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SUMMARY

How do neurons develop, control, and maintain
their electrical signaling properties in spite of
ongoing protein turnover and perturbations to activ-
ity? From generic assumptions about the molecular
biology underlying channel expression, we derive a
simple model and show how it encodes an ‘‘activity
set point’’ in single neurons. The model generates
diverse self-regulating cell types and relates corre-
lations in conductance expression observed in vivo
to underlying channel expression rates. Synaptic as
well as intrinsic conductances can be regulated to
make a self-assembling central pattern generator
network; thus, network-level homeostasis can
emerge from cell-autonomous regulation rules.
Finally, we demonstrate that the outcome of ho-
meostatic regulation depends on the complement
of ion channels expressed in cells: in some cases,
loss of specific ion channels can be compensated;
in others, the homeostatic mechanism itself causes
pathological loss of function.

INTRODUCTION

A mysterious yet essential property of the nervous system is its

ability to self-organize during development and maintain func-

tion in maturity despite ongoing perturbations to activity and

to the biochemical milieu upon which all cellular processes

depend (Desai 2003; Marder and Goaillard 2006; Marder and

Prinz 2002; Mease et al., 2013; Moody 1998; Moody and

Bosma 2005; O’Donovan 1999; Spitzer et al., 2002; Turrigiano

and Nelson 2004; van Ooyen 2011). Although we are beginning

to understand the homeostatic mechanisms that underlie this

robustness, there are many substantial open questions. First,

conceptual and computational models of neuronal homeostasis

assume a ‘‘set point’’ in activity that neurons and networks re-

turn to following perturbations (Davis 2006; LeMasson et al.,

1993; Liu et al., 1998; Turrigiano 2007). Where does this set

point come from? How can it be encoded biologically? Second,
previous work has shown that phenomenological feedback

control rules can maintain specific activity patterns in model

neurons by regulating intrinsic and synaptic ion channel den-

sities using intracellular Ca2+ as a monitor of cellular excitability

(Desai 2003; LeMasson et al., 1993; Liu et al., 1998), but it re-

mains to be shown how such rules can be implemented in a

biologically plausible way that incorporates the underlying

mechanisms of channel expression (Davis 2006; O’Leary and

Wyllie 2011). Third, the nervous system is heterogeneous,

with many distinct cell types that have specific combinations

of ion channels that lend them their unique electrical properties

(Marder 2011). How is this diversity achieved while ensuring

that global levels of activity are maintained? Fourth, does ho-

meostatic plasticity occur at the network level, or are nominally

cell-autonomous homeostatic mechanisms sufficient to confer

network stability (Maffei and Fontanini 2009)? Fifth, nervous

systems do not always behave homeostatically; mutations in

ion channel genes are the basis of many diseases, and genetic

knockout animals often have measurable phenotypes. Is this a

failure of regulatory mechanisms (Ramocki and Zoghbi 2008)?

Or, is homeostatic regulation compatible with incomplete or

aberrant compensation in certain situations? We specifically

address these questions using theory and computational

models.

Previous modeling and theory work has shown that feed-

back rules can sculpt and stabilize activity in single neurons

and networks (Abbott and LeMasson 1993; Golowasch

et al., 1999b; LeMasson et al., 1993; Liu et al., 1998; Soto-

Treviño et al., 2001; Stemmler and Koch 1999). These models

helped to establish that intrinsic properties and synaptic

strengths can be subject to homeostatic regulation, but left

questions of biological implementation, such as the nature

of set points, largely unanswered. In addition, models that

were intended to capture regulation of multiple intrinsic con-

ductances either suppressed variability in conductance den-

sities (Abbott and LeMasson 1993; LeMasson et al., 1993;

Soto-Treviño et al., 2001) or produced such a high degree

of variability that the model neurons were sometimes unstable

(Liu et al., 1998). Underlying this problem is the fact that

the set of conductance densities that produces a specific

kind of activity comprises disparate solutions with a compli-

cated distribution (Prinz et al., 2003; Taylor et al., 2006,

2009). Thus, a biologically plausible regulation rule needs
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Figure 1. Integral Control from the Canonical Model of Gene

Expression

(A) A simple biochemical scheme for activity-dependent ion channel expres-

sion. Channel mRNAs are produced at a rate am that depends on a Ca2+-

activated factor, T, and degraded at rate bm. Functional channel proteins are

produced at a rate ag from mRNAs and degraded at a rate bg.

(B) The scheme in (A) is equivalent to an integral controller. Error (deviation

from [Ca2+] target, [Ca2+]tgt) is accumulated in the mRNA (m) concentration

(shaded region), which causes a change in ion channel expression (g).
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to navigate this complex space so as to allow variability but

maintain certain relations between conductances. Here, we

achieve this from first principles, deriving a straightforward,

biologically plausible model of gene regulation to show how

neurons can use a single physiological variable—intracellular

Ca2+—to robustly control their activity and develop specific

electrophysiological properties that enable function at the cir-

cuit level.

RESULTS

The first part of the Results (Figures 1, 2, and 3) is a technical

derivation of an activity-dependent regulation rule. The conse-

quences and interpretation of this rule are covered in the latter

part of the Results (Figure 4 onward).
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Integral Control from a Simple Model of Ion Channel
Expression
Experiments have shown that the processes responsible for regu-

lating intrinsic neuronal properties are slow relative to fluctuations

in electrical activity (Desai et al., 1999;O’Leary et al., 2010; Thoby-

Brisson and Simmers 2000). These processes behave as a

feedback control mechanism that monitors average activity and

adjusts membrane conductances to achieve some kind of target

activity. An important readout signal appears to be intracellular

[Ca2+], which correlates with electrical activity due to voltage-

dependentCa2+channelsandbufferingmechanisms that average

out fluctuations in time and space (Berridge 1998; Wheeler et al.,

2012). Moreover, long-term changes in [Ca2+] are found to regu-

late many ion channel types (Barish 1998; Mermelstein et al.,

2000; O’Leary et al., 2010; Turrigiano et al., 1994; Wheeler et al.,

2012).

Hence we developed a model of activity-dependent conduc-

tance regulation using intracellular [Ca2+] as a feedback control

signal. There are many ways to implement feedback control of

membrane conductances (Günay and Prinz 2010; LeMasson

et al., 1993; Liu et al., 1998; Olypher and Prinz 2010; Stemmler

and Koch 1999). We wanted to focus on a rule that captures

essential biological principles and has experimentally testable

properties. Ion channels are proteins, and their expression de-

pends on the level of channel mRNA in the cell. A simple way

of capturing this leads to a canonical model of regulation (also

known as the ‘‘central dogma’’ of molecular biology):

_m=am � bmm
_g=agm� bgg

: (1)

Here, m is the concentration of mRNA for channel protein

g and ax and bx are synthesis and degradation rates; dots

denote time derivatives. The biochemical scheme underlying

this model is shown in Figure 1A. In spite of its simplicity, this

model has proven useful for understanding gene expression dy-

namics in systems biology (Alon 2007). Neurons possess a rich

repertoire of other regulatory mechanisms, including alternative

splicing, alternative promoter usage, RNA interference, regu-

lated protein trafficking, and posttranslational modifications to

channel proteins. Therefore, the simplified scheme we use is a

first approximation that can be refined to take into account

more intricate aspects of regulation when and where sufficient

experimental data are available.

Where does activity dependence enter this model? mRNA

expression rates depend on transcription factor activation.

Many important transcription factors such as CREB are known

to be Ca2+ dependent or dependent on other Ca2+-sensing en-

zymes (Finkbeiner and Greenberg 1998; Mermelstein et al.,

2000; Mihalas et al., 2013; Wheeler et al., 2012). Furthermore,

transcriptional changes in ion channel genes occur in response

to activity perturbations (Kim et al., 2010) and may underlie ho-

meostatic regulation of network activity (Thoby-Brisson and

Simmers 2000). We therefore assume that mRNA production de-

pends on some Ca2+-sensitive enzyme, or enzyme complex, T,

whose production rate is Ca2+ dependent and whose rate of

degradation is saturated (Drengstig et al., 2008). Incorporating

this into the model, we have
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Figure 2. A Potential Problem with Multiple Regulators

A model cell with one inward and one outward leak conductance implements

integral control to maintain a target [Ca2+] (Supplemental Experimental Pro-

cedures). Time is normalized to conductance expression rate, tg.

(A) A single master regulator, T1, produces a stable model.

(B) Two separate regulators T1 and T2 with nonequal targets lead to an

unbounded (arrows) increases in conductance.
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_T =aTð½Ca2+ �Þ � bT

_m=amT � bmm
_g=agm� bgg

: (2)

We do not know in general how the forward rate, aT, de-

pends on [Ca2+]. The assumption that the degradation rate

of T is saturated means the equilibrium of the system occurs

at a unique value of [Ca2+]. Thus average [Ca2+] will be main-

tained at a specific ‘‘target’’ value, Catgt, given by solving the

steady-state, h _Ti= 0. We do not know in general how the for-

ward rate, aT , depends on [Ca2+]. If this rate is determined by a

single reaction involving Ca2+ binding, then it will typically have

a monotonic dependence in the form of a Hill equation (Sup-

plemental Experimental Procedures). Thus, for simplicity,

we assume a linear approximation, aTð½Ca2+ �Þ=aT$½Ca2+ �. In
this case the target [Ca2+] is simply the ratio of two rate con-

stants: Catgt = bT=aT .

We can now show how mRNA and conductances are regu-

lated to keep the system at Catgt. Inspection of Equation 2 re-

veals that T explicitly integrates the difference between [Ca2+]

and Catgt over time:

T =

Z �
aT$

�
Ca2+

�� bT

�
dt =aT

Z ��
Ca2+

�� Catgt

�
dt:
This integrated Ca2+ ‘‘error’’ signal is then fed into the synthe-

sis term of the channel mRNA (amT, Equation 2). Similarly, m

directly controls the expression rate of g via the term agm.

Finally, g controls the membrane potential and Ca2+ dynamics.

The scheme in Equation 2 therefore constitutes a feedback

loop that maintains average [Ca2+] by continually modifying the

expression rates of channels in the membrane. This is illustrated

in Figure 1B, where the shaded area shows the accumulated

error signal over time. If [Ca2+] is different from the target, error

will accumulate and drive changes in the expression of mRNA

and membrane conductances until the system reaches equilib-

rium at ½Ca2+ �=Catgt.

So far, we assumed that a global regulator (T ) controls down-

stream precursors of membrane conductances. What if these

conductances are controlled by independent pathways that

have the same integrating mechanism acting on the same error

signal? An immediate problem arises if the set points for each

controller are not tuned so that they all agree precisely. In Fig-

ure 2A, an inward and outward conductance are under the con-

trol of a single Ca2+-integrating regulator, T1, with target t1. Now

suppose (Figure 2B) that each conductance is controlled by

separate regulators, T1, T2, with different targets, t1st2. Two

possibilities exist: either one target will become satisfied, in

which case error will accumulate without bound in the other

controller, or, as will be the case more generally, neither target

will be satisfied and both controllers will accumulate error

without bound. This is shown in Figure 2B, where the two con-

ductances upregulate without bound. In control theory, this

accumulation of error is known as ‘‘windup.’’ In biological terms,

windup would result in unbounded (eventually saturating) pro-

duction of mRNAs and channels and loss of regulatory control.

This could be avoided in this scenario if the reaction rates deter-

mining the independent targets are precisely matched; however,

precise tuning seems unlikely in biological systems. We there-

fore conclude that for this model to work across a set of conduc-

tances, a single master regulator pathway is preferable. In more

complex schemes with several distinct regulatory signals, it is

possible to have separate targets for each signal (Liu et al.,

1998). However, windup can still occur if these multiple signals

cannot be satisfied simultaneously.

Specifying and Maintaining Cell Types with Multiple
Regulated Conductances
The above analysis shows how activity in neurons can be main-

tained using a simplemodel of gene regulation. Overall, the regu-

lation scheme can be written in simplified form for a neuron with

multiple conductances, gi:

ti _mi = ½Ca2+ � � Catgt
tg _gi =mi � gi

: (3)

In this simplified form, the equations for _T and _m are lumped

together (Experimental Procedures), concentrations are scaled,

and reaction rates are replaced by single time constants. tg rep-

resents the characteristic time constant of channel expression

and ti represents the coupling of channel gene expression to

[Ca2+]. We use this simplified system in what follows.

The model achieves target [Ca2+], but what combination of

conductances will the neuron express at this target? There are
Neuron 82, 809–821, May 21, 2014 ª2014 Elsevier Inc. 811



A

10−2 10−1 100 101 102
10−2

100

102

time/τg

co
nd

uc
ta

nc
e 

(µ
S

) gNa
gCaT
gCaS
gKA
gKCa
gKdr
gH

-50
0

-50
0

-50
0

-50
0

-50
0

-50
0

150 ms

50
 m

V

(mV) 100 ms

B

C 120 140 160 0 0.1 0.2 10 15 20 55 60 65
200

150

100
160

140

120
0.2

0.1

0
20

15

10

per (m
s)

dut cyc

dut cyc

freq (H
z)

freq (Hz)

am
p (m

V
)

amp (mV) spike (mV)

in
tri

ns
ic

pr
op

er
tie

s

gNa gCaT gCaS gKA gKCa gKd

g C
aT

g C
aS

g K
A

g K
C

a
g K

d
g H

conductance
densities

40 60 8050 1001500 20 402 3 40 2 4100200300
0.5

1
1.5
40
60
80
50

100
150

0
20
40
2
3
4
0
2
4

Figure 3. Regulation in a Complex Biophysi-

cal Cell Model

(A) Time evolution of a self-regulating neuron im-

plementing integral control for its seven voltage-

dependent conductances (fast sodium, gNa; slow

Ca2+, gCaS; transient Ca2+, gCaT ; A-type/transient

potassium, gKA; Ca
2+-dependent potassium, gKCa;

delayed-rectifier potassium, gKd; hyperpolarization-

activated mixed-cation, gH). A total of 20 indepen-

dent runs are shown with mean in bold; axes are

log-log; time is normalized to tg. (Top) Voltage traces

for an example neuron at the stages indicated.

(B) Examples of steady-state behavior of the

bursting pacemaker from six independent runs.

(C) Scatter plots of conductance distributions

(bottom left) and intrinsic properties (top right) at

steady state of the 20 neurons from the indepen-

dent runs in (A). Intrinsic properties are as follows:

intraburst spike frequency (freq), burst duty cycle

(dut cyc), slow-wave amplitude (amp), spike height

(spike), and burst period (per).
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typically many ways to reach the same average activity using

different maximal conductances (Bhalla and Bower 1993; Golo-

wasch et al., 2002; Olypher and Calabrese 2007; Prinz et al.,

2003; Sobie 2009; Swensen and Bean 2005; Taylor et al.,

2006, 2009). Recent mathematical work has made the relation-

ships between conductances and excitability clearer and more

precise and can be understood in terms of ratios of conduc-

tances that act on different timescales (Drion et al., 2012; Franci

et al., 2012; Franci et al., 2013). We see next that the integral

control rule produces ‘‘nice’’ conductance distributions with
812 Neuron 82, 809–821, May 21, 2014 ª2014 Elsevier Inc.
constant ratios that are qualitatively

similar to those observed biologically and

can thus generate ‘‘cell types.’’

Previous work (O’Leary et al., 2013)

showed how regulation time constants

determine correlations in conductance

expression at steady state. What is the

relation between conductance ratios and

the regulation time constants ti in the pre-

sent model? From the simplified scheme

(Equation 3), eachmi converges to a value

that depends on the time integral of

average [Ca2+], scaled by the inverse

expression time constant ti. Thus, we can

estimate steady-state gi for positive time

constants and small initial conductances:

gizmi =
1

ti

Ztss

0

��
Ca2+

�� Catgt

�
dt:

When taking ratios, the integrals cancel,

so that:

gi

�
gjztj

�
ti: (4)

In summary, different ratios of the ti’s

specify correlations between each con-
ductance. Correlations in conductance expression, in turn,

promote defined electrophysiological characteristics, because

ratios of different kinds of voltage-gated conductances largely

determine single neuron dynamics (Drion et al., 2012; Franci

et al., 2013; Hudson and Prinz 2010).

Figure 3 shows an example of a complex model neuron with

seven voltage-dependent conductances, all regulated by the

integral control rule. The time evolution of the membrane

conductances for multiple, randomly initialized runs of the

model is shown (Figure 3A) with the membrane potential of
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Figure 4. Specifying Different Cell Types

with the Same Model

(A) Example cell types produced from the same set

of seven voltage-dependent conductances. (Left-

hand plots) Log-log plots of conductance evolution

over time. Each example has a different set of

regulation time constants for the conductances

(Experimental Procedures). Total duration for all

simulations is 103tg. (Right-hand plots) Membrane

potential traces with current injection traces shown

below. FI (frequency versus current amplitude)

plots are shown for the type I/II neurons (1 and 2).

Current injection amplitudes for each example are

as follows: 100, 200, and 500 pA for 1 and 2; �200,

�100, 100, and 200 pA for 3; �500 pA for 4 and 5.

Time base for all membrane potential traces (from

duration of current pulse): 500 ms.

(B) Scatter plots of steady-state conductances in

each cell type (1–5) shown in (A) after 20 indepen-

dent runs. Straight lines are calculated from the

ratio of regulation time constants for each pair of

conductances in each cell type; see Equation 4.

(C) Experimental data reproduced from Schulz

et al. (2007) showing cell-type-specific correlations

in ion channel gene expression. Quantitative PCR

was performed on ion channel mRNAs obtained

from single identified cells in the crab STG (cell

types shown are GM, IC, LG, LP, and PD).
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an example neuron at four different time points. Each model

starts in a nonexcitable nascent state (left-most trace, Fig-

ure 3A), which is ensured by choosing the random initial

distribution of conductances to be small relative to the leak

conductance that is itself randomly distributed (Experimental
Neuron 82, 809–
Procedures). The steady-state behavior

of the model neuron is stereotyped and

develops a rhythmic bursting activity

(right-most trace, Figure 3A). In spite of

varying initial conditions, the models at

steady state all have similar membrane

potential activity, as can be seen in the

example traces of six model neurons

that developed from different initial con-

ditions (Figure 3B).

Figure 3C (lower panel) shows steady-

state conductance distributions and in-

trinsic properties of 20 independent runs

of the model. The conductance densities

vary several-fold over the population,

but all of the neurons have a similar

bursting phenotype. Both the conduc-

tances and the firing properties show

clear pairwise correlations that are remi-

niscent of experimental data in identified

crustacean as well as mammalian neu-

rons (Amendola et al., 2012; Liss et al.,

2001; Schulz et al., 2007; Tobin et al.,

2009). In contrast to previous modeling

work that used a less biologically realistic

regulation rule (Liu et al., 1998; O’Leary
et al., 2013), the conductance correlations are approximately

linear. Second, the use of a single activity sensor in the present

model differs from this previous work, which used three sensors

with different timescales to promote bursting behavior. While we

do not rule out the possibility that more than one activity sensor
821, May 21, 2014 ª2014 Elsevier Inc. 813



Figure 5. Changing Targets within Cell Types

Each column shows 500 ms segments of steady-state membrane potential

activity in a different self-regulating model at steady state with the [Ca2+] target

(= 4 mM) scaled. The regulation time constants for each conductance are

shown below, normalized to tg.
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is used biologically, the current model shows that this is not

necessary.

Generating Cell Types
The simple relationship between regulation time constants and

conductance ratios in the model means we can determine arbi-

trary correlations between conductances and thus construct

self-regulating cells with specific intrinsic properties using only

a single activity sensor. These intrinsic properties can encom-

pass any excitability type, provided we have a sufficiently rich

set of available conductances (i.e., a sufficiently rich ‘‘genome’’

in the model). Figure 4 shows five distinct neuron types that

are achieved using the same underlyingmodel and random initial

conditions but with appropriately chosen sets of regulation time

constants and [Ca2+] targets. We can thus specify cells that

establish and maintain specific input-output relations, as quanti-

fied by the Type I/II FI curves in the first two examples. Type I

excitability is characterized by the existence of arbitrarily low

firing frequencies at spiking threshold (Figure 4A, example 1);

in contrast, Type II excitability does not support firing below a

fixed nonzero rate (example 2, Figure 4A) (Rinzel and Ermentrout,

1989). Notably, in spite of having different firing properties, both

of these models have the same [Ca2+] target. Similarly, we can

specify cells that respond reliably to input, as exemplified

by an excitable rebound bursting cell that generates action

potentials coupled to slow membrane potential oscillations in
814 Neuron 82, 809–821, May 21, 2014 ª2014 Elsevier Inc.
response to both depolarizing and hyperpolarizing current

(example 3, Figure 4A). Finally, we can specify cells that are

active in either a tonic spiking mode or bursting mode (examples

4 and 5, Figure 4A). Each of these cell types has a unique corre-

lation structure in its steady-state conductance distribution (Fig-

ure 4B) following multiple runs from the same initial conditions.

Furthermore, the straight line calculated from the ratio of expres-

sion time constants in Equation 4 predicts the pairwise conduc-

tance distributions in each case (Figure 4B).

The conductance distributions produced by the model may

explain cell-specific linear correlations that are found biologi-

cally. Figure 4C reproduces data from Schulz et al. (2007) in

which the expression levels of multiple ion channel genes were

measured in single stomatogastric ganglion (STG) neurons using

quantitative PCR. This revealed linear correlations in the expres-

sion that are specific the cell type (Figure 4C). The model pre-

dicts that the slopes of the correlations in the data should equal

the (time-averaged) expression rates of the respective mRNAs in

each plot.

There are two important biological assumptions in this instan-

tiation of the model. First, the leak conductance, which can be

thought of as an aggregate of multiple conductances, is static

but varies between cells. This serves as amodel of conductances

that are not regulated by the integral control rule and that may

vary across a population of neurons. Second, we have assumed

that expression rates are fixed. Biologically, this corresponds to

steady values in average promoter activity, binding affinities of

signaling enzymes, translation rates, protein trafficking, and

degradation rates. While this may be a reasonable assumption

at any given stage in nervous system development, it is entirely

plausible that these relationships change over time. Neurons

may thus cycle through several physiological ‘‘types’’ as they

develop, and this process will be highly specific to the species

and brain area in question. We have not explicitly attempted to

model these transient stages as our goal is more general; they

can however be incorporated by switching the rates in the regu-

latory rule—an idea we examine in the final part of this work.

Expression Rates versus Activity Targets as
Determinants of Electrophysiological Properties
We have shown that different sets of regulation rates/time con-

stants determine cell types and that distinct cell types can

have the same [Ca2+] target in principle. What happens when

the [Ca2+] target is scaled within a cell type? While the regulation

time constants determine the direction in which the cell moves

in conductance space, the target determines how far it travels

along a trajectory before reaching equilibrium. Thus, targets

can determine the location of the conductance distribution as

well as scaling activity. Figure 5 shows the steady-state activity

of three example neuron types as target [Ca2+] is scaled. Below

the traces are plots showing the regulation time constants for

each cell type. Typically, as the target is raised, spiking activity

elevates because this corresponds to greater average Ca2+

influx, as can be seen in the first two examples. In some cases,

moving the target can also cause a qualitative change in activity

as seen in the third example, which transitions from bursting to

spiking as [Ca2+] target is increased. Thus, the combined contri-

butions of ion channel expression dynamics can be dissociated
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Figure 6. A Self-Assembling, Self-Regu-

lating Central Pattern Generating Network

(A) Connectivity diagram of the model CPG, based

on the synaptic connectivity of the pyloric network

in the crustacean STG (PD/AB, pyloric dilator/

anterior burster; LP, lateral pyloric cell; PY, pyloric

cell). The PD/AB pacemaker kernel is modeled

as a single cell. All synapses are inhibitory and

graded; glutamate (Glu) synapses are instanta-

neous, acetylcholine (ACh) synapses are slow

(activation time constant = 50 ms).

(B) (Top) Example membrane potential traces for

random initial conductances. (Second from top)

Example steady-state behavior of the model. The

triphasic order (PD, LP, PY) is highlighted with

shaded boxes. (Third from top) Perturbation of

network activity by addition of hyperpolarizing

(reversal potential = �80 mV) conductance to PD.

(Bottom) steady-state recovery of the network with

hyperpolarizing conductance still present. All

traces = 1 s.

(C) Example time evolution of intrinsic and synaptic

conductances in a self-regulating pyloric network

model for a single run. Onset of the PD/AB

perturbation is indicated by the vertical line. Insets

show detail of the conductance dynamics on a

linear timescale.
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from activity set points in neurons, but both have a role in deter-

mining physiological properties.

A Self-Assembling Motor Circuit
If we can reliably specify cell types using this model, it should be

possible to construct a self-assembling, homeostatically regu-

lated network whose activity depends on specific properties of

the component cells (Golowasch et al., 1999b). The pyloric cen-

tral pattern generating network of the crustaceanSTGconsists of

three distinct cell type modules: a pacemaker complex and two

follower cell types that fire in successive phases. Activity in this

network consists of a triphasic pattern of firing starting with the

AB/PD complex, followed by the LP cell and then PY (Marder

andBucher 2007). The synaptic connectivity is known (Figure 6A)

and consists of slow inhibitory cholinergic synapses as well as

fast inhibitory glutamatergic synapses (Marder and Eisen 1984).

We reasoned that byfindingsteady-state conductancesandsyn-

aptic strengths that produced a triphasic pattern, we could then

find regulation timeconstants for intrinsic conductances andsyn-

apses that would dynamically specify and maintain a character-

istic network activity pattern.

After randomly searching conductance values to find combi-

nations that produced bursting pacemaker cell types, we hand

tuned an unregulated network to produce a qualitatively realistic

triphasic rhythm.We then convertedmaximal conductances and

synaptic conductances in the hand-tuned network to expression

time constants using Equation 4. We next searched around this

initial set of time constants using a log-normal distribution to find

those that reliably produced triphasic networks from random

initial conditions (Experimental Procedures).

The network always starts in a nonfunctional state (Figure 6B,

top). The membrane potential activity of the cells after the
network has reached steady state (Figure 6B, second from top)

shows a regular triphasic rhythm. Furthermore, the network ac-

tivity is robust to perturbations at steady state, as exemplified

by recovery from the addition of a hyperpolarizing leak conduc-

tance (0.02 mS, Erev = �80 mV) that silences the PD/AB pace-

maker cell (Figure 6B, third and fourth panels from top). Over

multiple runs (n = 507) of this model, 99.6% produced stable tri-

phasic rhythms. Of these, 93.5% recovered after the perturba-

tion (which abolished rhythms in 99.2% of networks). Figure 6C

shows the evolution of intrinsic and synaptic conductances in

the example network of Figure 6B. Notably, the synaptic and

intrinsic conductances in all cells respond to the perturbation

in the PD/AB cell.

Activity-Dependent Regulation Can Be Compensatory
or Pathological
Under what conditions does activity-dependent regulation

compensate for mutation or pharmacological blockade? The

conductances in the model neurons, as in biological neurons,

overlap in some of their properties. Thus, if certain conductances

are lost, others canbe upregulated or downregulated to compen-

sate. Figure 7A shows the steady-state behavior of a self-regu-

lating bursting pacemaker neuron. Upon deletion of the Ih
conductance, the models become silent, leading to a decrease

in average [Ca2+]. Following deletion, the integral control rule re-

stores bursting activity by altering conductance expression to

achieve target [Ca2+]. Similar outcomes are possible when the

deletion has variable effects owing to variability in the cells pro-

duced by the model. Figure 7B shows the effect of deleting a

slow Ca2+ conductance in two different examples (that have

converged to different maximal conductances) of the same cell

type. In one example, the model increased in frequency; in the
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Population variability in sensitivity to deletion, compensation preserves function

Figure 7. Outcome of Homeostatic Compen-

sation after Channel Deletion Depends on

Cell and Channel Type

Membrane potential activity for a self-regulating

bursting ([A]–[C]) and tonic ([D] and [E]) pacemaker

models in which specific conductances are deleted.

The first column (‘‘wild-type’’) shows model

behavior at steady state with all conductances

present. Acute deletion of the indicated conduc-

tance produces the behavior shown in the middle

column (‘‘acute KO’’). Following conductance

deletion, each model is allowed to reach steady

state (third column, ‘‘compensated KO’’).
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other, the model became silent. Again, average [Ca2+] encodes

this increase or decrease in activity, and the resulting conduc-

tance regulation restores bursting.

Can compensation lead to loss of function? The model

assumes that neurons sense a gross physiological variable,

[Ca2+], which cannot always distinguish specific activity pat-

terns. Previous work identified this as a potential problem for

regulation (Liu et al., 1998), but as we have shown here, it is

nonetheless possible to use [Ca2+] to generate andmaintain spe-

cific electrical properties using differential ion channel expres-

sion rates. However, this model will fail to preserve neuronal

properties if the relationship between electrophysiological prop-

erties and [Ca2+] activity changes drastically. Such a change
816 Neuron 82, 809–821, May 21, 2014 ª2014 Elsevier Inc.
occurs in the example neuron in Figure 7C.

Deletion of the transient Ca2+ conduc-

tance, gCaT, silences the neuron, but

following compensation to target [Ca2+],

the neuron no longer bursts and instead

fires tonically. In this case, the deletion of

gCaT resulted in changes in Ca2+ dynamics

so that target [Ca2+] occurs for a funda-

mentally different pattern of membrane

potential activity.

In a different tonic spiking model, dele-

tion of one of the two Ca2+ currents has

distinct effects. In Figure 7D, deletion of

the slow Ca2+ conductance, gCaS, slightly

alters the spiking frequency, and this is

compensated by regulation. However,

deletion of gCaT (Figure 7E) results in faster

spiking, and compensation to the [Ca2+]

target instead renders the cell silent.

Switching Regulation Rates Can
Preserve Specific Properties
The sets of regulation time constants we

have studied so far are all fixed and posi-

tive. This achieves growth from random

initial conditions but does not necessarily

preserve all intrinsic properties when per-

turbations are compensated. Models with

fixed positive regulation time constants

predict that all conductances will upregu-
late or downregulate in the same direction in response to a

perturbation. This is known to be false once neurons have

more mature and stable properties (Desai et al., 1999; O’Leary

et al., 2010), which suggests that a regulation rule suitable for

growth may switch to one that is more appropriate for maintain-

ing function in maturity.

We have previously shown (O’Leary et al., 2013) that self-regu-

lating models are robust to changes in sign as well as magnitude

of the conductance regulation rates. A negative regulation time

constant/ratemeans the conductance is upregulated or downre-

gulated in the opposite direction to those with positive rates as

activity moves above or below target. We therefore examined

whether regulation time constants could be switched in sign
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Figure 8. Switching Regulation Rates in the

Same Cell Can Preserve Specific Properties

(A) Conductance regulation in a bursting pace-

maker neuron. Membrane potential traces (500 ms

duration) are shown at steady state, at the onset of

a perturbation (hyperpolarizing leak), and at steady

state following perturbation. Arrowheads above the

rightmost trace indicate burst onset times of the

unperturbed neuron, aligned to the first burst.

(B) Evolution of the same model as (A), but with

regulation rule switched prior to the onset of the

perturbation. Regulation time constants following

the switch were chosen to preserve burst duration

(see Experimental Procedures). Arrowheads as in

(A). Membrane potential trace durations: 500 ms.
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and magnitude to preserve a specific intrinsic property once a

cell type has reached steady state. We began with a set of regu-

lation time constants that encodes a bursting pacemaker cell

(Figure 8A) with a characteristic burst period (mean ±SD =

123.1 ± 1.7 ms, n = 100 runs). Following perturbation with a

hyperpolarizing leak conductance (0.02 mS, Erev = �80 mV),

bursting activity recovered, but burst period increased by 47%

(181.2 ± 1.5 ms, n = 100 runs). We then searched sets of regula-

tion time constants to find a set that could compensate burst

period more accurately. After numerically searching 38,400

sets of time constants, we found a set that maintained burst

period within 5% of the unperturbed value (128.8 ± 3.9 ms, n =

100 runs) during the perturbation. An example run is shown

in Figure 8B. Notably, three of the time constants are negative

(those regulating gCaT, gKA, and gKd) in the best ‘‘mature’’ set,

and these parameters do not produce bursting cells if used

exclusively from the initial conditions (data not shown). In sum-

mary, regulation time constants that promote development of

specific physiological properties can be switched to mature

time constants that preserve those properties better in response

to specific kinds of perturbation.

DISCUSSION

The proteins and other molecules that are found in neurons (or

any other type of cell) are turned over continually and at any point

in time exhibit variability in their quantity and structural relation-

ships from cell to cell. In spite of this, and in spite of additional

external perturbations, neurons must develop and maintain spe-
Neuron 82, 809–
cific physiological properties. Otherwise

the nervous system would be unable to

learn, remember, process sensory infor-

mation, produce movements, or perhaps

function at all.

Ion channels underlie all electrical

activity in the brain, and the relationship

between ion channel expression and re-

sulting activity is complex. We know from

realistic biophysical models that sets of

conductance parameters—which, in bio-

logical terms, represent the expression

levels and enzymatic states of ion chan-
nels—can bewildly disparate and nevertheless give rise to highly

specific physiological properties that are essential for a func-

tioning nervous system (Bhalla and Bower 1993; Golowasch

et al., 2002; Marder and Goaillard 2006; Prinz et al., 2003,

2004; Taylor et al., 2009). Small changes in some conductances

can lead to catastrophic changes in excitability, while others can

change several-fold without any noticeable effect. This does not

mean that the underlying parameters in biological systems are as

disparate as they can be in principle; rather, it conveys the

necessity of navigating this wider parameter space in a robust

way (Drion et al., 2012; Franci et al., 2013; Goldman et al.,

2001; Hudson and Prinz 2010; Olypher and Calabrese 2007;

Zhao and Golowasch 2012).

Experiments show that neurons use activity-dependent feed-

back to regulate membrane conductances and receptors

(Amendola et al., 2012; Baines et al., 2001; Brickley et al.,

2001; Desai et al., 1999; Golowasch et al., 1999a; Mee et al.,

2004; O’Leary et al., 2010; Turrigiano et al., 1994, 1995). This

allows ongoing perturbations or phenotypic variability in a cell

population to be dynamically compensated. We showed how a

regulatory scheme that captures the major events underlying

ion channel expression gives rise to a simple, flexible, and robust

model of activity-dependent conductance regulation. The model

we derived differs from previous models (Abbott and LeMasson

1993; Golowasch et al., 1999b; LeMasson et al., 1993; Stemmler

and Koch 1999) in several important ways that shed light on the

biology of activity-dependent regulation. First, the origin of the

activity set point is derived from biochemical principles in a

way that depends on rates of enzymatic reactions. Second,
821, May 21, 2014 ª2014 Elsevier Inc. 817
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the regulation mechanism is consistent with known biology.

Third, the model shows biologically plausible levels of variability

in the final conductance distributions without the conductances

diverging or occasionally growing without bound. Fourth, the

same model can be used to produce distinct cell types and

only requires a single Ca2+ sensor to do so.

Biological neurons almost certainly possess more complex

regulatory machinery than we have captured. However, this

work shows how much can be done with minimal assumptions

that are consistent with known biology. We thus view this model

as a first approximation that can be refined rather than

completely rewritten as experimental observations dictate.

Model Interpretation
A technical message of this work is that a canonical model of

channel expression can be interpreted as a well-known control

law: the integral controller. Integral control has been suggested

as a mechanism of neuronal homeostasis based on the available

molecular machinery for integrating Ca2+ signals in neurons

(Davis 2006; O’Leary and Wyllie, 2011). We showed in this

work how activity-dependent transcription can be an instantia-

tion of integral control. The essential component of integral con-

trol is a variable whose rate of change depends on error. In the

model presented here, error is deviation in [Ca2+] from a specific

value, resulting in a change in the equilibrium of a putative

regulator enzyme. The rate of change of ion channel mRNA is

proportional to this error; consequently, ion channel mRNA con-

centration can be interpreted as the ‘‘accumulated error signal.’’

Biologically, the regulator enzyme could be a Ca2+-dependent

transcription factor complex, or a Ca2+-binding enzyme up-

stream of a set of transcription factors. The biological counter-

part of the [Ca2+] signal we consider is therefore a somatic or

nuclear [Ca2+].

The form of the model placed a strong constraint on its imple-

mentation. If multiple, parallel integral control pathways using

the same error signal exist within a cell, the targets for each

pathway need to agree, otherwise the continual (and delete-

rious) accumulation of the molecules that encode error (such

as mRNAs) will occur. While in principle it is possible that multi-

ple parallel controllers are tuned so that their set points are

equal, in biological reality, slight deviations are unavoidable.

Thus for this model to work as a means of jointly regulating con-

ductances in a neuron, a ‘‘master regulator’’ may be required.

However, this does not rule out the possibility that other

controllers using different error signals may coexist, provided

there are conductance combinations that can simultaneously

satisfy all controllers. For example, some currents could have

targets specified by [Ca2+] transients or concentrations of other

biological molecules provided these signals are sufficiently

independent.

Integral control exists as a regulatory mechanism in simple or-

ganisms such as bacteria, where it permits sensitivity to environ-

mental chemical cues and robust chemotaxis (Alon et al., 1999;

Yi et al., 2000). It is thus a plausible and testable hypothesis

that neurons have developed integral control pathways to regu-

late membrane conductances. Integral control implies perfect

compensation in the control variable (average [Ca2+] in our

case). Conversely, in systems that can be locally linearly approx-
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imated, perfect compensation implies integral control (Yi et al.,

2000). Therefore, an experimental test of one assumption of

this model is whether a relevant physiological variable such as

average [Ca2+] is perfectly compensated over a range of pertur-

bations. It is important that the perturbations do not exceed the

capacity of the system to compensate, so a carefully controlled

range of perturbations may be required along with precise moni-

toring of [Ca2+] to do this test.

Thebiochemical framework also allows a straightforward inter-

pretation of an ‘‘activity target.’’ The nature of this target has been

a source of speculation and even controversy since homeostatic

regulation was first proposed (Maffei and Fontanini 2009;Marder

andPrinz 2002).Weshowed that target [Ca2+] canbe encodedby

the rates of the underlying molecular mechanisms. Because

these rates ultimately depend on chemical properties of en-

zymes, such as substrate binding affinity, the target can be reli-

ably defined in a given cell or cell type.

How literally should one interpret this model? The mecha-

nisms involved in regulating neuronal conductances are the

focus of ongoing research and have many intricate components

that we have omitted. Transcriptional control is involved in ion

channel regulation (Weston and Baines 2007), and transcript

editing, alternative splicing, and RNA interference can occur

at the early stages of the process (Lin et al., 2012; Seeburg

and Hartner 2003; Wang 2013). Similarly, at the stage when

functional channels are expressed in the plasma membrane,

phosphorylation and auxiliary subunit interactions can alter the

biophysical properties of channels (Lipscombe et al., 2013).

We did not attempt to model the effects of all such processes;

instead we focus on the major events underlying channel

expression that are encapsulated in the canonical model of

gene expression: channel genes are activated, channel mRNA

is transcribed, and channel protein is produced from mRNA.

This simplification can be thought of as averaging out the

contribution of more intricate processes, or as forming a back-

bone onto which the additional processes can be added. The

task of refining the model will not be trivial; while we would

expect the canonical model to hold across species and cell

types, it would be surprising if more detailed models generalize

without incorporating data that are specific to each experi-

mental preparation.

Model Predictions
This work makes three general predictions. First, it predicts

linear correlated variability in ion channel expression and that

the slopes of the pairwise correlations between two ion channel

expression measures should correspond to the ratio of their

expression rates. For example, if one were to measure the

average mRNA expression rates of two ion channels that are

known to show a positive linear correlation in single-cell quanti-

tative PCR measurements, then the ratio of the expression rates

should equal themeasured correlation slope (for example, the K+

channel genes shaw and shab in LP cells of the crab STG—see

Figures 4B and 4C). Measuring mRNA expression dynamics is

challenging and has not, to our knowledge, been performed in

single neurons, although tools that may permit such measure-

ments are being developed. On the other hand, single-cell

quantification of steady-state ion channel gene expression
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does indeed show cell-type-specific correlations that are close

to linear (Liss et al., 2001; Schulz et al., 2006, 2007; Temporal

et al., 2012; Tobin et al., 2009).

Second, the model predicts that neurons do not necessarily

perfectly compensate their electrical properties when perturbed,

or when an ion channel type is knocked out, even if average

[Ca2+] (or the relevant activity signal) is perfectly compensated

over long timescales. This is illustrated in Figure 7, where we

see that average [Ca2+] is always compensated, while the phys-

iological behavior of the neuron can be compensated, partially

compensated, or can even show pathological changes in

behavior caused by the regulatory mechanism. In nonpatholog-

ical cases, the model works because the regulation signal,

[Ca2+], distinguishes different regions of conductance space.

However, this sensing mechanism is dependent on certain com-

binations of conductances being present together. For example,

if the ratio of delayed-rectifier K+ to fast Na+ conductances is

within a certain (possibly large) range, then (ignoring other con-

ductances and assuming a source of Ca2+ influx) low average

[Ca2+] will correspond to silent cells, while high average [Ca2+]

will only be achievable if the cell is firing tonically. Removal of

one or more conductances can drastically alter the relationship

between firing properties and [Ca2+], causing aberrant compen-

sation. On the other hand, if the conductances overlap in their

properties with other conductances, then removal may have

only a subtle effect, or a substantial acute effect that can be

compensated by the regulation mechanism.

This disconnect between nominally homeostatic behavior in

one variable and nonhomeostatic behavior in the larger system

has been suggested previously (O’Leary and Wyllie 2011)

and illustrates the need for a careful definition of what homeo-

stasis means. The safest definition is that homeostasis is an

emergent phenomenon and occurs because the components

in biological systems (such as ion channels) are often regulated

using feedback. In general, the feedback signals can be a subset

of those available and may act on a subset of the systems

parameters (i.e., the system may be underactuated). Thus, neu-

rons can exhibit firing rate set points (Hengen et al., 2013) or even

maintenance of a coordinated motor pattern (Figure 6), but this

does not necessarily mean the system directly measures and

maintains these specific properties. This point is perhaps under-

appreciated but important because it is difficult to assess exper-

imentally which are the controlled features of a homeostatic

process.

The third broad prediction of this work is that changes in

the regulatory rule itself may be part of nervous system

development. The sets of regulation rates that define cell types

in the model bring each cell to a steady state from random

initial conditions with low conductance densities. This is a

reasonable model of the early stage of differentiation from a

nonneuronal cell with a nonexcitable (or weakly excitable)

membrane (Moody and Bosma 2005; Spitzer et al., 2002). To

reach mature levels of conductance expression, all conduc-

tances need to increase initially. This coordinated increase is

inherent in the model of cell types (Figure 4) and predicts that

the appearance of each ion channel type above some detection

threshold will show a cell-type-specific ordering, in agreement

with experimental observations in developing nervous systems
(Baccaglini and Spitzer 1977; Moody and Bosma 2005; Spitzer

1991).

However, other experiments in nominally mature systems

have shown that conductances can change their expression in

opposite directions in response to perturbations in activity (Desai

et al., 1999; O’Leary et al., 2010). Furthermore, while one rule

may be sufficient for establishing a broad phenotype, changes

to the rule could fine-tune conductances so the cell can preserve

specific properties more effectively. We explored this idea spec-

ulatively in Figure 8, where we showed that tighter control of spe-

cific properties entails a switch in the regulation rates. Moving to

a biological interpretation, this idea incorporates the observation

that molecular switching events alter the expression rates of

different genes (including ion channels) early in development

and that some developmental changes have strictly sequential

critical periods.

Network Homeostasis from Cell-Autonomous
Regulation
Although the regulation model is local to each cell (i.e., it is ‘‘cell-

autonomous’’), the networkmodel in Figure 6 shows coordinated

responses across the network following perturbation of only one

cell. Thus, when self-regulating cells are part of an interacting

network, it is no longer sensible to label compensatory mecha-

nisms as ‘‘cell-autonomous’’ or ‘‘non-cell-autonomous’’ by

solely observing responses to perturbations.

The relative ease with which we constructed a self-regulating

network is reassuring when we consider how biological nervous

systemssolve theanalogous task.Whensystematically searched,

the parameter space that produces a triphasic CPG in a similar

model is found to be complex (Prinz et al., 2004). Biological

systems thus need robust solutions to this problem (Morohashi

et al., 2002; Stelling et al., 2004). Finding functional parameters

in a complex space and reliably assembling a circuit is relatively

straightforward with a well-behaved, biologically realistic feed-

back control mechanism. A key feature of this ease is modularity:

in isolation, cell types can grow and self-regulate. Self-regulation

ensures that when cells are combined in networks, the resulting

perturbations due to network activity are compensated. The pro-

cess of combining modular components would be impossibly

fragile without some form of feedback control within the cells

themselves or, as it is commonly known, homeostatic plasticity.

EXPERIMENTAL PROCEDURES

Single-compartment Hodgkin-Huxley models were used for all neuron

models. The membrane potential, V , of a cell containing N conductances

and membrane capacitance, C, is given by:

C
dV

dt
=
XN
i = 1

gim
pi
i h

qi
i ðV � EiÞ:

gi is maximal conductance, pi and qi are the number of ‘‘gates’’ in each

conductance, and Ei is the reversal potential. m and h are the activation and

inactivation variables. All models have unit capacitance (1 nF); maximal

conductance values in the manuscript are therefore equivalent to con-

ductances densities in units of mS/nF. The kinetic equations describing the

seven voltage-gated conductances are taken from experimentally measured

currents in isolated crab STG neurons, as described previously (Liu et al.,

1998).
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Numerical integration (exponential Euler) used a fixed timestep of 0.1 ms.

Maximal conductances in all models were regulated using the integral control

equations:

tg _gi =mi � gi

ti _mi = ½Ca2+ � � Catgt
:

To avoid negative conductances, variables were bounded at 0; however,

this condition was not required for the models presented. The parameters

for neuron types were found by first identifying steady-state conductance den-

sities that gave desired behavior from a random search of conductance space

(2 3 106 models). The resulting conductance ratios were then scaled to give

regulation time constants that were modified by hand where necessary to

tune behavior. All parameters and initial conditions for all models are provided

in Table S1 (available online). Additional simulation details and an example

biochemical scheme that implements integral control are in Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and can be found with this article online at http://dx.doi.org/10.1016/j.

neuron.2014.04.002.
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Supplemental methods 

Simulation details for example of integral controller (Figure 1) 

In Figure 1B we numerically integrated the equations, 

   ̇       (       )   (    ) 

   ̇      

   ̇  [    ]        

for a single compartment with two leak conductances. Intracellular calcium was calculated from a 

monotonic increasing function of  : 

[    ]       (  )     (  (    (  ))) 

Integration was performed using the ordinary differential equation solver in MATLAB with C = 1 nF, 

          ,           µS,           
  µM s µS-1,          ,           mV,       mV. 

Simulation details for example of windup/mismatched targets (Figure 2) 

In Figure 2 we numerically integrated the equations, 
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     ̇  [  
  ]          

for a single compartment with two leak conductances. Intracellular calcium was calculated from a 

monotonic increasing function of  : 
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In the first model we set                       . In the second model we set              and 

            . All other model parameters were identical for the two cases: C = 1 nF,         µM s 

µS-1,          µM s µS-1,      s,        mV,       mV. Integration was performed using the 

ordinary differential equation solver in MATLAB. 
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Example of an integral control rule using biochemical reaction schemes (Results: equation 2 and 

following calculations) 

Here we provide the details of a concrete example how integral control could be implemented 

biochemically using mass-action kinetics. 

In the main text, we considered a “master regulator”   that provides a readout of Ca2+ error: 

[ ̇]   ([    ]        
  )   

Here, [ ] is the concentration of the regulatory enzyme/enzyme complex,   is a constant that scales the 

time constant of integration, [    ] is the intracellular calcium concentration, and       
   is a positive 

constant that represents the target calcium concentration. This equation is a linear approximation of 

many potential underlying biochemical schemes. In particular, integral control will be provided by any 

system where [    ] in the above equation is replaced by a positive monotonic function of [    ]. We 

derive what we consider to be the simplest such scheme in what follows in order to give a concrete 

example, but note that there are many other ways of achieving integral control (Drengstig et al., 2008; Yi 

et al., 2000). 

The rate of change of concentration of a biochemical species can be written in terms of the difference 

between its production and degradation rates, which we label   and   respectively: 

[ ̇]      

We next assume the rate of production of [ ] is     -dependent. This can be captured by a 

straightforward reaction scheme in which the production rate,  , is proportional to the equilibrium 

fraction of a Ca2+-bound factor,  . In this case,   could be a     -dependent transcription factor that 

controls the production of  . If we consider simple first order kinetics for the Ca2+ binding reaction: 

                         

and assume this reaction is at quasi-steady state (i.e. the binding and unbinding of      is much faster 

than the rates for  ), then   is given by a Hill equation: 

 ([    ])  
[     ]

[ ]  [     ]
 

[    ]

    [  
  ]
   

where          (the dissociation constant). Throughout this analysis, we assume that the binding of 

     to   (or any other molecule) does not alter the intracellular calcium concentration. This is valid 

when [    ]  [ ], or when   is localized to a subcellular compartment whose [    ] is buffered by 

cytosolic     . 

As we stated in the main text, the fixed target is achieved in this model when the rate of degradation of 

  is zeroth-order. This can occur in a variety of ways (Drengstig et al., 2008). We will consider a scheme 

𝑘𝑓  

𝑘𝑏 
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involving a saturated degradation mechanism. Suppose   is degraded by another enzyme   according to

Michaelis-Menten kinetics: 

                              . 

This degradation scheme gives the following expression for  : 

  
   [ ][ ]   
   [ ]

    

Here, [ ]    [ ]  [  ], and is the total concentration of enzyme  ;    is the Michaelis-Menten 

constant,    (     )   . The above equation becomes zeroth-order in  , i.e. saturated when 

   [ ]. Then 

     [ ]   . 

We now have the following differential equation for [ ]: 

[ ̇]   ([    ])     [ ]       

which is the required form for the integral control rule. In this equation the target Ca2+ level is given by 

      
      (     [ ]   )      (        )⁄ . Importantly, the error accumulated is of opposite sign 

on either side of       
   because  ([    ]) is monotonic. 

Aggregating multiple steps in a biochemical scheme 

We note here that in general there can be multiple steps between the activation of an ion channel gene 

and the resulting change in membrane conductance. In the model (equation 1, main text) we simplify 

this as two steps – 1) translation and 2) ion channel expression in the membrane: 

 ̇          

 ̇          

Here the mRNA synthesis term       is the linear approximation of the quasi-steady state for the 

master regulator,  . These two steps correspond to rates of change of experimentally measurable 

variables (mRNA and membrane conductance). In general, we can consider a multi-step mass-action 

chain of arbitrary length: 

 ̇           

 ̇            

  

 ̇             

 

Assuming the forward/backward reaction rates (  ,   )  at each step are fixed (or can be treated as 

𝑘  

𝑘  

𝑘  
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constant over a long time), then the asymptotic rate of change of   can be written in terms of an 

aggregate of all of the rate constants in the chain: 

 ̇  
    ∏

  
  
   

   

∑ [∏
  
    

 
   ] 

   

  

Thus the contribution of the additional steps to long-term (quasi steady-state) behavior is to change the 

overall response rate of the system. 

Parameter search method for CPG network (Figure 5) 

Bursting neurons were identified from a random search of maximal conductances in a non regulating 

model. The conductances were drawn from a uniform distribution: gNa, gKd, gA, and gKCa were 

selected between 2.5 and 47.5 μS, while gCaT, gCaS, and gH were selected between 0.05 and 0.95 μS). 

From this, bursting neurons were chosen by analyzing inter-spike intervals and slow-wave amplitudes of 

membrane potential fluctuations. From these, three neurons were hand tuned to produce a triphasic 

rhythm by altering maximal conductances heuristically. The maximal conductances of the three 

candidate neurons were then scaled and converted to regulation rates by normalizing to the largest 

maximal conductance and scaling this to a timeconstant = 100 ms (   in equation 3, main text). These 

rates were then randomly searched from a log-normal distribution in each regulation parameter with 

standard deviation of 50%. Leak reversal potentials, maximal conductances and calcium targets were 

searched at the same time from a normal distribution with 50% standard deviation around the 

candidate value. Each network was randomly initialized (see table S1 for initial condition range) and 

checked for triphasic activity at steady state. 15,000 random networks were searched in total. From 

these, the mean and covariance matrices of the distribution of parameters that produced triphasic 

networks was calculated and used to refine the search. The refined search drew parameters from a 

multidimensional normal distribution with the estimated covariance and mean; 113,000 sample 

networks were searched. From this, the parameter set that most reliably developed a triphasic rhythm 

from random initial conditions (see table S1) and recovered from the perturbation to PD (additional leak 

conductance = 0.02 μS, reversal potential = -80 mV) was chosen. 
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