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Supplementary Figure 1 | Molecular formula and absorbance spectrum for paint molecules
selected for their low dissociation rate with CA and the capability to remain bound to CA after
denaturation, reduction and alkylation. a) sodium 4-(4-(benzyl-et-amino)-ph-azo)-2,5-di-cl-
benzenesulfonate. b) 10-dioxo-4-[3-(2-sulfonatooxyethylsulfonyl) anilino] anthracene-2-sulfonate.

The characteristic peak absorbance wavelengths determined above were employed for the
measurement of binding kinetics shown in Figure 2.
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Supplementary Figure 2 | Molecular formula and absorbance spectrum for paint molecules
selected for their low dissociation rate with CA and the capability to remain bound to CA after
denaturation, reduction and alkylation. a) Phenyl 4-[(1-amino-4-hydroxy-9,10-dioxo-9,10-dihydro-2-
anthracenyl)oxy]benzenesulfonate; and disodium; b) 4-amino-3-[[4-[4-[(1-amino-4-sulfonatonaphthalen-
2-yl)diazenyl] phenyl]phenyl]diazenyl]lnaphthalene-1-sulfonate, respectively. The characteristic peak
absorbance wavelengths determined above were employed for the measurement of binding kinetics

shown in Figure 2.
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Supplementary Figure 3 | Weak transient interactions can be captured with protein painting and
will not cause false positives. a) First order reaction kinetics calculations were applied in order to
show that a 5 minute pulse of highly concentrated molecular paint (RBB) can cover the surface of the
IL1B-IL1RI complex when most (83%) of known protein binding partners are in the complexed form.
The dissociation constant for IL1 p was experimentally derived (Kgss = 0.252 min™") and Kq = 72*10° M.
This complex is considered a strong transient complex. K, ss*[RBB] was experimentally derived from
Figure 2 (2.4342 min™). b) Simulations show that for every protein-protein dissociation constant
(KaissPP), if kassMP*[MP] > kgissPP of one order of magnitude, then the protein-molecular paint binding
equilibrium will be reached when 83% of protein protein transient complex is still in the complexed form
(P = protein, M = paint molecule, MP = protein-paint molecule complex, k,ssMP association constant of
protein-paint molecule binding reaction). c) If k,ssMP*[MP] and kgssPP have the same order of
magnitude the protein-molecular paint binding equilibrium will be reached when 50% of protein protein
transient complex is still in the complexed form. d) If kassMP*[MP] > kgissPP of two orders of magnitude,
then the protein-molecular paint binding equilibrium will be reached when 97% of protein protein

transient complex is still in the complexed form.



o ]
o L]
| ] ° N
° - N 5 [=)]
=
o ° ® | k=1
N ° . £
~ 2 S g
- o
3 8
%]
L2
57 o : L
El
o o 20 40 60 80 100 120
4 . .
=2 Time [minutes]
S
5 37
(=]
= T
o 1 e “
g 2
(%3] ! o
1
.} N
o
0 T 1 ."\._ [ -] ° J
0 20 40 60 80 100 120 N -

Time [minutes]

Supplementary Figure 4 | Sequential binding of two different dyes documents complementarity
and rapid saturation kinetics of the dyes to achieve broad coverage of trypsin cleavage sites
exposed on the surface. CA (1 nmole) and AO50 (10 nmoles) in 50 uL PBS were allowed to reach
equilibrium (1 hour incubation time) and then unbound dye was separated via mini Quick Spin Oligo
columns as described in the Methods. RBB (10 nmoles) was allowed to interact with AO50-painted CA
for different time periods (0, 1, 5, 15, 40, and 120 minutes). Specific binding (JAO50]/[CA] and
[RBB]/[CA]) was plotted against incubation times. Binding kinetics revealed that 6 moles of RBB bound
to every mole of CA thus suggesting that RBB and AO50, examples of two different separate paint
molecules, could bind at different regions on the protein surface.
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Supplementary Figure 5 | Protein painting workflow. (a) Proteins are pulsed with 10 molar excess
small molecule molecular paints for 5 minutes. (b) Unbound paint molecules are washed away with gel
filtration chromatography (mini Quick Spin Oligo Column, Roche). (¢) The protein complex is
dissociated and denatured with 2 M urea. (d) Proteins are linearized by dithiothreitol (DTT) reduction
and iodoacetamide alkylation. (e) Linearized proteins are subjected to trypsin digestion. (f) Tryptic
fragments are analyzed by reversed-phase liquid chromatography nanospray tandem mass
spectrometry (LC-MS/MS). The bound molecular paints block trypsin cleavage sites. Therefore tryptic
fragments are generated only from unpainted contact interface regions of the protein complex. After
verifying that the dyes (paints) will block the trypsin cleavage sites on the protein(s) of interest, the user
can then interrogate pre-formed protein complexes. As shown in Figure 4, a subset of four dyes can
cover all the known trypsin consensus cleavage sites. Nevertheless, since we have not tested the dyes
shown in Supplementary Table 2 against all known proteins, we are recommending that the user first
confirms that the dyes will bind to their protein of interest and block the trypsin cleavage sites (Fig. 1).
This step is also necessary to generate the data for differential comparison of the protein before and
after complex formation.
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Supplementary Figure 6 | Mass spectrometry workflow. Mass spectrometry workflow steps for
protein painting differentiates internal interface regions within an individual folded protein from the
surface contact regions between protein partners: Step 1) Analyses of unpainted individual proteins are
carried on in order to maximize the trypic peptide coverage. Step 2) Analyses of painted dissociated
proteins yields a set of peptide fragments (set A) relative to solvent inaccessible trypsin cleavage sites
for each individual protein 3) Analyses of the pre-formed protein-protein complex pulsed with paint
molecules yields a set of peptide fragments (set B) derived from solvent inaccessible trypsin cleavage
sites belonging to protein-protein interface regions. The difference between set B — set A is the output
of the method. MS = mass spectrometry; PPI = protein-protein interaction.
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Supplementary Figure 7 | UV-VIS and fluorescence spectra of protein and paint molecules. a)
Absorbance spectra are presented for CA (20 uM in PBS, black trace), RBB (40 uM in PBS, green
trace) and the complex CA/RBB (20 and 40 uM respectively, magenta trace). b) 3D fluorescence
spectrum of CA (10 uM in PBS). c) 3D fluorescence spectrum of ANSA (30 mM in 100% ethanol).
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Supplementary Figure 8 | Selected molecular paints are complementary to each other and block
all trypsin cleavage sites of carbonic anhydrase Il. Molecular paints (RBB: blue “X”, AO50: orange
“X”, R49: orange “X”, and CR: red “X”) blocked all (100%) consensus trypsin cleavage sites and
showed complementarity.
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Supplementary Figure 9 | Mass spectrometry identified trypsin cleavage sites within interface
domains of the painted native IL1B-IL1RI complex. Interfacing residues predicted by crystal structure
(PDBePISA software® on PDB entry 1ITB) in the IL1B-IL1RI complex are highlighted in yellow.
Resolution of our protein painting method is determined by the nearest trypsin cleavage site at or near
the contact point/close interface, where there is solvent exclusion, hydrogen bonds and salt bridges.
Trypsin cleavage sites (R or K) revealed by protein painting followed by mass spectrometry are labeled
and compared to the crystal structure predicted interfaces. All the consensus trypsin cleavage sites that
were within 9 amino acids of a contact point predicted by crystal structure were correctly identified by
protein painting and mass spectrometry analysis (Fisher exact test p-value = 0.0003, odds ratio =
13.49206). It’s important to note that an MS peptide revealed by protein painting constitutes a true
positive independent of the MS protein coverage.
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Supplementary Figure 10 | Peptide FYKHPFTCFAK identified with mass spectrometry relative to
the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 11 | Peptide IILVSSANEIDVRPCPLNPNEHK identified with mass
spectrometry relative to the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 12 | Peptide LIVMNVAEKHR identified with mass spectrometry relative to
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the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 13 | Peptide LPVAGDGGLVCPYMEFFKNENNELPK identified with mass
spectrometry relative to the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 14 | Peptide IPVALGLKEK identified with mass spectrometry relative to
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the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 15 | Peptide SLNCTLRDSQQK identified with mass spectrometry relative
to the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 16 | Peptide IEINNKLEFESAQFPNWYISTSQAENMPVFLGGTK identified
with mass spectrometry relative to the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 17 | Peptide LEFESAQFPNWYISTSQAENMPVFLGGTK identified with
mass spectrometry relative to the interface regions of IL1B-IL1RI complex.
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Interface residues: IL1B Arg11-Lys27
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Supplementary Figure 18 | Peptide DSQQKSLVMSGPYELK identified with mass spectrometry
relative to the interface regions of IL1B-IL1RI complex.
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Supplementary Figure 19 | Arg286 peptide mass spectrometry sequence. ILLRACP peptide
identified by protein painting followed by mass spectrometry relative to the closest proximity hot spot in
the IL1B-IL1RI-ILLRACP complex. Protein painting revealed this single region as an interaction point
incorporating an arginine at the outermost bend of the beta loop and was predicted to participate both
in hydrogen bonding and salt bridge formation between the accessory protein and the receptor-ligand
complex. This peptide was used to generate Arg 286 peptide inhibitor and was also used as the antigen
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for Arg286 pep monoclonal antibody production (Fig. 6).



Arg 286 peptide is represented as a ribbon

Supplementary Figure 20 | Arg286 peptide 3D model.

structure in the context of the ternary complex. Arg286 amino acid is represented by solid spheres.

ILARACP is depicted in the red backbone.



Arg286 pep 21
Homo sapiens 176
Macaca mulatta 317
Pongo abelii 317
Callithrix jacchus 317
Pan troglodytes 317
Gorilla gorilla 314
Nomascus leucogenys 317
Spermophilus tridecemlineatus Y TIK 318
Rattus norvegicus Y S|S 176
Mus musculus VSYS|S 317
Otolemur garnettii L 309
Mustela putorius L TIQ 82
Oryctolagus cuniculus Y S|K 316
Felis catus LT|T 319
Sus scrofa VS L SIK|I 315
Cricetulus griseus VSYS|IT 317
Heterocephalus glaber TS YS|K 317
Pteropus alecto VSQTK 484
Canis familiaris VS L A 319
Cavia porcellus AS Y S|T 313
Bos taurus VIL V 317

Supplementary Figure 21 | Arg286 peptide sequence conserved in evolution. Sequence of Arg286
peptide found by protein painting is compared among species. Identical residues are shown in dark
green. This peptide sequence is conserved in evolution reflecting its important functional role®. The
numbers flanking the sequences are those provided by BLASTp software.
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Supplementary Figure 22 | Experimental spectrum obtained with the crosslinking method
applied to the 3-way IL18 complex. DST and sulfo-EGS were used to form covalent crosslinks in the
pre-formed IL1B-IL1RI-ILIRACP complex. The cross linking reactions was allowed to proceed for 30
and 120 minutes (2 crosslinkers x 2 time periods = 4 conditions). Proteins were denatured, trypsin
digested, desalted and analyzed with mass spectrometry (See Methods section). Data analysis was
performed with StavroX*. Cross-link identifications were filtered by requiring a score > 20. Experimental
spectrum obtained for cross-linked peptide 1 listed in Supplementary Table 8.
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Supplementary Figure 23 | Experimental spectrum obtained with the crosslinking method
applied to the 3-way IL18 complex. Experimental spectrum obtained for cross-linked peptide 2 listed
in Supplementary Table 8.



Scan: null Score (20) Peptide B:[SAKGEVAK] (K3)
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Supplementary Figure 24 | Experimental spectrum obtained with the crosslinking method
applied to the 3-way IL18 complex. Experimental spectrum obtained for cross-linked peptide 3 listed
in Supplementary Table 8.



Scan: null Score (58) Peptide B:[mEKR] (K3)
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Supplementary Figure 25 | Experimental spectrum obtained with the crosslinking method
applied to the 3-way IL1B complex. Experimental spectrum obtained for cross-linked peptide 4 listed
in Supplementary Table 8.



Scan: null Score (26) Peptide B:IVKQK] (K2)

theor. Mass (M + H+j: 132270868045 identified signals (0164} (*IL1AP_H.. from 346 to 345)
meas. Mass (M + H+): 132271147362 intense signals  (0.01) Peptide o:[KmEKR] (K4)
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Supplementary Figure 26 | Experimental spectrum obtained with the crosslinking method
applied to the 3-way IL1B complex. Experimental spectrum obtained for cross-linked peptide 5 listed
in Supplementary Table 8.
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Supplementary Figure 27 | Results of the hydrogen/deuterium exchange method applied to the
3-way IL1p complex. Deuterium off-exchange experiments were performed on the 3-way IL1j
complex (see Methods section). Example mass spectra of the NKIEINNKLEF peptic fragments (IL1) in
the unbound, bound and unlabeled condition from left to right.
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Supplementary Figure 28 | Fluorescence emission spectra of CA bound to different dyes show
no shift in the maximum peak with respect to CA in PBS. A solution of 10 mM CA in PBS was
subjected to fluorescence spectroscopy. Intrinsic protein fluorescence is due to aromatic amino acids,
predominantly tryptophan. The excitation wavelength (Aex) was set at 295 nm because at this
wavelength there is no absorption by tyrosine. The emission spectrum was recorded with Jasco
Spectrofluorometer FP-8300 and analyzed with Jasco Spectra Manager Version 2. The emission
spectra (Aex = 295nm) was recorded for CA pulsed for 5 minutes with the following example dyes: R49,
CR, AO50 and immediately passed through Sephadex columns in order to eliminate unbound dye
Supplementary Figure 5). No shift in the maximum emission peak (340 nm) was evident. This suggests
that solvent accessibility of (7) tryptophan residues in CA is not modified. Therefore no maodification in
the three dimensional conformation (involving tryptophan residues) of the protein occurs after a short
pulse of dyes.



Supplementary Table 1: Paint molecules selected for their low dissociation rate with CA and the
capability to remain bound to CA after denaturation, reduction and alkylation

Bound after

Chemical Name (abbreviation) MW | ke [10° s™] | CA reduction Water
and alkylation soluble
1 | sodium 4-(4-(benzyl-et-amino)-ph-azo)-2,5- | 486.356 | 5.725 Y Y
di-cl-benzenesulfonate (AO50)
2 | disodium;1l-amino-9, 10-dioxo-4-[3-(2- 626.54 | 3.222 Y Y

sulfonatooxyethylsulfonyl)anilino]anthracene-
2-sulfonate (RBB)

3 | phenyl 4-[(1-amino-4-hydroxy-9,10-dioxo- 487.492 | 5.899 Y Y
9,10-dihydro-2-

anthracenyl)oxy]benzenesulfonate (R49)

4 | disodium;4-amino-3-[[4-[4-[(1-amino-4- 696.66 | 2.538 Y Y
sulfonatonaphthalen-2-yl)diazenyl]
phenyllphenyl]diazenyllnaphthalene-1-
sulfonate (CR)

Chemical properties of the paint molecules, including chemical name, molecular weight, dissociation
rate, capability to remain bound to CA after reduction and alkylation, solubility in water for selected
paint molecules. Selection criteria for paint molecules include: ko < 6*10° s, water soluble = yes,
survives to reduction and alkylation = yes. These dyes have not been previously explored for protein
binding kinetics and protein cleavage site blockage.




Supplementary Table 2 : Small molecule molecular “paints” screened for use in protein painting
methodology.

Class CAS Name Formula
number
phenyl 4-[(1-amino-4-hydroxy-9,10-dioxo- O 0 o
Anthraquinone | 5517-38-4 | 9,10-dihydro-2- o . NH §\0/©
i
anthracenyl)oxy]benzenesulfonate o O O/U
oH
3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-7- 0w o on o oH
Anthraquinone | 1390-65-4 | [3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2- Ho | on
yl]anthracene-2-carboxylic acid o | o
O on
O NHp (I'I)
disodium;1-amino-9, 10-dioxo-4-[3-(2- g—om
Anthraquinone | 2580-78-1 | sylfonatooxyethylsulfonyl)anilino]anthracene- o g
2-sulfonate @’6\/\0'8'0“3
Aryl azo 10214-07- | Sodium 4-(4-(benzyl-et-amino)-ph-azo)-2,5-di- Nat © Q
0-5 N=N N
compound 0 cl-benzenesulfonate 5@ @ ~
Cl
Nat* Q /
Aryl azo 68806-22- | sodium 4-[(4-methoxy-1- -o—g@—mzw O o
compound 4 naphthyl)diazenyl]benzenesulfonate Q
disodium;4-amino-3-[[4-[4-[(1-amino-4- NHg
Aryl azo 573-58-0 sulfonatonaphthalen-2-yl)diazenyl] J
compound phenyl]phenyl]diazenyl]naphthalene-1- 0-8=0 0-3-0
ONa ONa
sulfonate "’
e N
Aryl azo 1936-15.8 7-Hydroxy-8-phenylazo-1,3- L o
compound naphthalenedisulfonic acid disodium salt Nao,g
)
Det
xanthene 9321-07-5 3',6'-dihydroxy-Spiro[isobenzofuran-1(3H),9'- o
[9H]xanthen]-3-one O O
HO (6] OH
Xanthene 92-83-1 | Xanthene
9]



http://www.sigmaaldrich.com/catalog/product/fluka/75768?lang=en&region=US

4',5'-dibromo-3',6'-dihydroxy-2',7'-

Xanthene 548-24-3 | dinitro- spiro[isobenzofuran-1(3H),9'-
[9H]xanthen]-3-one
N\
. 3-amino-7-(dimethylamino)-Phenothiazin-5- /@Q ch
Thiazine >31-53-3 ium, chloride HoN 8 N g
CHs
N-(4-{bis[4- e
Triarylmethane (dimethylamino)phenyl]methylene}-2,5- O
8004-87-3 . . L or
compound cyclohexadien-1-ylidene)methanaminium e O \
chloride s o
[[4-[bis[4- Nets
Triarylmethane | 28983-56- | [(sulfophenyl)amino]phenyl]methylene]-2,5- Ej
compound 4 cyclohexadien-1-ylidene]amino]- o8 ' A 3 o
Benzenesulfonic acid, sodium salt (1:2) S LV QL L8
. 2-amino-5-[(4-amino-3-sulfophenyl)(4-imino- " gﬁ“ “2na
Tn:(;\r/rl]m;'j:zne 3244-88-0 | 3-sulfo-2,5-cyclohexadien-1-ylidene)methyl]- ho-§ '/’\;d/{“g: oH
P 3-methyl-Benzenesulfonic acid, sodium salt Hﬁj\fj ‘\-\g\&.
HEC7
Pol hi SN
olymethine 905-97-5 | 3,3'-Diethylthiacarbocyanine iodide = ST/\/\ES pam
compound & )Mo \<_/
5
. 4-[2-(1-methyl-4(1H)- N
Pol h 2 2-83- e
olymethine 3302-83 pyridinylidene)ethylidene]-2,5-Cyclohexadien- /O AN
compound 2
1-one,
Polymethine 2768-90-3 (2E)-1-ethyl-2-[(E)-3-(1-ethylquinolin-1-ium-2- m\ \/ﬁl cr
compound yl)prop-2-enylidene] quinoline; chloride . Nen
Polymethine . S )
-49- " 4.4 HsC
compound 4727-49-5 | 1,1'-Diethyl-4,4'-cyanine iodide 3 L&/@JCHS
3-Ethyl-2-[5-(3-ethyl-2(3H)- HaC ™
Polymethine y _ [>- ] yl-2(3H) QS N
514-73-8 | benzothiazolylidene)-1,3- (f

compound

pentadienyl]benzothiazolium iodide



http://www.sigmaaldrich.com/catalog/product/aldrich/212954?lang=en&region=US
http://www.sigmaaldrich.com/catalog/product/sigma/m5528?lang=en&region=US

Polymethine Copper(ll) phthalocyanine-tetrasulfonic acid
compound tetrasodium salt

Naphthalene

L 82-76-8 | 8-Anilino-1-naphthalenesulfonic acid
derivative

Naphthalene 65664-81- | 4,4'-Dianilino-1,1"-binaphthyl-5,5"-disulfonic

derivative 5 acid dipotassium salt
Het l o
eterocyclic oa . , N o
compound 2390-54-7 | Thioflavine T HSC’QS:Q -
@
Heterocyclic 2-[4-(dimethylamino)phenyl]-3,6-dimethyl- 7 “‘Dg
2 - 4'7 R | .
compound 390-5 Benzothiazolium, chloride HsC jﬁc’ °

Class, CAS number, name and molecular formula are shown. All molecular paints were purchased from
Sigma except compounds CAS 514-73-8 and 8004-87-3 which were purchased from Fisher and CAS
2580-78-1 which was purchased from Acros Organics. Binding mechanisms involve hydrophobic and
electrostatic forces®. Small molecular paints may preferentially recognize charged amino acids®
predominantly found on the surface of proteins and are essential to trypsin cleavage sites. Small
molecular “paints” can insert aromatic rings into non-polar hydrophobic pockets of the protein surface,
while the flanking portions of the dye and protein molecules can re-arrange depending on energy
constraints®. A variety of chemical classes (first column) were ranked for utility as molecular paints
based on the following criteria using the workflow described in Supplementary Table 1: a) extremely
rapid on-rates (M™ sec™) and very slow off-rates (sec™), b) remain bound following protein dissociation
or denaturation with 2 M urea, and c) bind to multiple sites on the exposed protein surface to achieve
full coverage of all the trypsin cleavage sites.




Supplementary Table 3: Contingency table comparing protein painting positives to Robetta

hotspot energy prediction model.

Robetta + Robetta - Total
PP + 8 2 10 0.8 PP Precision
PP Negative
PP - 9 63 72 | 0.88 | predictive value
Total 17 65 82
0.47 0.97
PP Sensitivity | PP Specificity

Agreement was considered in the case a positive proteolytic fragment identified with protein painting
contained a hotspot residue predicted by Robetta. PP+ = protein painting positive, PP- = protein
painting negative, Robetta + = interface residue with AAG >= 1.0 kcal mol™ = hotspot. Robetta - =
interface residue with AAG < 1.0 kcal mol™ = not a hotspot. Accuracy, calculated as
TP+TN/(TP+TN+FP+FN), is 87%.



Supplementary Table 4: Contingency table comparing protein painting positives to KFC2
hotspot energy predictions

KFC2 + KFC2 - Total
PP + 9 1 10| 0.90 PP Precision
PP Negative
PP - 10 62 72| 086 predictive value
Total 19 63 82
0.47 0.98

PP Sensitivity

PP Specificity

Agreement was considered in the case a positive proteolytic fragment identified with protein painting
contained a hotspot residue predicted by KFC2. PP+ = protein painting positive, PP- = protein painting
negative, KFC2 + = interface residue predicted to be hotspot by the model. KFC2 - = interface residue

predicted not to be a hotspot by the model.



Supplementary Table 5: Contingency table comparing protein painting positives to Hotpoint

hotspot energy prediction model.

Hotpoint + Hotpoint - Total
PP + 8 2 10 0.8 PP Precision
PP Negative
PP - 9 63 72 | 0.88 | predictive value
Total 17 65 82
0.47 0.97
PP Sensitivity | PP Specificity

Agreement was considered in the case a positive proteolytic fragment identified with protein painting
contained a hotspot residue predicted by Hotpoint. PP+ = protein painting positive, PP- = protein
painting negative, Hotpoint + = interface residue predicted to be hotspot by the model. Hotpoint - =

interface residue predicted not to be a hotspot by the model.



Supplementary Table 6: Output of Robetta, KFC2 and Hotpoint prediction methods. Interface
residue count is reported for Hotspot and non hotspots.

Robetta KFC2 Hotpoint
Hotspot 32 49 40
Non Hotspot 95 125 63
Total 127 250 103

Total residues belonging to the interface according to PDBePISA (PDB# 4DEP) = 202




Supplementary Table 7: Contingency table comparing protein painting positives to hotspots
common to Robetta, Hotspot and KFC2.

Software + Software - Total
PP + 5 5 10! 050 PP Precision
PP Negative
PP - 4 68 72| 0.94 predictive value
Total 9 73 82
0.56 0.93
PP Sensitivity | PP Specificity

Agreement was considered in the case a positive proteolytic fragment identified with protein painting
contained a hotspot residue predicted by Robetta, Hotspot and KFC2. PP+ = protein painting positive,
PP- = protein painting negative, Software + = hotspot predicted by all three software. Software - = not a

hotspot in at least one of the three prediction computational methods.



Supplementary Table 8: Results of the crosslinking method applied to the 3-way IL1B complex.

Crosslink | Crosslink Mass
Score | Hotspot Peptides ed amino | ed amino m/z z cale Dev(ppm)
acid (1) acid (A) '
mEKR(M95_R98) /
72 n ISKEK(I72_K76) K97 K74 538.622 | 3 | 1613.854 -2.27
PTLQLESVDPKNYPK
(P78-K92) /
GEVAKAAK (G319-
38 n K326) K88 K323 872.457 | 3 | 2615.356 0.59
PTLQLESVDPKNYPK
(P78-K92) /
SAKGEVAK (S316-
20 n K323) K88 K318 877.787 | 3 | 2631.351 -1.89
MEKR (M95-R98) /
VTSEDLKR (V301-
58 n R308) K97 K307 584.619 | 3| 1751.848 -2.83
KmEKR (K94-R98) /
26 n VKQK (V327-K330) K97 K328 661.859 | 2 | 1322.71 1.37

Five cross-linked peptide pairs were identified from the analysis of all experimental samples. (Score:
StavroX score as defined in*, Hotspot: was any of the residues contained in the identified peptide
predicted to be a hotspot by Robetta?, Peptides: identified peptide sequence, Crosslinked amino acid
(I): one letter code and pdb number of identified crosslinked amino acid in the interleukin 1 beta,
Crosslinked amino acid (A): one letter code and pdb number of identified crosslinked amino acid in the
interleukin 1 receptor accessory protein, m/z: mass over charge ratio, z: charge, Mass calc.: calculated
mass, Dev(ppm): deviation from the calculated mass in ppm).




Supplementary Table 9: Peptic fragments identified with pepsin digestion of unlabeled proteins
and LTQ Orbitrap mass spectrometry analysis.

ProteinSource | Amino | Amino | Sequence MonolsotopicMass | Z | RT
Acid Acid
Start | Stop

IL1B 199 217 ESVDPKNYPKKKMEKRFVF 2370.26385 2 1 15.62
IL1B 250 262 LGGTKGGQDITDF 1308.64302 2 117.26
IL1B 218 228 NKIEINNKLEF 1361.74234 2 119.04
IL1B 163 176 VQGEESNDKIPVAL 1498.77476 2 119.27
IL1B 163 183 VQGEESNDKIPVALGLKEKNL 2281.2398 3119.3
IL1B 143 158 KALHLQGQDMEQQVVF 1870.94799 2 119.62
IL1B 218 228 NKIEINNKLEF 1361.74234 2 |119.66
IL1B 127 142 RDSQQKSLVMSGPYEL 1837.91127 2 |20.13
IL1B 218 228 NKIEINNKLEF 1361.74234 2 120.19
IL1B 237 249 YISTSQAENMPVF 1486.68826 2 |21.97
IL1B 163 178 VQGEESNDKIPVALGL 1668.88029 2|22
IL1B 159 176 SMSFVQGEESNDKIPVAL 1950.94772 2 |23.16
IL1B 227 236 EFESAQFPNW 1254.54258 2 | 23.43
IL1B 159 178 SMSFVQGEESNDKIPVALGL 2137.04816 2 | 24.25
IL1B 159 178 SMSFVQGEESNDKIPVALGL 2121.05325 2 | 25.63
IL1B 237 250 YISTSQAENMPVFL 1599.77232 2 | 25.66
IL1B 218 228 NKIEINNKLEF 1361.74234 2 | 34.26
IL1RI 59 81 KDDSKTPVSTEQASRIHQHKEKL | 2662.39072 3113
IL1RI 314 324 AKNTHGIDAAY 1160.56946 2 |13.13
IL1RI 170 181 DNIHFSGVKDRL 1400.72809 2 116.55
ILARI 169 181 LDNIHFSGVKDRL 1513.81215 2 117.79
IL1RI 170 181 DNIHFSGVKDRL 1400.72809 2 (17.8
IL1RI 82 94 WFVPAKVEDSGHY 1534.7325 2 |19.49
IL1RI 204 215 GKQYPITRVIEF 1450.80528 2 | 21.35
IL1RI 325 334 IQLIYPVTNF 1207.67214 2 ]26.72
ILARACP 145 153 PVHKLYIEY 1161.63027 2 117.25
ILLIRACP 273 281 LMDSRNEVW 1149.53572 2 |17.93
ILLIRACP 168 177 PSSVKPTITW 1115.60954 2 | 18.99
ILARACP 168 178 PSSVKPTITWY 1278.67286 2 120.31




Supplementary Table 10: Differential deuteration states for the 3-way IL1B complex proteins in
the following conditions: unbound, bound, and unlabeled.

ProteinSource AmountDeut
/ Sequence MonolsotopicMa
startAA_stop SS
AA Free Bound Unlabeled

IL1B/83_101 ESVDPKNYPKKKMEK | 1185.635557

RFVF 0.5 0 0
IL1B/102 112 | NKIEINNKLEF 681.374807 0.2 0 0
IL1B/121 133 | YISTSQAENMPVF 743.8477615 0.1 0 0
IL1B/121 134 | YISTSQAENMPVFL 800.3897935 1.2 0.6 0
ILARI/187 198 | GKQYPITRVIEF 725.9062715 0.5 0.3 0

Peptides show decreased amount of deuteration in the bound state with respect to the unbound (free)
state. These peptides are indicative of an interface area between proteins.



Supplementary Table 11: Advantages of protein painting compared to existing methods

PP CL HDX OHF
Experimental Standard Standard Optimized for Optimized for UV
set up deuterium retention pulse shorter than 1
microsecond
Timing of Short (few minutes) 0.5-2 hours Short (few minutes) 1 microsecond and
treatment shorter

pH conditions Neutral Neutral-basic Strongly acidic Neutral-slightly basic
(pH=2)

Temperature Room temperature, - | Room temperature, - | Room temperature, 4 | Room temperature, -
20°C for delayed MS | 20°C for delayed MS °C, and -80 °C 20°C for delayed MS
analysis analysis analysis

Resolution Half of any trypsin Restricted to trypsin Pepsin fragment Half of trypsin
fragment (for two fragments that length, average 10 aa | fragment with caveat
interacting partners, contain primary that oxidized arginine
average 4.5 aa, amine, carboxyl, might not be cleaved
resolution of paint sulfhydryl, or carbonyl by trypsin
molecules 3 aa) groups depending on

the cross-linker of
choice
Software No special Dedicated software Dedicated software Manually search in

requirements:
standard ms workflow
and software

the MS spectra for
oxidized products

Protein state

Pre-formed complex
coated non covalently
with small dye
molecules

Pre-formed complex
covalently crosslinked

Pre-formed complex
deuterated

Pre-formed complex
oxidized

Output of the
method
(positive)

Interaction regions
are identified by
presence of tryptic
peptides exclusively
derived from both
sides of the interface

Binding partners are
identified with low
specificity for
interface solvent
excluded binding
regions

Interaction regions
are identified by a
small 1.0073 Dalton
shift in peptic
fragment peptide
mass

Interaction regions
are identified by
absence of
oxidization

Side reaction
products / false

Within-protein
interactions are not

Internal crosslinks,
modified peptide

Within-protein
interactions are not

OH radical reaction
can cause proteins to

positives identified as false (type 0) and cyclic identified as false unfold. Oxidized
positive because the peptide (type 1) are positive because the residues can pre-exist
method is differential identified as side method is differential prior to treatment (e.g
(unbound — bound reaction products (unbound — bound methionine)
state) state)

Coverage Known distribution of | Protease fragments Pepsin cleavage Trypsin cleavage

trypsin cleavage sites
preferred for MS

that contain primary
amine, carboxyl,
sulfhydryl, or carbonyl
groups depending on
the cross-linker of
choice. Cross-linked
lysine will not be
cleaved by trypsin.

peptides

sites with possible
exception of oxidized
Arginine

PP = protein painting; CL = crosslinking; HDX = hydrogen deuterium exchange; OHF = hydroxyl

footprinting.




Supplementary Note 1

Conformational changes that affect solvent accessibility for residues that don’t belong to the interface
are an unlikely source of false positive results in the protein painting method. Such an event has very
low probability since the protein painting method is applied to pre-formed protein complexes, for the

following reasons.

Analysis of the solvent accessibility of monomeric proteins revealed that few residues (15% in larger
proteins) are completely excluded from solvent contact so that the accessible-surface-area (ASA) is
effectively zero’. Accessibility was defined as the ratio of the residue ASA in the native protein to the
ASA it would have in an unfolded and extended polypeptide (Gly-X-Gly, where X is the residue of
interest, average ASA in unfolded state=174A?). The accessibility threshold was set at 5%, whereas
residues with native ASA>5% unfolded ASA were considered on the surface and residues with native
ASA <5% unfolded ASA were considered buried in the interior of the protein’.

In the particular case of K and R residues, partition coefficient measurement and transfer free energy

calculations revealed a high propensity of the residues to partition to the surface of the protein’.

The extent of conformational change in residues not belonging to an interface greatly varies depending
on the type of complex that is formed. In particular, conformational changes correlate to the size of
complex interface. Analysis of the structural aspects of protein-protein interactions revealed that a
typical standard size for the interface area is in the range of 1600 (+/- 400) A (70% of analyzed

proteins)®.

Proteins that form complexes within the standard size interface undergo small changes in conformation
upon complex formation®. These small changes in conformation include shifts in surface loops or
movements of short segments of peptide chains by up to 1.5 A and rotation of surface side chains.
Approximately 30% of analyzed protein-protein complex presented an interface area larger than 2000
A. The formation of such complexes involved large changes in conformation of three major types: 1)
disorder to order transitions; 2) large movements of the main chain; and 3) in multi-domain proteins,
change of the relative position of the domains®. Consequently protein-protein complexes with standard
size interfaces are unlikely to be associated with a change in solvent accessibility in residues not

belonging to protein interface compared to large size interface complexes.”
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