, 

𝐶𝑐𝑎𝑝𝑡 =
𝑛𝑔 𝐴𝑡𝑜𝑡

𝐴𝑜𝑏𝑠 𝑉𝑑𝑟𝑜𝑝
, 

where 𝐴𝑡𝑜𝑡 is the entire droplet area, 𝐴𝑜𝑏𝑠 is the total observed area, and 𝑉𝑑𝑟𝑜𝑝 is the droplet volume. 
For the low dilutions, only a handful of green beads may be detected, and thus Poisson statistics 
become significant. The error bars represent a (1 − 𝛼) = 95% confidence interval calculated using the 
formula,1 
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where 𝑘 is the number of green beads counted, and 𝜒2(𝑃; 𝜈) is the inverse cumulative distribution 
function of the chi-squared distribution for probability 𝑃 and degrees of freedom 𝜈. The solid black line 
shows the best fit under the assumption 𝐶𝑐𝑎𝑝𝑡 = 𝛽 𝐶𝑠𝑜𝑙, where 𝛽 is a constant that describes the 
capture efficiency, or sensitivity, of the procedure. Here we find 𝛽 = 0.045.  

(b) Capture specificity. This plot shows the degree to which non-specific binding of plain red beads is 
mitigated for each sample, compared to the total number of red beads in each solution. These values 
and error bars are calculated similarly to those in panel (a), but based on the number of red beads 
instead of the number of green beads. In all cases, more than 90% of the red beads are washed away 
without being bound to the surface. 
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Fig. S4  Comparison between film-wise and drop-wise condensation models. (a) Evolving lens shapes 
based on film-wise condensation. This figure shows the same content as main text Fig. 1, reproduced 
here to facilitate comparison between the film-wise and drop-wise lens shapes. The five curves shown 
here were calculated using an effective vapor density of 3.61 × 1015 molecules/m3, at times of 29 s, 49 
s, 119 s, 412 s, and 1000 s. (b) Simulation predictions of the effect on the recovered phase signal of film-
wise condensed nanolenses (black-blue curves) around spheroids after two minutes (120 s) of 
condensation time. Experimental measurements are shown as blue dots (reproduced from main text 
Fig. 4). As the effective vapor density increases from 1.29 × 1015 to 21.4 × 1015 molecules/m3, the film-
wise model predicts initially increasing phase signal, followed by a decaying phase signal (see also main 
text Fig. 5). Simulation predictions near the optimal vapor density fit the experimental data relatively 
well. (c) Growth of isolated lenses resulting from drop-wise condensation, assuming a substrate contact 
angle of 2.5o. See supplemental methods section for how these shapes are calculated. One of these 
shapes (shown in cyan) corresponds to a minimal surface catenoid shape, which is a type of nanolens 
that has previously been self-assembled around nanoparticles.2 The effective vapor density used in 
these calculations was 21.4 × 1015 molecules/m3, and the times were 33 s, 67 s, 110 s, 195 s, and 434 s. 
(d) Similar to (b) but for drop-wise condensed nanolenses. This model shows increasing phase signal 
over the range of vapor densities, 21.4 × 1015 to 46.8 × 1015 molecules/m3, however none of these 
curves provide a good fit to the experimental data. Therefore, we conclude on the validity of our film-
wise condensation model rather than drop-wise condensation. 
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Fig. S5  Simulated signal from 50 nm spheres as a function of particle contact angle. The phase signal is 
somewhat insensitive to particle contact angle, and only varies ~ ± 10% across this range of contact 
angles. 

 

Fig. S6  Continuous-film nanolenses deposited around cylindrical rods. The time and vapor density 
values are the same as in the main text Fig. 1a and Supplementary Fig. S4a: vapor density of 3.61 × 1015 
molecules/m3, and times of 29 s, 49 s, 119 s, and 412 s. At a time of 1000 s, rods would be completely 
buried under a continuous film, even though spheres of the same diameter would ‘not’ (uppermost 
solution in Supplementary Fig. S4a). Rod-shaped particles tend to generate larger lenses than spheroidal 
particles for the same level of condensation. 

 

Fig. S7  Recovered signal for 30-nm-diameter rod-shaped particles as a function of particle length. Rods 
between 500 nm and 10 µm only show a small variation (< ±15%) in recovered peak phase signal. All 
other simulation results presented in the main text and supplementary information assume a rod length 
of 5 µm. 
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Supporting Methods: Modeling the shape of isolated nanolenses formed through drop-wise 
condensation. Here we highlight the differences in modeling between isolated nanolenses around 
spherical particles (e.g. Supplementary Fig. S4a) and continuous-film nanolenses (e.g. Supplementary 
Fig. S4b). It is recommended to read the main methods section on lens shape modeling before this 
section. 

First, we construct a library of possible isolated nanolens shapes by solving the Young-Laplace equation, 
Δ𝑝 = 𝜌𝑃𝐸𝐺 𝑔 ℎ(𝑟) − 2 𝛾 𝐾𝑚(𝑟, ℎ(𝑟)), 

with the two boundary conditions of the contact angle at the particle and the contact angle at the 
substrate. This form of the Young-Laplace equation does not include the disjoining pressure used in the 
form for continuous films because we are looking for solutions where the height of the lens (ℎ) goes to 
zero at the edge of the lens, and the disjoining pressure Π(ℎ) → −∞ as ℎ → 0, which would lead to 
diverging solutions. 

We use the same approach as presented in the main methods section to solve the Young-Laplace ODE, 
namely numerically solving initial value problems for different contact heights on the sphere until a 
solution is found that satisfies the second boundary condition, here the contact angle at the substrate 
(in the main Methods section, the second boundary condition is the film thickness at infinity). In this 
manner, we create a library of solutions to the Young-Laplace equation for many different values of Δ𝑝, 
a few of which are shown in Supplementary Fig. S4b. Each solution in this library corresponds to a lens 
with a different volume (𝑉) and different liquid-vapor surface area (𝐴𝑙𝑣). Based on this library, we can 
establish the relationship between surface area and volume, writing 𝐴𝑙𝑣 = 𝐴𝑙𝑣(𝑉). 

We then make the assumption that during condensation, the relative nucleation barriers are such that 
condensation occurs in the crack between the particle and substrate much faster than condensation 
anywhere else (i.e. the bare substrate, other parts of the nanoparticle, and the homogeneous vapor 
phase), so that these other forms of condensation may be neglected. The rate of condensation may then 
be expressed as, 

𝑑𝑉
𝑑𝑡

= 𝐽 𝑉1 𝐴𝑙𝑣(𝑉), 

where 𝐽 is the molecular flux given in the main methods section, and 𝑉1 is the volume of a single PEG 
molecule. The initial condition for this ODE depends on the time required to form a critical nucleus at 
the crack between the particle and substrate. Here we assume this time is very fast compared to the 
later growth dynamics. The ODE can then be solved to give the volume of the nanolens as a function of 
time, which can be used to identify the corresponding nanolens shape. These shapes are used to 
optically model the nanolens system in the same way as discussed in the main methods section, with 
the resulting curves plotted in shades of green in Supplementary Fig. S4c. 
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