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Supplemental methods 

Simulation details for example of integral controller (Figure 1) 

In Figure 1B we numerically integrated the equations, 
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for a single compartment with two leak conductances. Intracellular calcium was calculated from a 

monotonic increasing function of  : 
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Integration was performed using the ordinary differential equation solver in MATLAB with C = 1 nF, 

          ,           µS,           
  µM s µS-1,          ,           mV,       mV. 

Simulation details for example of windup/mismatched targets (Figure 2) 

In Figure 2 we numerically integrated the equations, 
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for a single compartment with two leak conductances. Intracellular calcium was calculated from a 

monotonic increasing function of  : 
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In the first model we set                       . In the second model we set              and 

            . All other model parameters were identical for the two cases: C = 1 nF,         µM s 

µS-1,          µM s µS-1,      s,        mV,       mV. Integration was performed using the 

ordinary differential equation solver in MATLAB. 
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Example of an integral control rule using biochemical reaction schemes (Results: equation 2 and 

following calculations) 

Here we provide the details of a concrete example how integral control could be implemented 

biochemically using mass-action kinetics. 

In the main text, we considered a “master regulator”   that provides a readout of Ca2+ error: 

[ ̇]   ([    ]        
  )   

Here, [ ] is the concentration of the regulatory enzyme/enzyme complex,   is a constant that scales the 

time constant of integration, [    ] is the intracellular calcium concentration, and       
   is a positive 

constant that represents the target calcium concentration. This equation is a linear approximation of 

many potential underlying biochemical schemes. In particular, integral control will be provided by any 

system where [    ] in the above equation is replaced by a positive monotonic function of [    ]. We 

derive what we consider to be the simplest such scheme in what follows in order to give a concrete 

example, but note that there are many other ways of achieving integral control (Drengstig et al., 2008; Yi 

et al., 2000). 

The rate of change of concentration of a biochemical species can be written in terms of the difference 

between its production and degradation rates, which we label   and   respectively: 

[ ̇]      

We next assume the rate of production of [ ] is     -dependent. This can be captured by a 

straightforward reaction scheme in which the production rate,  , is proportional to the equilibrium 

fraction of a Ca2+-bound factor,  . In this case,   could be a     -dependent transcription factor that 

controls the production of  . If we consider simple first order kinetics for the Ca2+ binding reaction: 

                         

and assume this reaction is at quasi-steady state (i.e. the binding and unbinding of      is much faster 

than the rates for  ), then   is given by a Hill equation: 
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where          (the dissociation constant). Throughout this analysis, we assume that the binding of 

     to   (or any other molecule) does not alter the intracellular calcium concentration. This is valid 

when [    ]  [ ], or when   is localized to a subcellular compartment whose [    ] is buffered by 

cytosolic     . 

As we stated in the main text, the fixed target is achieved in this model when the rate of degradation of 

  is zeroth-order. This can occur in a variety of ways (Drengstig et al., 2008). We will consider a scheme 

𝑘𝑓  

𝑘𝑏 
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involving a saturated degradation mechanism. Suppose   is degraded by another enzyme   according to 

Michaelis-Menten kinetics: 

                              . 

This degradation scheme gives the following expression for  : 

  
   [ ][ ]   
   [ ]

    

Here, [ ]    [ ]  [  ], and is the total concentration of enzyme  ;    is the Michaelis-Menten 

constant,    (     )   . The above equation becomes zeroth-order in  , i.e. saturated when 

   [ ]. Then 

     [ ]   . 

We now have the following differential equation for [ ]: 

[ ̇]   ([    ])     [ ]       

which is the required form for the integral control rule. In this equation the target Ca2+ level is given by 

      
      (     [ ]   )      (        )⁄ . Importantly, the error accumulated is of opposite sign 

on either side of       
   because  ([    ]) is monotonic. 

Aggregating multiple steps in a biochemical scheme 

We note here that in general there can be multiple steps between the activation of an ion channel gene 

and the resulting change in membrane conductance. In the model (equation 1, main text) we simplify 

this as two steps – 1) translation and 2) ion channel expression in the membrane: 

 ̇          

 ̇          

Here the mRNA synthesis term       is the linear approximation of the quasi-steady state for the 

master regulator,  . These two steps correspond to rates of change of experimentally measurable 

variables (mRNA and membrane conductance). In general, we can consider a multi-step mass-action 

chain of arbitrary length: 
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Assuming the forward/backward reaction rates (  ,   )  at each step are fixed (or can be treated as 
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constant over a long time), then the asymptotic rate of change of   can be written in terms of an 

aggregate of all of the rate constants in the chain: 
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Thus the contribution of the additional steps to long-term (quasi steady-state) behavior is to change the 

overall response rate of the system. 

Parameter search method for CPG network (Figure 5) 

Bursting neurons were identified from a random search of maximal conductances in a non regulating 

model. The conductances were drawn from a uniform distribution: gNa, gKd, gA, and gKCa were 

selected between 2.5 and 47.5 μS, while gCaT, gCaS, and gH were selected between 0.05 and 0.95 μS). 

From this, bursting neurons were chosen by analyzing inter-spike intervals and slow-wave amplitudes of 

membrane potential fluctuations. From these, three neurons were hand tuned to produce a triphasic 

rhythm by altering maximal conductances heuristically. The maximal conductances of the three 

candidate neurons were then scaled and converted to regulation rates by normalizing to the largest 

maximal conductance and scaling this to a timeconstant = 100 ms (   in equation 3, main text). These 

rates were then randomly searched from a log-normal distribution in each regulation parameter with 

standard deviation of 50%. Leak reversal potentials, maximal conductances and calcium targets were 

searched at the same time from a normal distribution with 50% standard deviation around the 

candidate value. Each network was randomly initialized (see table S1 for initial condition range) and 

checked for triphasic activity at steady state. 15,000 random networks were searched in total. From 

these, the mean and covariance matrices of the distribution of parameters that produced triphasic 

networks was calculated and used to refine the search. The refined search drew parameters from a 

multidimensional normal distribution with the estimated covariance and mean; 113,000 sample 

networks were searched. From this, the parameter set that most reliably developed a triphasic rhythm 

from random initial conditions (see table S1) and recovered from the perturbation to PD (additional leak 

conductance = 0.02 μS, reversal potential = -80 mV) was chosen. 
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