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Appendix 1: Regularity conditions.

Following the notation in Andersen & Gill (1982), we consider a finite time interval [0, τ ] with

τ <∞. To facilitate the notation, let Ni(t) = I {Ti ≤ t, Ti ≤ Ci} and Yi(t) = I {Ti ≥ t, Ci ≥ t}.

DefineHi(θ, t) = Yi(t) exp {g(Xi, θ)}, S(0)(θ, t) = n−1
∑n

i=1Hi(θ, t), S(1)(θ, t) = n−1
∑n

i=1∇θHi(θ, t),

S(2)(θ, t) = n−1
∑n

i=1∇2
θHi(θ, t), and S(3)(θ, t) = n−1

∑n
i=1∇3

θHi(θ, t), where ∇θ(·) denotes the

first derivative with respect of θ, ∇2
θ(·) and ∇3

θ(·) denote the second and third order derivatives

respectively.

We assume the following regularity conditions hold for Theorem 1:

(1)
´ τ

0
λ0(t)dt <∞

(2) There exists a neighbourhood Θ of θ0 and s(0)(θ, t), s(1)(θ, t), s(2)(θ, t) and s(3)(θ, t)

defined on Θ× [0, τ ] such that for j = 0,1,2 and 3.

sup
t∈[0,τ ],θ∈Θ

∥∥S(j)(θ, t)− s(j)(θ, t)
∥∥ −→P 0

where ‖·‖ is the L1-norm.

(3) Let Θ, s(0)(·, ·), s(1)(·, ·), s(2)(·, ·) and s(3)(·, ·) be as in Condition (2) and define e =

s(1)/s(0) and v = s(2)/s(0) − e ⊗ e. For all θ ∈ Θ, t ∈ [0, τ ], s(0)(·, t), s(1)(·, t) and s(2)(·, t)

are continuous functions of θ ∈ Θ, uniformly in t ∈ [0, τ ], s(0)(θ, t), s(1)(θ, t), s(2)(θ, t), and

s(3)(θ, t) are bounded on Θ× [0, τ ]; and s(0)(θ, t) is bounded away from zero on Θ× [0, τ ]. Let
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u(2)(θ) = ∇2
θg(X, θ),

I(θ0) =

ˆ τ

0

{
ν(θ0, t)− u(2)(θ0)

}
s(0)(θ0, t)λ0(t)dt,

and we require the submatrix Ia(βa0, γa0) from I(θ0) that corresponds to the non-zero (βa0, γa0)

is positive definite.

For Theorem 2, we denoteHi(θn, t) = Yi(t) exp {g(θn, Xn,i)}. Define φi,j(θn, t) = {∂Hi(θn, t)/∂θn,j}

/{n−1
∑n

i=1Hi(θn, t)},W (1)
j (θn, t) = n−1

∑n
i=1 φi,j(θn, t),W

(2)
jk (θn, t) = n−1

∑n
i=1 ∂φi,j(θn, t)/∂θn,k,

andW (3)
jkl (θn, t) = n−1

∑n
i=1 ∂φi,j(θn, t)/(∂θn,k∂θn,l), for any j, k, l = 1, · · · , pn(pn+1)/2. We fur-

ther denoteW (1,2)
jk (θn, t) = n−1

∑n
i=1 {φi,j(θn, t)φi,k(θn, t)}

2,W (2,2)
jk (θn, t) = n−1

∑n
i=1 {∂φi,j(θn, t)/∂θn,k}

2,

andW (3,2)
jkl (θn, t) = n−1

∑n
i=1 {∂2φi,j(θn, t)/∂θn,k∂θn,l}2. We assume the following regularity con-

ditions in Theorem 2.

(4)
´ τ

0
λ0(t)dt <∞

(5) There exists a neighbourhood Θn of θn,0 and w
(1)
j (θn, t), w

(2)
jk (θn, t), w

(3)
jkl(θn, t), w

(1,2)
jk (θn, t),

w
(2,2)
jk (θn, t), w

(3,2)
jkl (θn, t), defined on Θn × [0, τ ] such that for m = 1, 2, 3,

sup
t∈[0,τ ],θn∈Θn

∥∥W (m)
· (θn, t)− w(m)

· (θn, t)
∥∥ −→P 0,

and moreover,

sup
t∈[0,τ ],θn∈Θn

∥∥W (1,2)
· (θn, t)− w(1,2)

· (θn, t)
∥∥ −→P 0

sup
t∈[0,τ ],θn∈Θn

∥∥W (2,2)
· (θn, t)− w(2,2)

· (θn, t)
∥∥ −→P 0

sup
t∈[0,τ ],θn∈Θn

∥∥W (3,2)
· (θn, t)− w(3,2)

· (θn, t)
∥∥ −→P 0.

(6) For all θn ∈ Θn, t ∈ [0, τ ], w(1)
· (·, t), w(2)

· (·, t), w(3)
· (·, t), w(1,2)

· (·, t), w(2,2)
· (·, t), w(3,2)

· (·, t)

are continuous functions of θn ∈ Θn, uniformly in t ∈ [0, τ ], and w
(1)
· (θn, t), w

(2)
· (θn, t),

w
(3)
· (θn, t) and w

(1,2)
· (θn, t), w

(2,2)
· (θn, t), w

(3,2)
· (θn, t) are bounded on Θn × [0, τ ]. Let u(2)(θn)

denote ∇2
θn
g(X, θn) and w(2)(θn, t) denote the matrix with {w(2)(θn, t)}jk = w

(2)
jk (θn, t) for all
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j, k = 1, · · · , pn(pn + 1)/2. Then define

I(θn,0) =

ˆ τ

0

{
w(2)(θn,0, t)− u(2)(θn,0)

}
s(0)(θn,0, t)λ0(t)dt,

and let Ian(βa0, γa0) denote the submatrix of I(θn,0) with respect to the non-zero (βa0, γa0). It

satisfies 0 < C1 < λmin{Ian(βa0, γa0)} ≤ λmax{Ian(βa0, γa0)} < C2 < ∞ for all n, where λmin(·)

and λmax(·) represent the smallest and largest eigenvalues of a matrix respectively.

Appendix 2: Proof of Theorem 1.

The log partial likelihood ln(θ) can be written as

ln(θ) =
n∑
i=1

ˆ τ

0

g(Xi, θ)dNi(s)−
ˆ τ

0

log

[
n∑
i=1

Yi(s)exp {g(Xi, θ)}

]
dÑ(s)

where Ñ(·) =
∑n

i=1Ni(·). By Theorem 4.1 and Lemma 3.1 of ?, it follows that, for each θ in a

neighbourhood of θ0:

1

n
{ln(θ)− ln(θ0)} =

ˆ τ

0

[
(θ − θ0)T s(1)(θ0, t)− log

{
s(0)(θ, t)

s(0)(θ0, t)

}
s(0)(θ0, t)

]
λ0(t)dt+Op

(
‖θ − θ0‖√

n

)
.

Let ηn = n−1/2 + ξn, consider the C-ball Bn(C) = {θ : θ = θ0 + ηnδ, ‖δ‖ ≤ C} , C > 0. For any

θ ∈ Bn(C), by the second-order Taylor expansion of the log partial likelihood, and by the weak

law of large numbers, we have

1

n
{ln(θ0 + ηnδ)− ln(θ0)} =

1

n
∇T
θ ln(θ0)ηnδ −

1

2
η2
nδ

T {I(θ0) + op(1)} δ

where ‖δ‖ ≤ C. We further write δ = (u1, ..., up, v12, ..., vp−1,p)
T = (uT , vT )T . Then let

Dn(δ) ≡ 1

n
{Qn(θ0 + ηnδ)−Qn(θ0)}

= − 1

n
{ln(θ0 + ηnδ)− ln(θ0)}+

p∑
j=1

λβj,n (|β0j + ηnuj| − |β0j|)+
∑
j<j′

λγj,j′,n (|γ0j,j′ + ηnvj,j′ | − |γ0j,j′ |)

≥ − 1

n
{ln(θ0 + ηnδ)− ln(θ0)} − η2

n

 ∑
{j:β0j∈βa0}

|uj|+
∑

{(j,j′):γ0j,j′∈γa0}

|vj,j′|
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≥ − 1

n
{ln(θ0 + ηnδ)− ln(θ0)} − η2

n (|βa0|+ |γa0|)C ≡ A1 + A2 + A3

where |·| measures the number of elements of the vector inside,

A1 = − 1

n
∇θln(θ0) (ηnδ) = Op(n

−1/2) (ηnδ)

A2 =
1

2
(ηnδ)

T {I(θ0) + op(1)} (ηnδ) =
1

2
(ηnδa)

T {Ia(βa0, γa0) + op(1)} (ηnδa)

A3 = −η2
n (|βa0|+ |γa0|)C,

and δa is the sub-vector of δ correspond to non-zero (βa0, γa0). Notice that A2 dominates A1

and A3 and is positive since Ia(βa0, γa0) is positive definite. Therefore, for any given ε > 0,

there exists a large enough constant d such that

P

{
inf

θ∈Bn(d)
Qn(θ) > Qn(θ0)

}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists a local minimizer in the ball Bn(C)

such that
∥∥∥θ̂n − θ0

∥∥∥ = Op(ηn) = Op(n
−1/2).

Now for the sparsity, we first show P (β̂bn = 0) → 1. It is sufficient to show for any

{j : β0j ∈ βb0},
∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn (1)

and
∂Qn(θ̂n)

∂βj
< 0 for − εn < β̂j < 0 (2)

with probability tending to 1, where εn = Cn−1/2 and C > 0 is any constant. To show (1),

notice

∂Qn(θ̂n)

∂βj
= −∂ln(θ̂n)

∂βj
+ λβj,nsign(βj) = −∂ln(θ0)

∂βj
−

p(p+1)/2∑
k=1

∂2ln(θ0)

∂βj∂θk

(
θ̂k − θ0k

)

−

p(p+1)
2∑

k=1

p(p+1)
2∑
l=1

∂3ln(θ̃)

∂βj∂θk∂θl

(
θ̂k − θ0k

)(
θ̂l − θ0l

)
+ λβj,nsign(βj),
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where θ̃ lies between θ̂n and θ0. By the regularity conditions and
∥∥∥θ̂n − θ0

∥∥∥ = Op(n
−1/2),

∂Qn(θ̂n)

∂βj
=
√
n
{
Op(1) +

√
nλβj,nsign(β̂j)

}
.

As
√
nλβj → ∞ for j ∈ {j : β0j ∈ βb0}, the sign of ∂Qn(θ̂n)/∂βj is dominated by sign(β̂j).

Therefore,

P

[
∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn

]
→ 1 as n→∞

Similarly, we can show (2), and P (β̂bn = 0)→ 1 follows. We can similarly prove that P (γ̂bn =

0)→ 1.

For (j, j′) ∈ {(j, j′) : γ0j,j′ ∈ γc0}, without loss of generality, assume that β0j = 0. Notice

that β̂j = 0 implies γ̂j,j′ = 0. Since we already have P (β̂j = 0) → 1, we can conclude

P (γ̂j,j′ = 0)→ 1 as well, i.e. P (γ̂cn = 0)→ 1 as n→∞. Thus, we finish the proof for Part (i)

of Theorem 1.

Next we show the asymptotic normality. Let Q̃n(θa) denote the objective function Qn only

on the nonzero component of θ, i.e. θa = (βTa , γ
T
a )T . We define θb = (βTb , γ

T
b , γ

T
c )T , and from

the above derivation, we have P
(
θ̂b = 0

)
→ 1. Thus,

P

[
arg min

θa
Q̃n(θa) =

(
θa − component of arg min

θ
Qn(θ)

)]
→ 1.

It means that θ̂a should satisfy

∂Q̃n(θa)

∂θj
|θa=θ̂a

= 0, ∀j ∈ {j : θj ∈ θa}

with probability tending to 1.

Let l̃n(θa) and P̃λ(θa) denote the log-likelihood function of θa and the penalty function of

θa respectively so that we have

Q̃n(θa) = −l̃n(θa) + P̃λ(θa)

Then

∇θaQ̃n(θ̂a) = −∇θa l̃n(θ̂a) +∇θaP̃λ(θ̂a) = 0 (3)
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with probability tending to 1.

By Taylor expansion, it is easy to show that

B1 = ∇θa l̃n(θ̂a) =
√
n

[
1√
n
∇θa l̃n(θa0)− Ia(βa0, γa0)

√
n(θ̂a − θa0) + op(1)

]

and

B2 = ∇θaP̃λ(θ̂a) =


 λβj,nsign(βj)

λγj,j′,nsign(γj,j′)


βj∈βa,γj,j′∈γa

+ op(1)(θ̂a − θa0)

 .

Since we have
∥∥∥θ̂a − θa0

∥∥∥ = Op(n
−1/2), together with (3), we have

√
n(θ̂a − θa0) = Ia(βa0, γa0)−1 1√

n
∇θa l̃n(θa0) + op(1).

Part (ii) of Theorem 1 then follows by applying the central limit theorem.

Appendix 3: Proof of Theorem 2.

Similarly, under the regularity conditions in Appendix 1, we argue that there exists a lo-

cal minimizer θ̂n of Qn(θ) such that
∥∥∥θ̂n − θn,0∥∥∥ = Op(

√
qn(n1/2+ξn)). Let ηn =

√
qn(n−1/2+ξn),

consider the C-ball {θn = θn,0 + ηnδ, ‖δ‖ ≤ C} , C > 0. We defineDn(δ) ≡ {Qn(θn,0 + ηnδ)−Qn(θn,0)} /n,

then for any δ = (u1, ..., up, v12, ..., vp−1,p)
T = (uT , vT )T that satisfies ‖δ‖ ≤ C, similarly as in

Appendix 2, we have

Dn(δ) ≡ 1

n
{Qn(θn,0 + ηnδ)−Qn(θn,0)} ≥ − 1

n
{ln(θn,0 + ηnδ)− ln(θn,0)} − ηn (

√
qnξn)C

= − 1

n
∇T
θnln(θn,0) (ηnδ) +

1

2
(ηnδ)

T {I(θn,0) + op(1)} (ηnδ)− η2
nC ≡ Ã1 + Ã2 + Ã3

where

Ã1 = − 1

n
∇T
θnln(θn,0) (ηnδ) and

∣∣∣Ã1

∣∣∣ ≤ n−1/2ηnOp(
√
qn)C = Op(η

2
n)C,

Ã2 =
1

2
(ηnδ)

T {I(θn,0) + op(1)} (ηnδ) =
1

2
(ηnδa)

T {Ian(βa0, γa0) + op(1)} (ηnδa) , Ã3 = η2
nC,

and δa is the sub-vector of δ correspond to non-zero (βa0, γa0). Similarly, Ã2 dominates Ã1 and

Ã3, and is positive since Ian(βa0, γa0) is positive definite. Therefore, for any given ε > 0, there
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exists a large enough constant C such that

P

{
inf
‖δ‖≤C

Qn(θn,0 + ηnδ) > Qn(θn,0)

}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists a local minimizer in the ball Bn(C)

such that
∥∥∥θ̂n − θn,0∥∥∥ = Op(ηn).

We now show P (β̂bn = 0)→ 1. It is sufficient to show that for any j ∈ {j : βn,j ∈ βbn},

∂Qn(θ̂n)

∂βn,j
> 0 for 0 < β̂n,j < εn (4)

∂Qn(θ̂n)

∂βn,j
< 0 for − εn < β̂n,j < 0 (5)

with probability tending to 1, where εn = Cn−1/2 and C > 0 is any constant. Notice

∂Qn(θ̂n)

∂βn,j
= −∂ln(θ̂n)

∂βn,j
+ λβnj,nsign(βn,j)

= −∂ln(θn,0)

∂βn,j
−

qn∑
k=1

∂2ln(θn,0)

∂βn,j∂θn,k

(
θ̂n,k − θn,0k

)

−
qn∑
k=1

qn∑
l=1

∂3ln(θ̃)

∂βn,j∂θn,k∂θn,l

(
θ̂n,k − θn,0k

)(
θ̂n,l − θn,0l

)
+ λβnj,nsign(βn,j),

where θ̃n lies between θ̂n and θn,0. By the regularity conditions, and notice
∥∥∥θ̂n − θn,0∥∥∥ =

Op(
√
qn/n),

∂Qn(θ̂n)

∂βn,j
=
√
nqn

{
Op(1) +

√
n

qn
λβnj,nsgn(β̂n,j)

}
.

As
√
n/qnλ

βn
j,n →∞ for j ∈ {j : βn,j ∈ βbn}, the sign of ∂Qn(θ̂n)/∂βn,j is the same as sign(β̂n,j).

Therefore,

P

[
∂Qn(θ̂n)

∂βn,j
> 0 for 0 < β̂n,j < εn

]
→ 1 as n→∞

and (4) holds with probability tending to 1. Parallel to this, one can show (5) holds with

probability tending to 1.

Similar argument can be used to prove P (γ̂n,j,j′ = 0) → 1 as n → ∞, for γ̂n,j,j′ ∈ γ̂bn, thus

P (γ̂bn = 0)→ 1.

7



For γ̂n,j,j′ ∈ γ̂cn, without loss of generality, assume that βn,0j = 0. Notice that β̂n,j = 0

implies γ̂n,j,j′ = 0, because if γ̂n,j,j′ 6= 0, then the value of the loss function does not change but

the value of the penalty function increases. Therefore, P (γ̂n,j,j′ = 0)→ 1 follows since we have

already shown P (β̂n,j = 0)→ 1.

Thus, Part (i) of Theorem 2 is proved.

Now, we prove the asymptotic normality. Denote θan = (βTan, γ
T
an)T , then

√
nΩnI

1/2
an (θan,0)

(
θ̂an − θan,0

)
=
√
nΩnI

−1/2
an (θan,0)Ian(θan,0)

(
θ̂an − θan,0

)

=
√
nΩnI−1/2

an (βa0, γa0)

{
1

n
∇ln(θan,0) + op(n

−1/2)

}

=
1√
n

ΩnI−1/2
an (βa0, γa0)

n∑
i=1

[∇ln(θan,0)] + op (1) ≡
n∑
i=1

Yni + op (1) ,

where Yni = n−1/2ΩnI−1/2
an (βa0, γa0)

∑n
i=1 [∇ln(θan,0)].

We now show that with probability tending to 1,
∑n

i=1 Yni + op (1)→d N (0,Σ):

(i) We first show Ian(βa0, γa0)
(
θ̂an − θan,0

)
= n−1∇ln(θan,0) + op(n

−1/2) . With probability

tending to 1,

0 = ∇θanQn(θ̂an) = − 1

n
∇θanln(θ̂an)+∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβ̂n,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγ̂n,0j,j′

 .

Taking Taylor Expansion at θan = θa0, we have

0 = −∇θanln(θa0)−
[
∇2
θanln(θa0)

] (
θ̂an − θa0

)
− 1

2

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)

+n∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′

 .

Thus,

I−1/2
an (βa0, γa0)

(
θ̂an − θa0

)
= − 1

n
∇2
θanln(θa0)

(
θ̂an − θa0

)
+

{
I−1/2
an (βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)

=
1

n
∇θanln(θa0) +

1

2n

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)
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−∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′


+

{
I−1/2
an (βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)
.

Therefore, it is sufficient to show that

1

2n

(
θ̂an − θa0

)T [
∇2
θan (∇θanln(θa0))

] (
θ̂an − θa0

)

−∇θan

 ∑
{j:βn,0j∈βa0}

λβnj,nβn,0j +
∑

{(j,j′):γn,0j,j′∈γa0}

λγnj,j′,nγn,0j,j′


+

{
Ian(βa0, γa0) +

1

n
∇2
θanln(θa0)

}(
θ̂an − θa0

)
= op(n

−1/2).

Denote the three terms in the above equation as D1, D2, and D3. First, by Cauchy-Schwarz

inequality,

‖D1‖2 ≤ 1

4n2

∥∥∇2
θan (∇θanln(θan,0))

∥∥2
∥∥∥θ̂an − θa0

∥∥∥4

=
1

4n2

∑
{(j,k,l):θn,j ,θn,k,θn,l∈θan}

n2Op(1)Op(
q2
n

n
) = Op(q

5
n/n

2) = op(1/n)

Secondly, because ξn = o(1/
√
nqn),

‖D2‖2 =

∥∥∥∥(λβn1,nsign(βn,01), . . . , λγnpn−1,pn,n
sign(γn,0(pn−1,pn))

)T∥∥∥∥2

≤ |θan| ξ2
n = |θan| o(1/nqn) = op(1/n)

Third, it can be shown that

‖D3‖2 ≤
∥∥∥∥Ian(βa0, γa0) +

1

n
∇2
θanln(θa0)

∥∥∥∥2 ∥∥∥θ̂an − θa0

∥∥∥2

= op(1/q
2
n)Op(qn/n) = op(1/nqn) = op(1/n)

Therefore, D1 +D2 +D3 = op(n
−1/2).

Next, we show
∑n

i=1 Yni + op(1) −→d N(0,Σ). It is sufficient to show that Yni, i = 1, . . . , n

satisfies the conditions for Lindeberg-Feller central limit theorem. For any given ε > 0, by
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Cauchy-Schwarz inequality,

n∑
i=1

E
[
‖Yni‖2 I {‖Yni‖ > ε}

]
= nE

[
‖Yni‖2 I {‖Yni‖ > ε}

]
≤ nD

1/2
4 D

1/2
5

where D4 =
[
E ‖Yni‖4] and D5 = E {I (‖Yni‖ > ε)}. Note

D4 =
1

n2
E
∥∥ΩnI−1/2

an (βa0, γa0)∇θanln(θa0)
∥∥4

≤ 1

n2

∥∥ΩT
nΩn

∥∥2 ‖Ian(θa0)‖−2E
∥∥∇T

θanln(θa0)∇θanln(θa0)
∥∥2

=
1

n2
λ2
max(Ω

T
nΩn)λ2

max

{
I−1
an (θa0)

}
O(|θan|2) = O(q2

n/n
2).

By Markov inequality,

D5 = E {I (‖Yni‖ > ε)} = P (‖Yn1‖ > ε) ≤ E ‖Yn1‖2

ε2
= O(qn/n).

Therefore,
n∑
i=1

E
[
‖Yni‖2 1{‖Yni‖ > ε}

]
≤ nO(qn/n)O(

√
qn/n) = o(1),

and part (ii) of Theorem 2 follows.
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