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Supplementary Module 1: Preprocessing of the datasets

The Cancer Genome Atlas (TCGA, 2011) recruited ~570 ovarian cancer patients, a subset of which also had
genomic data available. We obtained the aCGH-based copy number calls of 423 serous ovarian cancer samples and
matched normal tissue from the Cancer Genome Atlas (TCGA, 2011), for which copy number calls were available
using two independent arrays. Of them, 109 and 314 samples had normal ovarian tissue and peripheral blood as
matched normals, respectively. Copy number status for ovarian tumor-normal pairs was determined using three
aCGH arrays in two genome analysis centers: Agilent HG-CGH-415K_G4124A and HG-CGH-244A arrays at Harvard
Medical School, and Agilent CGH-1x1M_G4447A array at MSKCC. In general, copy number calls were highly similar
between pairs of arrays for a vast majority (~91%) of the samples at a base-pair resolution (correlation coefficient
>0.9). We selected these samples for further analysis to minimize false positive calls.
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Supplementary Figure S1: A) Calling potential somatic amplifications and deletions in apparently normal tissue
from copy number calls from tumor-normal pairs using two independent arrays. B) Filtering the dataset of
somatic copy number alterations.

We applied several filters to refine our dataset (Supplementary Figure S1A-B). First, we excluded the tumor-
normal pairs for which there were poor agreements in copy number calls between the pairs of aCGH arrays
(correlation coefficient <0.8). Second, we considered only the copy number calls that were consistent between
both the arrays, using guidelines as outlined in the ‘Detection of somatic copy number status’ sub-section of the
Methods section of the main text. Third, we obtained the list of common CNVs present in the human population
from the UCSC Genome Browser (Structural var track; data freeze 03/2013), which were curated by the
Database of Genomic Variants (Macdonald et al,, 2014) from published papers. Fourth, we excluded the samples
with an excess of potential somatic copy number calls (>500). For instance, the sample TCGA-13-0797 had ~1000
potential somatic amplification and deletion calls in apparently normal tissue distributed through out the genome,
which was 3 orders of magnitude more than the median for the dataset. Taken together, we have applied multiple
filters to minimize potential biases arising from biological and technical artifacts; but since array-based approaches
are error-prone, we cannot exclude the possibility of any false positives and false negatives in our dataset.

At the end, our filtered dataset had 607 potential somatic amplifications and deletions in 314 normal
peripheral blood samples, and 494 potential somatic amplifications and deletions in 109 normal ovarian tissue
samples.
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Issues associated with tumor purity: Besides tumor cells, tumor samples also contain non-tumor cells (e.g.
stromal and immune cells), which can affect copy number assessment. Different tumor samples can have different
proportions of tumor and non-tumor cells, and therefore the aCGH log2 threshold for diploid (or diploid
equivalent) copy number in tumor samples need to be corrected for tumor purity. However, purity is not a concern
for matched normal samples, which have no tumor cell contamination,
and thus the threshold for copy number alteration in normal sample is

zzz expected to remain unaffected. We recognize that there might be
between-individual variations in normal tissue composition that arose
> 2501 during normal development or sample preparation - but such
g 200 variations in normal tissue composition are expected to be minor, and
c% 150 - there is no appropriate data to adjust for such variations. Hence, while
L 756 comparing aCGH signals from normal and matched tumor samples to
identify pSCNAs in normal samples, we only adjust the tumor aCGH

50 \ I threshold for purity.

0 1 |

20 40 60 80 100 We obtained pathological tumor purity estimates for the TCGA

Percent tumor nuclei ovarian cancer samples from the Cancer Genome Atlas (TCGA, 2011).

Supplementary Figure S2: Pathological tumor A Vvast majority of the samples had high (80-100%) tumor purity

purity estimate for the TCGA ovarian cancer ~ (Supplementary Figure S2). We then calibrated the tumor aCGH

samples. threshold after adjusting for pathological tumor purity provided by the

TCGA, and repeated the analyses described in the Supplementary

Figure S2. For instance, for the tumor samples with purity >90%, 80-90%, 70-80%, 60-70%, 50-60%, and <50%,

we used a copy number log2 cut-off of 0.1, 0.09, 0.08, 0.07, 0.06, and 0.05 respectively. The threshold in paired
normal samples remained unchanged.

Adjustment for tumor purity imposes a stricter aCGH threshold in tumor samples, and thus we expected to
detect fewer pSCNAs in the filtered analysis. Indeed, in the purity-adjusted analysis we detected 1084 pSCNAs
(98.5% of 1101 pSCNAs in the original analysis). The remaining 17 cases (1.5% cases) were randomly distributed
in 14 samples in the dataset. Excluding these small number cases does not affect any of our key conclusions. For
instance, none of these pSCNAs overlapped with the loci discussed in Table 2; none of these samples had BRCA
germ-line or somatic mutations (so our results in Figure 1D-E would be marginally stronger after excluding these
cases), and it did not affect the survival analysis (p-value <0.05 in each case after excluding these cases). Therefore,
tumor purity estimates are unlikely to affect our key conclusions.

Taken together, we have taken measures to minimize biases arising from biological and technical artifacts,
but nevertheless, we cannot rule out the possibility of any false positives and false negatives in our dataset.
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Supplementary Module 2: Mutation rate estimation
Let us assume that A is the log2 signal intensity at a given locus in a given sample in the copy number microarray,
and accordingly, C is the aggregated copy number call at the tissue-level resolution, such that A = log, (g)

Let o be the fraction of cells with § copies of the locus, so that, C = (axd + (1 — a) X 2). Solving for a we get
A+1_
2 5 2. Since a is obtainable from A and § we will consider a as observable from here onwards. If we assume

a =

that genomes of normal somatic cells are close to diploid such that é € (Hoffman et al., 2012), then « is obtainable
from A alone.

Let N and L be the frequency and median length of the detectable somatic copy number alterations per sample, so
that they collectively affect N XL bp of approximately 3x109 bp of the diploid genome.

Here we attempt to estimate, using two different models, the somatic copy number alteration rate per locus per
generation in the hematopoietic stem cell (HSC) lineage since conception during development. Similar estimation
for ovarian tissue was challenging, since the time of separation of the tumor and normal ovarian stem cell could not
be ascertained with certainty, and relevant parameters were not available.

Model 1: We assume that since conception during the course of development the HSC pool follows a discrete time
pure birth process (Galton-Watson process with zero death rate) (Karlin, 1966). In other words, at each generation
each cell splits into two, and there is no cell death. Note that in this model if we observe a, we can estimate that the
mutation occurred at generationn = log, (i) Next we calculate the number of cell divisions that occurred until the

mutation happened (i.e. how many cell divisions in the first n generations). We can calculate that this number (call
itD)is
D=1+2+ 2%+ .-+ 20 =211,
Then, the mutation rate per locus per symmetric division r is roughly estimated as:
NL 1 NL 1

) T3x10°D  3x10927+1 — 1
where n = log, (;) and a is given in terms of A and 6 above.

r

Model 2: In this model, let us consider the possibility of cellular death and relax the assumption of simultaneous
generations (the assumption that all cells divide at the same time in each generation). Let us use a continuous-time
birth-death process. In order to use this process we must have two additional estimates - cell birth rate (b) and
death rate (d).

(b-a)t

In this model the population P grows as e . After observing o, we can estimate that the mutation happened at

. , : 1
a time when the population was of size P = o

Next we proceed to estimate D, the number of cell divisions that have occurred until the mutation happened, under
this model. The mutation happened at time t,,, = log (ﬁ). Then the number of cell divisions happening until this

time t, is approximately

tm b b /1
D= b-Dspds = P-1 =—(——1).
fo ¢ = V==3l;

Then, the mutation rate per locus per symmetric division r is roughly estimated as:
NL b—-d, «
e 5 Goa): - (2)
Application of the models, underlying assumptions, and rate estimation: In the aCGH copy number
microarray, we chose to set the detection limit at A > 0.2 or A < -0.2. The average value of N in peripheral blood is
approximately 2, and the median length of such events is 5.65x104bp. We assume that the genomes of normal
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somatic cells are close to diploid such that [6 € {1,2,3}]. Using these estimates in the model-1 based on the pure
birth process, the rate of somatic genomic alteration per locus per cell division is 6.58x10-6.

We assume that the HSC birth rate b = 0.02 week!, death rate d = 0.002 week! based on published
reports(Abkowitz et al., 2002; DeGregori, 2013; Michor et al,, 2005; Sehl et al., 2011). Accordingly, Using these
estimates in the model-2, where we consider the possibility of cellular death and relax the assumption of
simultaneous generations, the rate of somatic genomic alteration per locus per cell division is 1.38x10-5.

We then estimated the rates for the sample, TCGA-13-0757, which had 2.44 Mb of genomic region affected by
pSCNAnorm, considerably more than others. The average rate of somatic genomic alteration per locus per cell
division for this sample was 1.42x10-4 and 2.98x10-4, according to the model-1 and model-2 respectively.

These models make certain assumptions such as (i) the cell division, cell death, and mutation rates do not change
during development and across the HSC population, (ii) there is no clonal selection during normal HSC
development, (iii) HSC divisions are always symmetric, and (iv) all mutations occur in the same clone. The biology
of hematopoietic development is more complex than that assumed in the model, but in absence of information
regarding relevant parameters, these assumptions were rational choices. Since we adopted a simplistic study
design, these estimates likely represent a parsimonious estimate of the lower bound of the rate of somatic genomic
alterations in peripheral blood.

Single cell genome sequencing analysis: Voet et al. (Voet et al,, 2013) identified copy number alterations in (i)
individual cells and also (ii) in daughter cells during cell division using single cell paired end genome sequencing
data. They reported de novo events arising in the daughter cells in one cell cycle (Supplementary table S1).
Accordingly, using the equation (1), we calculate the rate of somatic genomic alteration per locus per cell division.

Supplementary Table S1: Summary statistics showing the rate of somatic genomic alteration per locus per
cell division. A broken branch in the phylogenetic tree indicates multiple cell divisions between the
ancestral and progenitor cells. Amplifications (blue) and deletions (red) are as reported by Voet et al.
(Voetetal,, 2013)

N x L

Cells De novo aberrations in cell cycle Estimated rate r= Sx107
(relative to parent cell) X
_mda-sc82 Chr1:87.32 Mb-121.45 Mb 1.14E-02
mda-sc83 : DI09E00
mda-scl Chr1:66.68 Mb-114.15 Mb 1.58E-02
ol
mda-sc2 Chr4:118.95 Mb—191.03 Mb; Chr12:45.61 Mb—133.83 Mb; 5.34E-02
HCC38 breast _u
cancer cell line {PicoPIex-scl . 0.00E-00
PicoPlex-sc2 - 0.00E-00
Chr2:95.52 Mb-119.2Mb; Chr5:106.79 Mb—153.13 Mb;
. Chr5:164.47 Mb—180.71 Mb; Chr8:125.38 Mb—131.96 Mb;
= ; ; 4.73E-02
- | PicoPlex-sc9 Chr18:20.23 Mb—46.66 Mb; Chr18:55.30 Mb—78.01 Mb;
PicoPlex-sc10 Chr5:106.79 Mb-153.13 Mb; Chr5:164.47 Mb—180.71 Mb;
Chr8:125.38 Mb—131.96 Mb; Chr18:20.23 Mb—46.66 Mb; 3.94E-02
Chr18:55.30 Mb—78.01 Mb;

We also acknowledge the potential caveats of using single cell sequencing data in this context. First, HCC38 is a
highly unstable breast cancer cell line and thus has relatively high number of genomic alterations; second, the de
novo alterations detected in individual cells are subject to stochasticity, especially when the sample size is small,
and only a single cell division is considered; third, small events could not be detected in single cell genomic
analysis, which also has a high error rate; fourth, the rates of de novo alterations in a tissue and in cell culture are
likely to differ; and finally, purifying selection operates on these genomic changes in a tissue, excluding many of
these events from reaching a high frequency in the population. Anyhow, we decided to provide single cell analysis
as a complementary investigation to our tissue-level analysis.
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Supplementary Module 3: Control for potential covariates
Effects of age on pSCNAnb!, after adjusting for amplification/deletion status

In main text Fig 1, we reported that older individuals had more pSCNAnorm, We repeat the analyses after analyzing
amplifications and deletions separately. We find consistent results for both (Supplementary Figure S3).
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Supplementary Figure S3: The number of somatic genomic alterations (amplifications
and deletions) per normal tissue sample (peripheral blood and ovarian tissue), grouped
according to amplification/deletion status and age.

Effects of BRCA mutations on pSCNAnorm, after adjusting for age and amplification/deletion status

In Figure 1 of the main text, we reported that the BRCA mutation carriers harbor more potential somatic
amplifications and deletions than those with no BRCA mutations. The number of samples with BRCA1 or BRCA2
germ line mutation was too small to warrant separate analysis. Anyhow, we investigated whether the results were
confounded by the age of the samples. Thus, we reanalyzed the data, after grouping the samples by their age, and
analyzing the samples with age <58 years (below median) and >58 years (above median) separately
(Supplementary Figure S4). For each age group, we classify the samples according to their BRCA mutation status
and compare the number of pSCNAs between BRCA germ-line and somatic mutation carriers with that for the wild-
type samples within respective age group (Supplementary Figure S4). Within each age group we found consistent
results: BRCA germ line mutation carriers had higher pSCNAs compared to those with wild-type copy BRCA genes.
Therefore, excess of pSCNAs in BRCA germlne mutation carriers was not due to age differences.

Peripheral blood, Peripheral blood, Ovarian tissue, Ovarian tissue,
Age < 58 years Age > 58 years Age < 58 years Age >58 years
15 2 151 15 15 .
g 10 ’ 10 10 ’ 10
S .
=
o 5 . 5 : 3 5 5
} — — | L]
_—
0 — — O’ — | — 0 — 0
Q E c O c () E c O c [} E = (] E =
S 52 &3 & <£8 £ s 52 s &2
s s ES = b0 v EQm o gt o e
= <> 25 = <3S 23> = S =] = 5 >
s QE ZE : QE ZJE > gE 2 g€
< o0 O < ] o < o v < )
O c o O c o O = O =
o = faa) g = o n: = % =

Supplementary Figure S4: The number of somatic genomic alterations (amplifications and deletions) per normal
tissue sample (peripheral blood and ovarian tissue), grouped according to BRCA mutation status and age.

We then investigated whether the results were similar for both amplifications and deletions. We reanalyzed the
data, after grouping the analyzing the somatic amplifications and deletions separately (Supplementary Figure
$5). We found that for the BRCA mutation carriers typically had higher frequency for both somatic amplifications

and deletions relative to those with no BRCA mutations.
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Supplementary Figure S5: The number of somatic amplifications and deletions per normal tissue sample
(peripheral blood and ovarian tissue), grouped according to BRCA mutation and amplification/deletion status.

Taken together, our findings suggest that the BRCA mutation carriers harbor more potential somatic amplifications
and deletions than those with no BRCA mutations, and that these results are independent of age.
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Supplementary Module 4: Context of genomic alterations in apparently normal tissue

Individuals with excess of potential somatic genomic alterations in apparently normal ovarian tissue
Some individuals had an excess of potential somatic amplifications and deletions. We excluded the samples (e.g.
TCGA-13-0797) which had more than 1000 pSCNArerm calls in apparently normal tissue distributed through out the
genome, which was 3 orders of magnitude more than the median for the dataset.
[ 3 3
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Supplementary Figure S6: Personal genomes with an excess of pPSCNAs"®"in apparently normal ovarian tissue.
Two individuals (TCGA-57-1584 and TCGA-57-1993) with an excess of somatic amplifications are marked with
green box.
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Nonetheless, we decided to survey the top ranking samples in terms of pSCNAnorm frequency. We found that a
considerable proportion of focal deletions in ovarian tissue were clustered in the genomes of two individuals
(TCGA-57-1584 and TCGA-57-1993, Supplementary Figure S6). We found no evidence for technical artifacts;
instead both were stage IIIC, grade-3 early age (47 and 56 years) ovarian cancer patients with considerable
genomic abnormality also in their tumor genomes. It is possible that genomic instability in their normal and
malignant somatic tissue stemmed from extensive DNA damage and/or impaired repair, but limited amount of
functional, clinical, and cancer gene mutation data precluded any detailed investigation into the origin of genomic
instability in these patients.

Enrichment for genomic features:
We analyzed genomic context of the pSCNArorm after segregating amplifications and deletions in blood and ovarian
tissue separately, using an approach as described in the Method.

For each normal sample, we first calculated the extent of overlap using intersectbed after masking selected
regions: 1Mb centering centromeres, 500kb from the tip of the telomeres, and also the genomic regions that
underwent copy number changes in its matched tumor genome (and thus was not assessed for copy number status
in the paired normal sample). We masked the centromere and telomere regions since the aCGH arrays (and also
some genomic and epigenomic features sucha s replication timing) have poor representation there. We then
permuted the pSCNArorm within respective chromosomes using shufflebed, while keeping the location and higher
order organization of genomic features unchanged, and after masking the same selected regions in each sample.
Since the regions that underwent copy number changes in its matched tumor genome would be specific to a tumor-
normal pair, we ran the permutation analysis separately for each sample, and then combined the results. We
reported g-value for statistical significance (Supplementary Figure S7). We analyzed potential somatic
amplifications and deletions in blood and ovarian tissue separately, and chose to highlight those that were deemed
significant in at least 3 out of 4 scenarios.

We also note the challenge for estimating statistical significance (Bilke and Gindin, 2012; De et al,, 2013) and
the limitations of combining heterogeneous data types from different sources(Sima and Gilbert, 2014; Sugihara et
al, 2012). Permutation is undoubtedly the preferred method in this scenario as (i) for a large number of data-
points (e.g. the number of pSCNArerm js ~103), classical statistical analyses (e.g. t-test) are expected to return
extremely significant p-value even for very minor differences, (ii) permutation allowed us to make necessary
adjustments for genomic context (e.g. masking centromeres and telomeres), and (iii) provides realistic p-values
when correctly implemented (Bickel et al, 2010; Bilke and Gindin, 2012; De et al., 2013). However, one can
perform permutation in many different ways (e.g. permuting within respective chromosomes, or over all
chromosomes; controlling for minimum distance between two events in the same sample). Choice of permutation
constraints has the potential to affect the null model and hence the statistical inferences drawn (De et al., 2013). In
our analysis, we chose a simple and yet biologically relevant null model, and the permutation results for different
functional elements including G4, Alu, L1, and evolutionarily conserved elements were generally consistent for
different categories in Supplementary Figure S7. We found similar results when the pSCNAnerm were permuted
across all autosomes.
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Nevertheless, inferring causality from association is non-trivial, especially when heterogeneous data types from
different sources are integrated. Hence we cautiously interpret the data. In any case, our findings are consistent
with the function of these elements.

Supplementary Figure S7: Enrichment for genomic contexts for all pSCNAs, and also when the somatic amplifications and deletions in
blood and ovarian tissues were analyzed separately.
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L2 elements | <0.05 ‘ <0.05 ’ | <005 J <0.05 . |<0.05 \
/\
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fragile sites
Common fragile
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Supplementary Module 5: Correlation with cancer gene mutation and survival patterns

Cancer gene mutation analysis: We obtained data on somatic point mutations in protein coding genes for the
ovarian cancer samples from the TCGA(TCGA, 2011). The variants were identified using [llumina Gall and ABI
SOLiD sequencing, and then comparing tumor and matched normal samples as a part of the TCGA initiative. We
analyzed only the missense mutations that occurred in the set of 121 classic cancer genes, as recorded in the
COSMIC database(Forbes et al., 2011). We calculated the frequency of cancer gene mutations in the samples that
had no detectable pSCNAnb! (pSCNAnb!=0), and compared that with the samples that had more detectable pSCNAnb!
(pSCNA=mb! > 3; > 4; > 5; Supplementary Table S2). Mutations in RB1, MLL3, CREBBP were present in >5% of the
samples with no detectable pSCNAnb,, but rarely occurred in the samples with an excess of pSCNAsnb!, while some
other genes (e.g. TP53, NF1) were mutated in proportionally less samples in the former group. The results were
not biased by age, stage, and BRCA mutation status (data not shown).

Supplementary Table S2: Table showing the frequency of missense mutations in classic cancer genes.

Gene Samples with pSCNA=0 | Samples with pSCNA=>3 | Samples with pSCNA24 | Samples with pSCNA=>5
Number of sample 82 63 27 15
TP53 65 53 25 14
BRCA1 6 2 1 1
CREBBP 5 1 0 0
RB1 5 0 0 0
MLL3 4 0 0 0
APC 2 1 0 0
NF1 2 6 2 1
ABL1 1 0 0 0
ASXL1 1 0 0 0
ATM 1 1 1 0
ATRX 1 0 0 0
BAP1 1 0 0 0
BCOR 1 1 0 0
BRCA2 1 1 0 0
CSF1R 1 0 0 0
DAXX 1 0 0 0
EGFR 1 0 0 0
EP300 1 1 0 0
ERBB2 1 2 0 0
FAM123B 1 0 0 0
GATA3 1 0 0 0
GNA11 1 0 0 0
GNAS 1 1 0 0
HNF1A 1 1 0 0
IL7R 1 2 0 0
KDR 1 2 2 2
KIT 1 0 0 0
KRAS 1 0 0 0
NF2 1 1 0 0
NOTCH2 1 0 0 0
NRAS 1 1 0 0
PTCH1 1 0 0 0
RET 1 2 1 0
SETD2 1 1 0 0
TET2 1 0 0 0
TNFAIP3 1 1 1 1
CDC73 0 1 1 1
CDH1 0 1 0 0
DNMT3A 0 1 0 0
FGFR2 0 1 0 0
FLT3 0 2 2 0
NTRK3 0 1 1 0
PIK3CA 0 1 0 0
PRDM1 0 1 1 1

10
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Genomic alterations in the matched tumor genomes

We compared the burden of genomic alterations (i.e. point mutations, copy number alterations, and LOH
events) between the tumor genomes of the patients who had no pSCNArP! and the patients who had
considerable excess of such events in apparently normal blood (pSCNArb'>4). In particular, we compared
the number of (i) somatic copy number alterations, (ii) LOH events, (iii) single nucleotide mutations in
protein coding regions, and (iv) missense mutations in their tumor samples, and in all the four categories,
there were no significant differences between the two patient groups (Supplementary Figure S8).
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Supplementary Figure S8: Boxplots showing differences in the frequencies of (A) somatic
copy number alterations (B) loss of heterozygosity events, (C) single nucleotide mutations
in protein coding regions, and (D) missense mutations in the tumor genomes of the
patients who had no pSCNA™! (left box) and those who have >4 pSCNA™! (right box) in
their peripheral blood.

Cancer gene mutation analysis after adjusting for potential covariates

In the main text and Fig-3B, we reported that the patients with no pSCNAnb had different driver mutations in their
ovarian tumor compared to those who had more pSCNAsnbL To ensure that our results are not due to potential
covariates, we repeat the analyses after choosing alternate pSCNAnb! threshold (Supplementary Figure S9A-B).
We also repeated the analyzes after grouping the samples by age and stage, and only considering the patients who
are of age between 50 and 69 years, and had tumor of stage II or III; there were 71 such cases in the filtered dataset
(Supplementary Figure S9C). The results were consistent in all the three cases.
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Supplementary Figure S9: Frequency of the common cancer gene mutations in ovarian cancer patients (A) who had no pSCNA"®! (black)
and those who have 23 pSCNA™! (grey), (B) who had no pSCNA"®! (black) and those who have 25 pSCNA"®! (grey), and (C) who were of age
between 50 and 69 years, had stage Il or lll cancer, and had no pSCNA"! (black) and those who have 23 pSCNA™! (grey),.

11



Aghili et al. Cell Reports. 2014

Survival analysis after controlling for potential covariates

In the main text and Fig-3B, we reported that the pSCNAnblpredicted survival. To ensure that our results are not
due to potential covariates, we adjusted for age, stage, and tumor purity using a cox-proportional hazards
regression model (survival R Package, method=breslow). Pathological tumor purity for these samples was
obtained from the TCGA ovarian cancer clinical datasets (TCGA, 2011). We found that, even adjusting for these
covariates the patients with 24 pSCNAsnorm in peripheral blood had significantly shorter survival (p-value 4.3x10-3).

In a complementary analysis, we focused on the patients who are of age between 50 and 69 years, and had tumor
of stage Il or I, there were 108 such cases in the filtered dataset. Using Kaplan Meier survival analysis, we found
that the patients with 24 pSCNAsnorm in peripheral blood had significantly shorter survival (log rank test; p-value:
5.27x10-4; Supplementary Figure S10A) compared to those with no pSCNAs detected in blood. The results were
consistent in other age- or stage groups, but the sample sizes were too small for statistically meaningful
comparison.

We then repeated the analyses described main text and Fig-3, after changing the pSCNArorm threshold. Using
Kaplan Meier survival analysis, we found that compared to those with no pSCNAs detected in blood the patients
with 21, 22, 23 or 25 pSCNAsrorm in peripheral blood had significantly shorter survival (Supplementary Figure
S10B-E).
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Supplementary Figure $S10: Kaplan Meier curve showing difference in the survival patterns between the ovarian cancer patients who have
(A) no pSCNAM®! (black) and those who have 24 pSCNA™! (red), after considering only the patients of age between 50 and 69 years, and stage
Il or 111, (B) no pSCNA"®! (black) and those who have 21 pSCNA™™! (red), (C) no pSCNA"®! (black) and those who have >2 pSCNA™! (red), (D) no
PSCNAP®! (black) and those who have 23 pSCNA"! (red), and (E) no pSCNA"® (black) and those who have 5 pSCNA™! (red).
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Supplementary Module 6: Prevalence and significance of pSCNAr°™™ jn lung cancer

It was challenging to find large cohorts where tumor and matched normal genomes were analyzed using more than
one aCGH arrays/centers independently, and where aCGH calls were reasonably concordant between the
experiments. The Cancer Genome Atlas lung squamous cell carcinoma dataset(TCGA, 2012) met both criteria, and
we repeated some of the key analyses for lung squamous cell carcinoma. We obtained the aCGH-based copy
number calls for tumor and matched normal tissue (apparently normal lung or peripheral blood) from the Cancer
Genome Atlas. 110 samples had copy number analyzed using two independent centers: Agilent Human Genome
CGH Custom Microarray 2x415K at Harvard medical School, and Agilent SurePrint G3 Human CGH Microarray at
MSKCC. We processed the datasets as described in the Methods section of the Main-text (for ovarian cancer
dataset). 18 and 92 of these samples had peripheral blood and lung tissue as the matched normals, respectively.
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We detected a total of 95 amplifications and deletions (pSCNAnerm, per sample average: 0.8; Supplementary
Figure S11A). In general, the relatively low number of pSCNAnerm could be due to tissue heterogeneity, or relatively
weaker concordance in aCGH calls between the arrays. Nevertheless, most of the individuals with 2 or more
pSCNAnorm had age 260 years, while those younger had on average fewer pSCNAnerm (Supplementary Figure
S11B), supporting our original finding that the number of potential somatic genomic alterations detectable at a
tissue-level resolution increases with age.

Analyzing genome-wide distributions of pSCNAnorm, we again found that the genomic neighborhoods of chr1q32,
chr15q11, and chr17q21 had clusters of pSCNArorm, Even though small size of the dataset precluded any rigorous
statistical analysis, but this analysis suggested that these chromosomal regions might experience recurrent
instability in apparently normal tissue types. Very few lung squamous cell carcinoma samples in our dataset had
survival data (e.g. only one patient with pSCNAnerm>4), so that survival analysis was not statistically meaningful.
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