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STUDY POPULATION 

(A)  UKCTOCS serum DNA samples 

The serum samples in this study were drawn from the UK Collaborative Trial of Ovarian 
Cancer Screening (UKCTOCS)1, which is one of the largest prospectively randomised 
clinical trials and recruited more than 200,000 women.  The trial aims to assess the 
impact of screening on mortality from ovarian cancer and to comprehensively evaluate 
its physical and psychological morbidity, compliance rates and financial costs, as well as 
performance characteristics of its various screening strategies. The trial was set up at 13 
centres in England, Wales and Northern Ireland.  
All women in the trial were postmenopausal aged 50-74 and recruited between 2001 and 
2005 through random invitation from age/sex registers of the above local health 
authorities. The study population was massively depleted of women with familial breast 
and ovarian cancer risk. 

(B)  BRCA1 study- white blood cell (WBC) samples from BRCA1 mutation 
carriers and BRCA1 wild type controls 

Whole blood samples were drawn from 15 healthy BRCA1 mutation carriers (mean age 
57.13) and 15 age-matched healthy females without a BRCA1 mutation (mean age 56.8, 
Wilcoxon test p-value=0.66). An additional independent set of blood samples were 
drawn from 7 healthy BRCA1 mutation carriers (mean age 30.43) and 42 healthy 
females without a BRCA1 mutation (mean age 43.57, Wilcoxon test p-value=0.016). All 
samples were collected between 2001 and 2008. The samples were drawn from women 
attending the General Faculty Hospital in Prague. All women gave their written informed 
consent. This study has been approved by the ethics committee of the General 
University Hospital, Prague. 
Blood samples were collected by the study nurses into vacuette tubes (7mL in K2 EDTA 
tubes) and were frozen within 3 hours of collection.  
 
BRCA1 mutation testing in DNA from whole blood 
Both BRCA1 mutation carriers and controls (from the BRCA1 Study) were tested for the 
presence of germ-line BRCA1 mutation, including large genomic rearrangements. 



Protein truncation test (PTT) was used as a prescreening method for exon 11 and direct 
sequencing was used as a detection method for exons 2-10 and 12-24 (exons 1a and 1b 
are non-coding exons and are not analyzed in standard protocols). All the mutations 
detected were confirmed by direct sequencing using at least two different primers on 
original and re-sampled DNA. Multiplex ligation-dependent probe amplification (MLPA) 
was used to detect large genomic rearrangement. Long-range PCR, isolation of certain 
alleles and direct sequencing were used to identify break-point of those 
rearrangements2. 

(C)  NSHD white blood cell (WBC) samples and buccal samples 

The National Survey of Health and Development study, with data on over 5000 people 

born in a single week of March 1946, is the longest-running birth-cohort study in the 

world. The Medical Research Council (MRC) currently runs this study. 

 

For the purposes of a separate ongoing study, on breast cancer risk, 800 buccal DNA 

samples (> 50 ng/µl) were taken from postmenopausal women at age 53. Out of these 

800 women, blood samples (DNA conc > 30 ng/µl), also at the same time point, were 

available for 200 women.  

 

Information on certain variables such as digitized mammogram, age at puberty, parity 

and menopause status, were deemed essential for the proposed breast cancer risk 

study. Hence, only those women (n=798) with non-missing data for all the essential 

variables were selected.  

 

On the 200 women, with corresponding blood samples, an additional criterion of either 

cancer registration after 1999 or healthy was applied. This narrowed the total blood DNA 

samples to 77 women with cancer and 212 without cancer. Out of the 212 healthy 

women, 77 women were chosen such that they were representative of the percent 

breast density (0 – 77.78%) observed in all 212 healthy post-menopausal women.  

Both the blood and buccal samples were stored at -20°C until required for processing. At 

which point the samples were defrosted at room temperature for approximately 1 hour. 

The sample plates were placed on a plate mixer for 4 minutes followed by a 1-minute 

spin down.  

 

DNA extraction 
The DNA from whole blood and tissues3 was extracted using a chloroform based 
extraction method from 400µL of blood and Qiagen DNeasy Blood & Tissue Kit (69504), 
respectively. The DNA from 500µL serum (UKCTOCS) was extracted at Gen-Probe 



(www.gen-probe.com), using Qiagen QiAamp Blood Mini Kit (51106). The overall 
average amount of DNA in the samples was 100-720ng and average 234ng. Most of the 
DNA in our serum samples is likely to be blood cell DNA.  
 
BS modification 
All DNA samples were bisulphite modified using the EZ DNA Methylation Kit D5008 
(Zymo Research, Orange, CA, USA) according to the manufacturer’s instructions. 
 
DNA methylation profiling 
Methylation analyses for the data were performed using the validated Illumina Infinium 
Human Methylation27 BeadChip for the UKCTOCS and the BRCA1 Study. For the 
NSHD, Illumina HumanMethylation450 BeadChip was used. In all instances, for the 
assay, bisulphite (BS) converted DNA is amplified, fragmented and hybridised to the 
BeadChip arrays (each chip accommodates 12 samples as designated by Sentrix 
positions A-L).  A single base extension is then performed using labelled DNP- and 
biotin labelled dNTPs. The arrays were imaged using a BeadArray Reader. Image 
processing and intensity data extraction were performed according to Illumina’s 
instructions. Each interrogated locus is represented by specific oligomers linked to two 
bead types: one representing the sequence for methylated DNA (M) and the other for 
unmethylated DNA (U).  For each specific CpG site, the methylation status is calculated 
from the intensity of the M and U alleles, as the ratio of the fluorescent signals β = 
Max(M,0) / [Max(M,0)+Max(U,0)+100]. Hence, DNA methylation β-values are continuous 
variables between 0 (absent methylation) and 1 (completely methylated) representing 
the ratio of the methylated allele to the combined locus intensity.  
 
Quality control (QC) and Data Normalization  
The quality of any given sample run can be assessed using the built-in controls. In 
addition, every methylation value measured on the array is accompanied by a detection 
p-value. Threshold p-value above 0.01 have been previously reported as being 
unreliable4 and therefore have been filtered out. Missing β-value data were imputed 
using the k-nearest neighbours procedure5. 
Following QC, the data was normalized using the subset-quantile within array 
normalization (SWAN) method6. 
 
Ensemble Signature Identification 
Identification of a methylation signature that is predictive of sporadic breast cancer is 
essentially a classification problem. This problem can be formulated as follows: Given a 
training data set, 𝑥i, 𝑦i !!!

! , over n samples, where 𝑥i =    𝑥i1,𝑥i2,…,𝑥ip  is the input vector 
over p predictors and 𝑦i ∈ 0,1  is the binary outcome label; the aim is to learn a 
classification rule 𝑓:𝑅n   →    0,1 , that is capable of assigning an outcome label to a new 
and independent subject. 
For the methylation data, the 𝑥i represent the β-methylation profiles for the ith sample 
over p CpGs. The outcome label 𝑦i represents the BRCA1 mutation status where 𝑦i =1 if 
the sample is a BRCA1 mutant and 𝑦i =0 otherwise. 
This classification problem can be solved by regression methods such as lasso 
regression7, SVM8and elastic net9. The elastic net classification method was chosen for 
our study as it has been shown to be particularly effective when the number of predictors 
is far greater than the number of training points10. 
 
The elastic net is a regularization technique that combines the L1-norm and L2-norm of 



lasso and ridge regression. The estimates for this method are calculated by minimizing 
the following equation 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛β  ∥ 𝑦 − 𝑋𝛽 ∥ 2 +   𝜆   𝛼 ∥ 𝛽 ∥ 1 + (1 − 𝛼) ∥ 𝛽 ∥ 2  
Where  𝜆 > 0 and 0 ≤   𝛼 ≤ 1 are the model parameters that control the sparsity of the 
solution.  Setting 𝛼 = 0, leads the elastic net estimate back to the ridge regression 
estimate. The ridge (quadratic) part of the penalty stabilizes the L1 regularization path 
and removes the upper bound on the number of variables selected. 
The elastic net method, as implemented in the glmnet R-package with a cyclical 
coordinate descent algorithm9, was applied, with a penalization value of 𝜆1=0.1, to the 
list of 2514 differentially methylated CpGs identified in the BRCA1 study. The 
penalization parameter value was selected such that between 100-200 CpGs were 
selected in the optimal classifier.  
In our study, in order to arrive at a set of robust classifiers using the elastic net, the 
following steps were taken: 

1. The BRCA1 data was standardized, across the samples to mean zero, and 

standard deviation equal to one. 

2. A random selection of 80% of the cases and controls was chosen as the training 

set. While the remaining 20% of the cases and controls formed the test set. 

3. In the training set, a linear regression model of the β-methylation profiles against 

age, cancer presence and cohort, was fitted on each of the 2514 differentially 

methylated CpGs.  

4. The residuals from the linear regression model, from step 3, were input to the 

elastic net classification algorithm, as implemented in the glmnet R-package9. 

5. For each choice of parameter λ, predicted risk values were estimated for each 

independent test sample, t, with standardized methylation profile βt using the 

equation below: 

𝑅t = 𝜂
!cpg

!!!
c𝛽t,c 

Where, Ncpg is the total number of CpGs and 𝜂c is the regression coefficient 
estimated via the elastic net for CpG, c. Here, the summation can be calculated 
over all the CpGs as those with regression coefficient 𝜂c = 0 will not contribute to 
the overall estimate. The estimated risk scores for the test set are then correlated 
to their BRCA1 mutation status to obtain an AUC value. For the AUC, the closely 
related Somers’ Dxy rank correlation11 is calculated. The parameter λ, with the 
best AUC performance is recorded along with the corresponding optimal 
classifier.  

6. The above steps from 2-5, were repeated 100 times and for each run the optimal 

classifier and AUC were noted.  

Together the set of 100 optimal classifiers, obtained by the above procedure, formed our 
ensemble signature. The elastic net approach encourages a strong grouping effect and 
hence, the signatures identified will also be strongly correlated10. This provides an 



opportunity to combine the ensemble signature to a single, more easily interpretable, 
signature.  
 
 
Stacked Generalization 
Stacked generalization is a flexible method for combining multiple classifiers. The 
outputs of each of the 100 classifiers, in the ensemble signature, are viewed as data 
points in the feature space upon which a combiner function can be trained12. Although, 
stacked generalization has been previously shown to overfit13, leading to poor overall 
performance; this limitation can be overcome via regularization12. Under regularization, 
the predictive accuracy is improved by a reduction in the variance of the error at the cost 
of slightly increasing the bias14.  
 
To apply the method of stacked generalization to our ensemble signature, the 
predictions of each of the 100 classifiers, on the BRCA1 data, were aggregated and 
combined with the known labels to form a meta-data training set. This meta-data training 
set is then input into the elastic net, which is the chosen combiner function. Once again, 
for the elastic net, the glmnet R-package was used9. The optimal parameters for the 
elastic net were selected via 10-fold cross-validation over a coarse grid for 
𝛼 = 0,0.25,0.5,0.75,1  and a finer grid of fraction= 0 to 0.4 in increments of 0.02 for the 
parameter λ. This procedure selected 23 out of the 100 classifiers in the ensemble 
signature, which were then averaged across the CpGs to arrive at the final single 
classifier. The final single classifier comprised of 1829 CpGs with non-zero regression 
coefficients. 
 
Validation 
To evaluate its predictive accuracy, the single classifier was tested on two independent 
data sets- 1) MRC set, and 2) UKCTOCS set.  
For each independent test sample, t, once again the risk score was calculated as 

𝑅t = 𝜂
!cpg

!!!
c𝛽t,c 

Where, Ncpg is the total number of CpGs. 𝛽t,cis the standardized β-methylation vector for 
test sample t and CpG c. And 𝜂c is the estimated, non-zero regression coefficient for 
CpG, c, in the classifier. The estimated risk scores are then correlated to their disease 
status and an AUC value is obtained via Somers’ Dxy rank correlation15. To evaluate the 
statistical significance of the observed AUC, the validation procedure was repeated 100 
times with randomly permutated phenotype labels. By counting the number of times the 
permutation testing yielded a better AUC than the one observed, a measure of its 
probability, to have arisen by chance, was obtained. The ROC curves were plotted with 
the help of the ROCR R-package16. 
 
Gene Set Enrichment Analysis 
Gene set enrichment analysis (GSEA) is a test to assess if a gene set is over-
represented in a candidate list. A gene set is a pre-established, category of genes 
grouped together by a common feature such as a molecular pathways or cellular 
component17,18. A total of 8567 gene sets, categorised by common gene ontology, 
molecular pathways, chromosomal locations, or targets of regulatory motifs and 
miRNAs, were derived from the Molecular Signatures Database (MSigDB)19,20. Two 
additional gene sets, included in the analysis, were of Polycomb group targets (PCGTs), 
defined either by single occupancy of SUZ12, or EED, or H3K27me3 in human 



embryonic stem cells (hESCs); or triple occupancy of all three21. 
Since not all members of the gene sets were on the Illumina HumanMethylation27 array, 
we focused on the 8227 subset of gene sets that had over 60% representation. The 
GSEA analysis, for each gene set, was done by generating a two-by-two table 
comparing the number of genes in the candidate list that also belong to the gene set with 
those that are not members. The significance of the over-representation was then 
assessed by a Fisher’s exact test and adjusted for multiplicity by the Benjamini-
Hochberg procedure.  
 
Survival analysis 
The survival analysis of the samples in the UKCTOCS study was modelled using the 
Cox proportional hazards model22. Here, the hazard function measures the importance 
of the calculated risk scores on the survival times since sample collection.  Under the 
Cox proportional hazards model the hazard function for each individual is given by the 
equation below: 

ℎi 𝑡 = ℎ0 𝑡 ∗ 𝑒𝑥𝑝{𝛽𝑋i} 
Where, ℎ0 𝑡  is the baseline hazard for individual, i, at the survival time t. The risk score 
covariate, X, for each individual, i, enters the model linearly with a coefficient  𝛽. To 
validate the assumption of proportional hazards, the R cox.zph() function from the 
survival() library, was used (P=0.401) where a statistically significant pvalue implies 
violation of the proportional hazard assumption.   
The Cox proportional hazards regression model was then fitted to the survival times and 
cancer status with the risk scores as a predictor. The risk scores were divided in to two 
groups separated around the mean and the modelling was done using the R coxph() 
function. The results of this survival analysis for the two risk groups are shown in Figure 
3(F) using the Kaplan-Meir curve plot.  The Kaplan-Meier plot is a graphical 
representation of the survival function as a sequence of step-wise estimates23. The 
cumulative probability of survival is shown on the y-axis. While, the x-axis represents the 
serial time and the lengths of the horizontal lines are indicative of the survival durations.  
A short vertical line marks the event of interest, which is death in this case.   
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