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Appendix 1: Regularity conditions.

Following the notation in Andersen & Gill (1982), we consider a finite time interval [0, 7] with
T < 00. To facilitate the notation, let N;(t) = I {T; <t,T; < C;} and Y;(t) = [ {T; > t,C; > t}.
Define H;(0,t) = Yi(t) exp {g(Xi,0)}, SO0, t) = n=1 30 Hi(0,t), SV(0,¢) =n~1 3" | VoH;(0,1),
S@(0,¢) =n=t3 " VZH(0,t), and S®)(0,¢) =nt 3" VaH,(0,t), where Vy(-) denotes the
first derivative with respect of 6, VZ(-) and V3(-) denote the second and third order derivatives
respectively.

We assume the following regularity conditions hold for Theorem 1:

(1) Ji Xo(t)dt < oo

(2) There exists a neighbourhood © of 6y and s (0,t), sV(8,t), s (0,t) and s®(0,t)
defined on © X [0, 7] such that for ;7 = 0,1,2 and 3.

te[sggeg }}S(j)(H,t) - s(j)(ﬁ,t)H — 0
where ||-|| is the L;-norm.
(3) Let ©, sO(-,-), sM(.,-), s?(-,-) and s®(-,-) be as in Condition (2) and define e =
s /s and v = s /50 —e®e. Forall § € ©,t € [0,7], sO(,t), sV(-,t) and sP(- 1)
are continuous functions of # € O, uniformly in ¢ € [0,7], s©(0,t), sV (0,t), s2(0,t), and
s3)(0,t) are bounded on © x [0, 7]; and s (6, ) is bounded away from zero on © x [0, 7]. Let
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ul®(9) = Vig(X,0),

I(6y) = /OT {v(0,t) — u?(6) } s (6o, t) Mo (t)dt,

and we require the submatrix Z, (8,0, Va0) from 1(6y) that corresponds to the non-zero (8,0, Va0)

is positive definite.

For Theorem 2, we denote H;(6,,,t) = Y;(t) exp {g(6,, X,;)}. Define ¢; ;(0,,t) = {0H;(6,,,t) /00, ;}
A iy HilOn, 00}, Wi (00 t) = 7 00, 005 (O, 1), W2 (0nst) = ™ 320, 061560 8)/ O i
and W) (0,,1) = 0 320 0635(00, 1) /(00,1,00,,), for any j, k1 =1, p,(pu+1)/2. We fur-
ther denote W™ (6, ¢) = 0™ S0 {615 (0n, )01k (0, )}, Wi P (0, t) = 07" 320 {061,5(0, 1)/ 001},
and I/I/'J(,fiZ)(Hn, t)y=n"tY"  {0%¢:;(6,, £)/00,,£00,,}°. We assume the following regularity con-

ditions in Theorem 2.

(4) 5 Xo(t)dt < oo
(5) There exists a neighbourhood ©,, of 6,, o and w](»l)(ﬁn, t), w](i)(@n, t), wﬁ%(@n, t), w](.i’m (O, 1),
w§i’2)(0n,t), w](.i’f)(ﬁn,t), defined on ©,, x [0, 7] such that for m =1,2,3,

sup ||W(m)(«9n, t) — w_(m)(th)H —2 0,
t€[0,7],0, €O

and moreover,

sup ||W(1’2)(6n,t) — w2 (6, t)|| —5 0
t€[0,7],0, €0,

sup ||W.(2’2)(9mt) - w-(2’2)(‘9mt)” —2 0
t€[0,7],0, €60,

sup HW(:)”Q)(QH, t) — w_(3’2)(9n,t)H — 2 0.
tel0,7],0,€0

(6) For all 6, € O, t € [0,7], w (-, 1), w2 (-, 1), WP, 0), w2 (1), w? (1), W ()
are continuous functions of 6, € ©,, uniformly in ¢t € [0,7], and w.(l)(en,t), w.(2)(9n,t),
w®(0,,t) and w?(0,,1), WP (0,,t), WP (0,,t) are bounded on O, x [0,7]. Let u®(6,)
denote V3 g(X,0,) and w®(6,,t) denote the matrix with {w®(6,,t)};, = wj(.z)(ﬁn,t) for all



gk =1, ,pu(pn +1)/2. Then define

I(en,[)) = / {w(z) (en,Oa t) — U(Q) ((9”70)} 8(0) (en,Oa t))\(] (t)dt,
0

and let Zy,,(Sa0, Vao) denote the submatrix of 1(6,) with respect to the non-zero (Su0, Va0)- It
satisfies 0 < C7 < Amin{Zan(Ba0, Ya0) } < Amax{Zan(Ba0, Ya0)} < C2 < oo for all n, where Apin(+)

and Apax(-) represent the smallest and largest eigenvalues of a matrix respectively.

Appendix 2: Proof of Theorem 1.

The log partial likelihood ,,(f) can be written as

1,(6) :z::/OTg(Xi,G)dNi(s) —/OT log

> Yi(s)exp {g(X;, 0)}] dN (s)

=1

where N () = >+ Ni(-). By Theorem 4.1 and Lemma 3.1 of ?, it follows that, for each 6 in a

neighbourhood of 6y:

%{W’) — In(f0)} = /O T {(9 —60)" sV (6o, t) — log {%} s<°><eo,t>] No(1)dt+0, (%) .

Let 1, = n~ Y2 4+ &,, consider the C-ball B,(C) = {0 : 0 = 0y + 1,6, ||6]| < C},C > 0. For any
0 € B,(C), by the second-order Taylor expansion of the log partial likelihood, and by the weak

law of large numbers, we have

1 lor L ooer

n {13(60 + mnd) — 1n(60) } = Eve L (00) 1m0 — 577715 {1(6o) + 0p(1)} 0
where ||6]| < C. We further write 6 = (uy, ..., up, V12, .., Vp_1,)" = (u?,vT)T. Then let

Dn(a) = {Qn(90 + nnd) - Qn(QO)}

S|

1 p
= = {la(b +7.0) — 1n(60)3+ ) A, (180 + i) = 1Bo )+ > A jr (ogg + mnvige| = 105.1)

J=1 J<y’

1
> . {1n(00 + 7n6) — 1n(60)} — Z ;| + Z |vj,57]

{3:Bo;j€Bao} {(G.3") 05,57 €Va0}



1
> n {6,(60 + m0) — 1,(60)} — 77721 (1Ba0] + |7a0]) C = Ay + Ay + As

where |-| measures the number of elements of the vector inside,

Ay = =Vl (00) (1a8) = Oy0™) (10

Ay = % (10)" {1(80) + 0,(1)} (1a0) = % (1n6a)" {Za(Baos Ya0) + 0p(1)} (mnda)
As = =2 (1Baol + [a0l) C,

and J, is the sub-vector of ¢ correspond to non-zero (B,0,7a0). Notice that A dominates A,
and As and is positive since Z, (a0, Va0) is positive definite. Therefore, for any given € > 0,

there exists a large enough constant d such that

P {eeiBnnf(d) Qn(6) > Qn(eo)} >1—

This implies that with probability at least 1 — e, there exists a local minimizer in the ball B, (C')

such that |6, — 6,|| = O,(n,) = Op(n~12).

Now for the sparsity, we first show P(an = 0) — 1. Tt is sufficient to show for any
{7 : Boj € Bw},

aQn(én) A
f ; 1
B, >0for0<f; <e, (1)
and A
OQn(0y) A
for — ; 2
o5, <0for —e, < f; <0 (2)

2

with probability tending to 1, where ¢, = Cn~'/? and C' > 0 is any constant. To show (1),

notice

~

0Qn(6,)  Olu(6,)
88, 9B

0B; £ 9,00,

+ )\f’nsign(ﬁj) = —

(p1)/2
Ola(00) = 0%, (60) (ék B 9%)

p(p+1) p(p+1)

2 p) 3 ~ . R
B Z Z %& <9k - 901:) (91 - 901) + Aﬁnsign(ﬁj)7
= J



where 6 lies between 6,, and 6. By the regularity conditions and

b, — eoH = 0,(n"1/2),

8%? Y — i {0,(1) + VX, sien(3)}

As \/ﬁ)\f — oo for j € {j : Bo; € Bro}, the sign of aQn(én)/aﬁj is dominated by sign(ﬁj).

Therefore,
9Qn(0n)

P
0p;

>0f0r0<ﬁAj<en]—>1asn—>oo

Similarly, we can show (2), and P(f, = 0) — 1 follows. We can similarly prove that P(5y, =
0) — 1.

For (4,7") € {(J,J) : 70j7 € Yeo}, without loss of generality, assume that Sy; = 0. Notice
that Bj = 0 implies 4, = 0. Since we already have P(Bj = 0) — 1, we can conclude
P(%;; =0) — 1 as well, i.e. P(J., =0) — 1 as n — oo. Thus, we finish the proof for Part (i)
of Theorem 1.

Next we show the asymptotic normality. Let @n(Qa) denote the objective function @,, only
on the nonzero component of 4, i.e. 6, = (31,41, We define 6, = (8L, ~vL,~I)T, and from

the above derivation, we have P (éb = O) — 1. Thus,

P [arg ngin Qn(0,) = (Ha — component of arg m@in Qn(9)>] — 1.

a

It means that 6, should satisfy

8Qn (0,)
90,

lo,—9, =0, Vi€{j:0; €0.}

with probability tending to 1.
Let L(Qa) and R(ea) denote the log-likelihood function of 6, and the penalty function of

0, respectively so that we have

Qn(ea) = _’Z:L(ea) + ﬁ)\(ea)

Then

Vo,0n(0,) = =V, 1,(0,) + Vo, Pr(0,) =0 (3)



with probability tending to 1.
By Taylor expansion, it is easy to show that

~ 1 ~

B1 = V@aln(éa) = \/ﬁ \/ﬁv%ln(efw) - Za(ﬁaOafyaO)\/ﬁ(éa - eao) + Op(l)

and

N sign(3;) .

) pE + 0,(1)(0, — 0,0)
)‘j,j’,nSIgn(’Yj,j’)

Bj €BaxV;, i €Ya

By = Vea]g,\(éa) =

Since we have ||0, — 00| = O,(n~1/2), together with (3), we have

: Lo

\/ﬁ(ea - Qa()) = Ia(ﬁaOa ’YaO)_ \/ﬁvealn(gaﬂ) + Op(l)-
Part (ii) of Theorem 1 then follows by applying the central limit theorem.

Appendix 3: Proof of Theorem 2.

Similarly, under the regularity conditions in Appendix 1, we argue that there exists a lo-

O =g ’ = Op(V@n(n'?+6,)). Let 0, = \/Ga(n™'2+&,),
consider the C-ball {6,, = 6,0 + 1,9, |6|| < C},C > 0. We define D,,(0) = {Qn (00 + 19) — Qn(0no)} /7,

cal minimizer 6, of Q,,(0) such that

then for any § = (uy, ..., Up, V12, ..., Up_1,)7 = (u”,vT)T that satisfies ||0]] < C, similarly as in

Appendix 2, we have

Do(3) = —{Quluo + 1:6) ~ Qu(Br0)} =~ {aBuo + 1:6) — u(6n0)} — 1 (VEE) C

1 1 ~ ~ ~
= —EVeTnln(Qn,o) (120) + 5 (110)" {1(On.0) + 0p(1)} (126) — 12C = A1+ Ay + As
where
- 1 -
Ay = ==V (0no) (1.0) and ‘Al < 0 Y2,0,(v/@n)C = 0,(n2)C,
-1 1 -
Ay = B (nnd)T {L(0n0) +0p(1)} (md) = B (nnéa)T {Zan(Baos Ya0) + 0p(1)} (Mda) , Az = 77727,07

and §, is the sub-vector of ¢ correspond to non-zero (Su0, Yao). Similarly, Zg dominates Zl and

113, and is positive since Z,,(Ba0, Ve0) is positive definite. Therefore, for any given € > 0, there



exists a large enough constant C' such that

P{ lnf Qn( n,0 +77n5) > Qn(en,O)} 2 1— €.

lsl<c

This implies that with probability at least 1 —¢, there exists a local minimizer in the ball B, (C)

| = 0y(mn)

We now show P(B;m = 0) — 1. It is sufficient to show that for any j € {j : 5., € Bon},

n - en,O

such that

Wn’j>0f0’f‘0<6n7j<€n (4)
&gg—iif‘)<0for—en<3n,j<0 (5)

with probability tending to 1, where ¢, = Cn~'/2

and C' > 0 is any constant. Notice
0Qu(0) _ Olu(6.)

= — )\5"51 n(s,
aﬁn,j aﬁn,j g (ﬁ ])

— al( ) - a2ln(9n,0) )
=T B, ;aﬂwaem (Q"”f gn’o’f)

dn  Qdn

Zl aﬁnjaen kaem (G

k=11

9n,0k> <9nl - 0n Ol> + Aﬁn Slgn(ﬁn ])
where 6,, lies between 6, and 0n0. By the regularity conditions, and notice

Op(v/an/7), j
o o i)

As \/n qn)\’B" — oo for j € {j : Bn,; € Ben}, the sign of 8Qn( /0f,.; is the same as s&gn(ﬁ )
J 2J

Therefore,

n,0

0Qn(0,)
aﬁn,j

and (4) holds with probability tending to 1. Parallel to this, one can show (5) holds with

P

>0for0<ﬁAn,j<en] —lasn— o

probability tending to 1.
Similar argument can be used to prove P(%,,; = 0) = 1 as n — oo, for 4, ;i € Ypn, thus



For 4. ;/ € Hen, Without loss of generality, assume that (3,0, = 0. Notice that 3,; = 0
implies 4, ;7 = 0, because if 4, ; i # 0, then the value of the loss function does not change but
the value of the penalty function increases. Therefore, P(%, ;; = 0) — 1 follows since we have
already shown P(,; = 0) — 1.

Thus, Part (i) of Theorem 2 is proved.

Now, we prove the asymptotic normality. Denote 0, = (81 ;4T )T, then

an? ’YG,TL

\/_Q Il 2( an,O) (éan — ban 0) \/_Q I, u 2( an,O)]an(ean,O) (éan - ‘gtm,ﬁ)

1
= \/ﬁQn-’Za_nl/2 (ﬁa()? 7a0) {ﬁvzn(ean,o) + Op(n_l/z)}

n

1
- ﬁQnI;n1/2 (6(107 7&0) Z [VZn(ean 0 + Op Z Ynz + Op
i=1

where Y,,; = n_l/ZQnI;nl/z(ﬁam Ya0) D iy [Vin(Oan0)]-

We now show that with probability tending to 1, > 7 | Y, 4+ 0, (1) =4 N (0, X):

(i) We first show Z,, (B0, Vao) (éan - Qan,()) ="V, (0ano) + 0,(n"12) . With probability
tending to 1,

R 1 ~ ~
0= VGanQn<9an) = _ﬁveanln<0an)+v0an Z /\6n /BTZ 0] Z )‘;Y,rjl",n’ynaojvj'

{jzﬁn,ojeﬁaO} {(jvj/):'yny()j,j/e'}/a()}

Taking Taylor Expansion at 6,, = 0,9, we have

0= Vo la(00) — [V, 12000)] (Bur— 0u0) =5 (Bun— 0 [V (Vi lalBuc))] (B — o)

+nVy,, > MNnBag + > A5 0 Vn04 57

{J:Bn,05€Ba0} {(jvj,):'}’nﬁoj,jle')’a()}

Thus,
_ A 1 A _ 1 A
I n1/2<6a07 7(10) <0an - 9(10) = _gvganln<0a0) <6an - 0a0>+{1-an1/2(ﬁa07 ’}/aO) + Evzanln(eaO)} (ean - ea[))

= %vganzn(eao) + % (9an — Hao)T (Ve (Vounln(8a0))] (éan - 9ao>



—V@an Z )\Jﬁ;bﬁn’(]] + Z Al?/7n7n,0j’j/

{4:Bn,0j€Ba0} {(3:3")Vn,05,5' €Va0}

1 ~
+ {Ian1/2(5a07 7a0) + gvganln<0a0)} (90”1 - 9&0) .

Therefore, it is sufficient to show that

% (éan — eao)T (V3. (Vo la(0w0))] (éan - 9ao>

~Voun D NinBao + > A Y03 5"

{4:Bn,05€Ba0} {(3:3")Vn 05,50 €Va0}

1 N
+ {Ian(/ﬁaoa ’Yao) + gvﬁanln(@w)} <9an — 9a0> — 0p(n_1/2),

Denote the three terms in the above equation as D;, Dy, and D3. First, by Cauchy-Schwarz
inequality,

1 R 4
D 2<_ ean_ea
IDi? < ;

V2 (Vounln(Ban0))|)”

s Y R000(E) =0,/ = 0,(1/n)

{(ch:l):en,j’Gn,kven,leean}

Secondly, because &, = o(1//nqn),

T 2
||D2||2 - H </\§3,Y;LSign(6n,Ol)v s 7)‘;Z,l,pn,nSign(’yn,U(Pn—1,Pn))>

< fan| & = |0an] 0(1/ng,) = 0,(1/n)
Third, it can be shown that

1 211a 2
||-D3||2 < ‘ Ian(ﬁaOa/YaO) + ﬁvganln(‘gaO) ean - 6(10

= 0,(1/82)05(au/n) = 0,(1/ngn) = 0,(1/n)

Therefore, D; + Dy + D3 = 0,(n"'/?).
Next, we show 1" V., + 0,(1) —4 N(0,%). It is sufficient to show that V,,;, i =1,....n

satisfies the conditions for Lindeberg-Feller central limit theorem. For any given ¢ > 0, by



Cauchy-Schwarz inequality,

1/2 1/2
STE [Vl T{I[Yaill > €}] = nE [|Yus|* T{|[Yill > €}] < nDy*Dy/

=1
where Dy = [E ||Y,,||"] and Ds = E{I (||Yy| > €)}. Note

4

1
Di=—E 120 Z0 " (Baos Ya0) Vo bn (00 |

<—HQTQ P 1 Lan (Bao) |72 E || V5. 14(020) Vol (8a0) |

2)‘72na$ QTQ Anaz { aO)} O(lean|2) = 0(9721/”2)'
By Markov inequality,

Dy = EL (Yl > ) = P(Vaall > ) < 2100 _ 0g,m)

Therefore,

ZE 1Yoill* LYol > €}] < 1n0(ga/n)O(V g /1) = 0(1),

and part (ii) of Theorem 2 follows.
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