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Figure S1. Characterization of TT-FHAgo2 and TT-Ago2 mESCs, related to Figure 

1. (A) Western blot of TT-Ago2 (left) and TT-FHAgo2 (right) cells with titration of 

doxycycline (Dox). AB2.2 included for reference of wildtype expression. (B) Growth rate 

of TT-FHAgo2 mESCs supplemented with either no Dox, low (+) or high (++) Dox 

concentration (biological triplicates are plotted) after 96hrs doxycycline starvation. Error 

bars represent standard deviation. (C) Northern blot of miRNA expression levels in E7 

cells or E7 cells overexpressing wildtype FLAG-HA tagged Ago2 or indicated mutants. 

Increased miRNA levels are observed with wildtype or catalytically inactive Ago2 

expression, but not with Ago2 miRNA-binding mutant expression. (D) Scatter plot 

showing the log2 expression levels of miRBase v19 annotated miRNA in TT-FHAgo2 

mESCs after 96 hrs of doxycycline starvation (NoDox) or 96 hrs of doxycycline 

starvation followed by 48 hrs of high doxycycline treatment (++ Dox). Those miRNAs 

not destabilized by at least two-fold are colored in red and all other miRNA in black. 

Only miRNA that have > 2 reads in the datasets were considered. 

 

Figure S2. TT-FHAgo2 and TT-Ago2 mESC FLAG-immunoprecipitation, related to 

Figure 2. (A) Representative western blot of immunoprecipitation efficiency from TT-

FHAgo2 mESCs. I=input, FT=flow-through. (B) Correlation of miRNAs cloned from 

TT-FHAgo2 and TT-Ago2 mESC total small RNA inputs. (C) Analysis pipeline of small 

RNAs sequenced in IP samples. (D) Determination of empirical false discovery rate 

(FDR) for enrichment cutoffs in reciprocal TT-FHAgo2 and TT-Ago2 small RNA 

enrichment calls. (E) MA plot highlighting enrichment in Ago2 for snoRNA and tRNA 

fragments as described as in Figure 3.  

Supplemental Information (compiled Word file)
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Figure S3. Additional analysis of protein-coding regions producing Ago-bound 

small RNA, related to Figure 3. (A) Barplot of the number of intronic and exonic 

regions of filtered Ago2-bound regions that overlap protein-coding genes. (B) DAVID 

gene annotation analysis output for significantly enriched categories. (C) Sequencing 

results from cDNA cloned from mESCs for three genes that share a promoter with TSS-

miRNAs. First exon is black, second exon blue, and most abundant Ago enriched small 

RNA in red. (D) Scatterplot showing the lack of correlation between TSS-miRNA and 

mRNA transcript levels (mESC RNAseq, unpublished) from shared RNAPII promoters 

(top) and promoter-proximal RNAPII reads as measured by GRO-Seq (bottom).  

 

Figure S4. TSS-miRNAs are Ago/Dicer-dependent, related to Figure 4. (A) IGV 

genome browser shots for two example TSS-miRNAs mapped to the mm9 genome and 

cloned from indicated samples. Collapsed reads are represented as blue or red denoting 

minus strand or plus strand, respectively. Gray barplots show coverage over the region. 

Arrows indicate the direction of transcription. (B) Left: MA plot of enrichment in TT-

FHAgo2 FLAG IP compared to TT-Ago2 control. Annotated miRNA are colored blue 

and the example TSS-miRNAs highlighted in the text are colored red. Right: mESC copy 

number estimation of three example TSS-miRNAs. These correspond to estimates of 

63,12 and 3 copies per cell for Cpsf4l, Glul and Krcc1 TSS-miRNA, respectively. (C) 

Small RNA profiling from promoters that generate TSS-miRNAs and all other RNAPII 

promoters for wildtype and Drosha null mouse embryonic fibroblasts. Sequencing data 

from (Chong et al., 2010). 
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Figure S5. Comparison of RNAPII levels and localization from TSS-miRNA 

producing genes and Cpsf4l TSS-miRNA levels upon pausing factor knockdown, 

related to Figure 5. (A) Top Left: Meta analysis of Gro-Seq data at TSS-miRNA 

producing promoters aligned to the sense TSS. Bottom Left: Meta analysis of Gro-Seq 

data of matched control genes aligned to the sense TSS. Top Right: Boxplot of Gro-Seq 

reads from the promoter-proximal RNAPII peak for control matched promoters or TSS-

miRNA producing genes. Control versus TSS-miRNA genes p-value < 0.07. Bottom 

Right: Meta analysis of RNAPII ChIP-Seq data aligned to the TSS for TSS-miRNA 

producing genes and the control matched set of promoters. (B) Left: Splint ligation-

mediated detection of Cpsf4l TSS-miRNA and Snora15a upon stable knockdown of 

various pausing factors in mESCs. Right: Quantitative PCR measurement of Cpsf4l 

mRNA upon knockdown of indicated pausing factors. N=2, error bars represent standard 

deviation. Plko.1 samples are infected with the empty shRNA lentiviral delivery vector. 

  

Figure S6. Single-cell based dual reporter TSS-miRNA activity assay and effect of 

TSS-miRNA overexpression on local gene expression, related to Figure 6. (A) 

Diagram of the bidirectional reporter constructs used in the assay. (B) Representative 

FACS data. (C) Scatter plot of single-cell bidirectional dual fluorescent reporter flow 

cytometry measured expression data. Points represent binned targeted mCherry log10 by 

control eYFP log10 expression in wildtype (blue) or Dicer
-/-

 mESCs (red) for the 

construct containing zero perfect matches to Cpsf4l TSS-miRNA in the mCherry 3’ UTR. 

Points and error bars are mean and standard deviation of independent biological 
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replicates. (D) Normalized fold-repression is plotted for each control expression bin. (E) 

Ago2-dependent repression of a luciferase reporter construct containing a 3’ UTR with a 

single perfect, bulged or seed mutant site complementary to the Krcc1 TSS-miRNA. 

Values plotted are cells transfected with Krcc1 TSS-miRNAs mimic at 100nM either 

with or without FHAgo2 expression (completed in biological triplicate). Inset: graphical 

representation of reporter constructs utilized in this experiment. (F) Left: Krcc1 gene 

architecture diagram representation. Approximate location of Krcc1 TSS-miRNA is 

denoted by purple line. Right: qPCR measurement of mRNA levels in wildtype or Dicer 

null mESCs transfected with either control siRNA or Krcc1 TSS-miRNAs mimic. N=3, 

error bars represent standard deviation.(G) Left: Cpsf4l gene architecture diagram 

representation. Approximate location of Cpsf4l TSS-miRNA is denoted by purple line. 

Right: qPCR measurement of mRNA levels in wildtype or Dicer null mESCs transfected 

with either control siRNA or Cpsf4l TSS-miRNAs mimic. N=6, error bars represent 

standard deviation. 

 

Figure S7. TSS-miRNAs are detected in various mouse and human tissues, related 

to Figure 7. (A) IGV genome browser shots for three selected TSS-miRNAs cloned from 

the indicated mouse tissue and mapped to the mm9 genome assembly.  (B) IGV genome 

browser shots for two orthologous TSS-miRNA promoters with collapsed reads mapped 

to hg19 genome assembly from various human tissues. Red boxes highlight the 

orthologous TSS-miRNA region in mouse. Collapsed reads are represented as blue or red 

denoting minus strand or plus strand, respectively. Gray barplots show coverage over the 

region. Arrows indicate the direction of transcription. (C) Heatmap of TSS-miRNA 
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expression in various mouse tissues used in Figure 7A and mRNA expression from 

matched samples (Merkin et al., 2012) ordered based on the clustering of TSS-miRNA 

levels to show lack of correlation to mature mRNA production.  

 

 

 

Table S1. Data summary for small RNA sequencing from TT-FHAgo2 cells to 

measure Ago-dependence, related to Figure 1. 

 

Table S2. Data summary for identification of Ago2-bound small RNAs, related to 

Figure 2.   

 

Table S3. Summary of filtered Ago2-bound regions within protein-coding genes, 

related to Figure 3. 

 

Table S4. TargetScan predictions of Cpsf4l TSS-miRNA targets, related to Figure 5.  

 

Extended Experimental Procedures 

Cell Culture Conditions 

 mESCs were cultured under standard conditions (Tremml et al., 2008). Briefly, 

mESCs were grown on gelatinized tissue culture plates in Dulbecco’s Modified Essential 

Media supplemented with HEPES pH 7.0, 15% fetal bovine serum (Hyclone/Thermo 

Scientific), 1000U/mL leukemia inhibitory factor (Chemicon/Millipore), 0.1 mM non-

essential amino acids, 0.1 mM L-glutamine, 0.1 mM Pen/Strep and 0.11 mM -

mercaptoethanol. TT-FHAgo2 and TT-Ago2 clonal cell lines were propagated and 

maintained in 0.1 g/mL doxycycline (Sigma).  

 

Generation of lentivirus and mESC infection 
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pSLIK lentivirus was generated as follows: human FHAgo2 was subcloned into 

pENTT entry vector and sequence verified. Doxycycline-inducible promoter and 

FHAgo2 sequence was recombined into pSLIK-Hygro using Gateway LR Clonase II 

(Invitrogen) and vectors were verified using restriction enzyme digestion and DNA 

sequencing. pSLIK lentivirus was generated by transfection into 293T cells alongside 

pCMV-dR8.91 packaging and pHDM.G envelope vectors. 293T cell media supernatant 

containing lentivirus was collected, filtered through a 0.45 m syringe filter and 

supplemented with 1 mM HEPES pH 7. E7 cells were combined with equal parts fresh 

mESC media and lentivirus along with 4 g/mL polybrene (Millipore) in a six-well 

culture dish and centrifuged at room temperature for 1 hour (hr) at 2000 RPM in a 

Beckman-Coulter Allegra X-15R centrifuge. After overnight incubation at 37
o
C, cell 

media was replaced and supplemented with 150 g/mL Hygromycin. Cells were grown 

in the presence of Hygromycin until ready to be split out of the 6-well dish. All 

experiments were carried out with TT-Ago2 clone 1 or TT-FHAgo2 clone 3. 

 

Western Blotting 

 mESCs were lysed in RIPA buffer (1% NP-40, 0.1% SDS, 0.5% Deoxycholate in 

PBS pH 7) containing 1x protease inhibitors (Roche) and protein was quantified using the 

Pierce BCA protein assay (Thermo Scientific). Protein was resolved on Novex gradient 

denaturing PAGE gels (Life Technologies) and transferred to PVDF membrane 

(Millipore). Antibodies used in this study: Ago2 (Cell Signaling), Tubulin (GenScript), 

HA (Roche), FLAG (Sigma). Secondary HRP-conjugated antibodies were from GE 

Healthcare.  
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Immunopurification  

 Doxycycline-induced cells were washed once with cold HEPES-buffered saline 

(HBS), trypsinized and collected. Cells were then centrifuged and washed once with cold 

phosphate buffered saline (PBS) and counted. An equal number of cells for each sample 

were centrifuged and then lysed in modRIPA buffer (10 mM Tris-Cl pH 7.4, 150 mM 

NaCl, 1% Triton-X 100, 0.1% SDS and 1 mM EDTA) containing 1x complete protease 

inhibitors (Roche). Cells were rotated at 4
o
C for 30 minutes to ensure cell lysis. Cell 

lysate was centrifuged to remove cellular debris and the supernatant was used for IP. 

FLAG M2 antibody (Sigma) was conjugated to protein G coated Dynabeads (Life 

Technologies) for at least 2 hrs in 0.1 M Na-Phosphate pH 8 at 4
o
C with rotation. Cleared 

extracts were incubated overnight at 4
o
C with rotation. Beads were collected and washed 

twice with PBS, 3x with modRIPA, 2x with modRIPA + 300mM NaCl and 1x with 

modRIPA for 5 minutes each with rotation at 4
o
C. RNA was eluted twice with 30 minute 

incubations with rotation at 4
o
C with 3x FLAG peptide (Sigma).  

 

Luciferase and Fluorescent miRNA Reporter Assays 

 Cells were placed in 24-well plates 24 hrs prior to transfection at 2e
5
 cells/well. 

Cells were transfected utilizing Lipofectamine 2000 (Life Technologies) with pRL-CMV 

containing either targeted (perfect or bulged) or untargeted (seed mutant) sequences 

within the 3’ UTR of the Renilla transcript, or pRL-CMV lacking a 3’ UTR (empty) 

along with PGL3 untargeted control and pWhiteScript. Cells were transfected for 4 hrs in 

Optimem media (Life Technologies). After 24 hrs, cells were lysed in 1x Passive Lysis 
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Buffer (Promega). Renilla and Firefly luciferase were quantified using Promega Dual 

Luciferase Reporter Assay System. Values represent targeted Renilla luciferase relative 

to untargeted Firefly luciferase as a transfection control.  

For the single-cell flow cytometry based TSS-miRNA activity assay, wildtype or 

Dicer knockout cells were plated at 2e
5
 cells/well in a 12-well dish 24 hrs prior to 

transfection. Cells were transfected with Lipofectamine 2000 (Life Technologies) with 

control reporter construct (0x) or a construct containing three perfectly complementary 

Cpsf4l TSS-miRNA target sites (3x) in the mCherry 3’ UTR, along with rtTA expression 

vector and pWhiteScript. Cells were transfected for 4 hrs in Optimem media (Life 

Technologies) after which media was replace with standard mESC media supplemented 

with 1g/mL doxycycline (Sigma). After 24 hrs, cells were harvested, analyzed and data 

processed with FlowJo and custom Matlab scripts as previously described (Mukherji et 

al., 2011). 

 

RNA analysis 

 RNA was isolated using Trizol (Life Technologies) and treated with DNA-free 

DNAse (Ambion). cDNA for quantitative PCR (qPCR) was synthesized using 

QuantiTect Reverse Transcription Kit (Qiagen). The cDNA was measured using 

PowerSybr (Applied Biosystems) on the Applied Biosystems 7500 Real Time PCR 

System. qPCR primer sequences are available upon request.  

 

Small RNA sequencing and analysis 
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Briefly, a circularization-based protocol was adapted from (Churchman and 

Weissman, 2011) and included a Circligase-mediated step after reverse transcription from 

a 3’ end ligated adaptor bypassing the 5’ end adaptor ligation. This protocol allowed 5’ 

end independent cloning of small RNA. The small RNA used in the library preparations 

were resolved on denaturing polyacrylamide gels to isolate RNA species below the 

abundant tRNA band (~18-75 nt based on low molecular weight ladder (New England 

Biolabs)). Sequencing was performed as described previously with barcoded samples for 

multiplexing (Gurtan et al., 2012). DNA sequences from the Illumina HiSeq 2000 

Sequencing system were grouped by barcode, processed for adaptor removal and size 

exclusion of sequences < 15 nt with Cutadapt (Martin, 2011). Filtered reads were 

collapsed to unique sequences with the FASTX-Toolkit (from the laboratory of Gregory 

Hannon), trimmed to 21 nt and mapped to the full mouse University of California at 

Santa Cruz genome mm9 assembly with the Bowtie short read alignment tool (Langmead 

et al., 2009) allowing a single mismatch per alignment region with multiplicity of up to 

500. Reads were quantified using a combination of BEDTools (Quinlan and Hall, 2010) 

commands and custom scripts. Reads were classified as pre-miRNA if they mapped to 

one annotated miRNA end and were longer than 30 nt. After quantifying and excluding 

rRNA and miRNA regions, per nucleotide genome coverage was determined for each 

dataset and regions of continuous coverage greater than expected from a poisson noise 

distribution were identified. These regions were merged for all datasets and intersected 

with gene annotation in the order illustrated in Figure S2C. These annotated regions 

named by the overlapping gene feature and 5’ most nucleotide were then used for the 

quantitation of reads in each individual dataset. Reads of all lengths were considered for 
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normalization. Quantitation of reads that map to multiple positions in the genome were 

adjusted as described in (Ruby et al., 2006) and were included in quantification of 

repetitive regions, such as some annotated miRNA. For other non-repetitive regions, only 

uniquely mapped reads were used and only 20-30 nt length reads were used for 

quantitation to determine Ago enrichment. Normalized read values were used to perform 

analysis for differential expression or enrichment. For the classification of Ago-bound 

small RNA, a region must be enriched by more than 3-fold in both biological replicates 

or, if not detected in negative control, be represented by 2 reads in each biological 

replicate. Mouse gene annotations for analysis were from miRBase v19 and Ensembl. 

Protein-coding genes used in analysis exclude histone genes. Targetscan predictions were 

generated using version 6.0.  

The gene ontology analysis was performed with DAVID and functional categories 

with Benjamini-Hochberg corrected p-values < 0.01 are shown. The secondary structure 

predictions were generated using RNAfold from the Vienna package with default 

settings. Two-tailed Student’s t-test was applied to luciferase reporter assays where 

indicated and a Kolmogorov-Smirnov test was used to compare the distribution of cells in 

the single-cell FACs data. 

 

mRNA cloning 

For the cloning of full-length mRNA from TSS-miRNA promoters, cDNA was 

synthesized with SuperScriptIII First Strand Synthesis kit (Life Technologies) and 

inserted into a TOPO cloning vector (Life Technologies) for sequencing. For 
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overexpression, the Cpsf4l cDNA region was cloned into pcDNA 3.1+ overexpression 

vector and sequence verified.   

 

Northern blotting and splint ligation detection of RNA  

20g of total RNA was separated on a 12% polyacrylamide/Urea/TBE gel and 

transferred to HyBond N+ membrane (GE Healthcare) using the TransBlot SD Semi-dry 

Transfer System (Biorad) and UV crosslinked. DNA oligo probes were γ-
32

P end labeled 

using T4 polynucleotide kinase (New England Biolabs) and purified using Illustra G-25 

MicroSpin columns (GE Healthcare). Blots were blocked in ULTRAHyb Oligo 

(Ambion) at 42
o
C for at least 30 minutes and hybridized with a radiolabeled DNA probe 

overnight at 42
o
C. Blots were washed twice for 30 minutes with 2xSSC and 0.5% SDS 

pre-warmed to 42
o
C. RNA was visualized with phosphor screens from GE-HealthCare. 

 

 The splint ligation protocol was performed as described in (Maroney et al., 2008) 

using 3ug of total RNA. The bridge sequences used were: 

 Cpsf4l TSS-miRNA (GAATGTCATAAGCGTCAGAGGGTGTGTGGGACAG)  

Snora15 (GAATGTCATAAGCGATTTGTACTCACTTCTAATAAT)  

with the sequence complementary to radio labeled adaptor underlined.  

 

Chromatin-associated small RNA sequencing 

 Chromatin was isolated using the procedure described in (Wuarin and Schibler, 

1994) from 8 x 15-cm
2 

plates. Briefly, cells were washed once in cold 1X PBS, 

resuspended in Buffer A (10mM HEPES, pH7.3, 10mM KCl, 1.5mM MgCl2, 0.34M 
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Sucrose, 10% Glycerol, 1mM DTT, 1x Complete EDTA free protease inhibitor cocktail 

(Roche)) and lysed with 0.5% Triton-X 100. The pellet was then washed twice in Buffer 

A. Nuclei were lysed with two washes of Buffer B (20mM HEPES, pH 7.3, 1mM DTT, 

7.5 mM MgCl2, 0.2mM EDTA, 0.3M NaCl, 1M Urea, 1% NP-40). The chromatin pellet 

was resuspended in Buffer C (50mM Sodium Acetate pH 5.5, 50 mM NaCl, 0.5% SDS) 

and phenol chloroform extracted twice. Size fractionation for RNA less than 200 nt was 

performed with miRNeasy Mini columns (Qiagen) with a gDNA Eliminator Mini spin 

column step incorporated for genomic DNA removal. Three micrograms of isolated RNA 

was treated as described in (Nechaev et al., 2010) with 5’-polyphophatase (Epicentre) and 

Terminator 5’ phosphate dependent exonuclease (Epicentre) treatment each followed by 

phenol chloroform extraction. The RNA was then size fractionated on a 15% denaturing 

gel to isolate different size ranges including the 50-100 nt range used to identify overlaps 

with TSS-miRNA regions.  The gel purified RNA was ligated to miRNA linker #1 (IDT) 

and small RNA cloning was performed with the cDNA circularization based procedure 

using primers for 3’ end sequencing. A full description of this dataset will be presented 

elsewhere.  

  

Small RNA mimics 

Small RNA mimics were ordered from Dharmacon as a siRNA duplex containing 

2-3’ nt overhangs. All control siRNA transfections utilized the Dharmacon siGenome 

Control non-targeting control #2. TSS-miRNA mimic sequences are as follows: Cpsf4l, 

sense: 5’CUGUCCCACACACCCUCUGAC3’, antisense: 5’ 

GUCAGAGGGUGUGUGGGACAG 3’. Krcc1, sense: 
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5’CUCUCCGCCACCUCCACCGCAG 3’, antisense: 5’ 

GCGGUGGAGGUGGCGGAGAGAG 3’. All TSS-miRNA mimic transfections were 

performed using Lipofectamine 2000 (Life Technologies). 
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