Table 1: Definitions of Commonly Used Terms in Cost-Effectiveness Analyses

Term	Definition
HRQOL	Health-Related Quality-of-Life
	HRQL, or "utility," is quantified as a value ranging from 1.00 (perfect
	health) to 0.00 (death). This "utility" is multiplied by the number of
	years in a particular health state to get the QALYs.
QALY	Quality-Adjusted Life Year
	A QALY incorporates both quality (morbidity) and length of life
	(mortality) with one QALY representing one year in perfect health.
	The HRQL or "utility" is multiplied by the number of years in a
	particular health state to get the QALYs.
Markov model	A mathematical model describing various health states and how
	patients transition through these health states over time. The word
	"Markov" means that the model has the "Markov property". The
	"Markov property" implies that the likelihood of transitioning to the
	next health state only depends on the current health state, and not
	on health states prior to that. For example, in this paper the
	"Markov property" implies that once a person has a cerebrovascular
	accident (CVA), their future transitions (future mortality) is only
	affected by the fact that they are in the CVA health state, and NOT
	affected by their vision history prior to the CVA.
	Markov modeling is a standard method used in general health
	technology assessments and also has been used in previous cost-
	effectiveness analyses for neovascular age-related macular
	degeneration.
Cost	Cost-Effectiveness analysis is a method of health economic
Effectiveness	evaluation that measures costs and health outcomes from
	competing interventions in order to help make resource allocation
	decisions that can maximize health outcomes for a given budget.
ICER	Incremental Cost-Effectiveness Ratio.
	The ICER is a measure of value or trade-offs between different
	interventions. If intervention a has higher costs and higher health
	outcomes than intervention b then interventions a is compared to b
	using an ICER. The ICER is a ratio with the incremental costs of a
	versus b divided by the incremental benefits provided by a over b.
	The ICER is defined as:
	ICER = (TCa – TCb) / (Ea – Eb)
	Where TC is the total cost and E is effectiveness measured in QALYs

For additional detail about these terms and about cost-effectiveness analyses, please see reference 29.