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Clonal bryophytes and water regulation 

Clonality of bryophytes in connection with ecosystem water regulation provides a clear 

example where studying effect trait variation among species may be rewarding. Most 

bryophytes are highly clonal (Barkman, 1958; During, 1990; Robinson and Miller, 2013); 

while most species reproduce sexually and this is important for genetic exchange and 

diversity in the long run, at shorter time scales the importance of vegetative expansion and 

reproduction seems to predominate. Bryophytes, i.e. mosses, hornworts and liverworts, are 

well known for their important role in water retention, for instance, as epiphytes on trees 

(Cornelissen and ter Steege, 1989; van Leerdam et al., 1990). Many moss and liverwort 

genera are known to form extensive cushions in tropical rainforest tree trunks and canopies, 

together covering much of the surface area of these trees with luxuriant green mass, as a water 

storage station between precipitation entering the forest and stem flow towards the soil. 

However, there is great interspecific variation in the position, thickness and lateral extent of 

bryophyte cushions. Among neotropical epiphytic bryophytes, for example, several Bazzania 

and Plagiochila species produce enormous wet cushions on big boles and in tree forks, while 

some Frullania and Diplasiolejeunea species form very thin mats intimately pressed onto thin 

canopy twigs and Taxithelium planum and Symbiezidium transversale extend horizontal 

shoots laterally around upright trunks, being specialized at catching stem flow (Cornelissen 

and ter Steege, 1989; Wolf, 1993). These different growth forms depend on whether and how 

different individual shoots (ramets) of a genet are connected to form a cushion or turf; which 

in turn depends greatly on interspecific variation in clonal traits, i.e. the types and lengths of 

connecting structures as well as their angles, densities and longevities. There is no literature 

that has quantified such trait variation, or how it relates to cushion structure and its water 

regulation function, which hampers our understanding and predictive capacity of bryophyte 

water regulation as dependent on species composition.  

 

Another example comes from the arctic tundra, also known for its abundant bryophyte 

growth. Here also, the structure of the cushions or turfs of different species regulate 

ecosystem water retention (Dilks and Proctor, 1979; Glime, 2007), and thereby soil 

temperature regimes and freeze-thaw cycles (Gornall et al., 2007; Soudzilovskaia et al., 

2013), thereby also being instrumental in the maintenance of permafrost and the long-term 

storage of frozen organic carbon. Peat mosses, Sphagnum, known to be the ultimate ‘sponges’ 

among the mosses, are very important for these functions, but water regulation varies greatly 

among Sphagnum species differing in turf growth form and density (see Fig. S1). We expect 



that this variation in turn depends on variation in their clonal traits, but this has not been 

reported in the literature – although some of this information may be derived from drawings 

in identification guides.  Perhaps in a less spectacular way, a wide range of non-Sphagnum 

mosses are also important in tundra water regulation. Elumeeva et al. (2011) water-saturated 

both single shoots and substantial, similarly sized turfs of multiple bryophyte species from 

sub-arctic Sweden in a greenhouse (Fig. S1A) and measured the time to 50 % water loss (t50). 

Interestingly, the interspecific variation in t50 among single shoots across species was not 

correlated with that in t50 of the cushions. The mechanistic explanation for this is that shoot 

water retention is driven by internal tissue traits such as cell wall thickness, while cushion 

water retention depends greatly on the retention of external water between shoots as a 

function of cushion density (Elumeeva et al., 2011), which in turn must depend on 

interspecific variation in the clonal traits mentioned above for epiphytes. Interestingly in this 

context, Michel et al. (2012) demonstrated that the architecture of mixed bryophyte species in 

cushions (see Fig. S1B), presumably based at least partly on variation in clonal traits of the 

component species, had non-additive effects on the water retention capacity relative to the 

predicted retention capacity based on the monocultures of the component species. If we can 

predict the ecosystem water retention of different bryophytes based on their clonal (and cell-

level) traits in the ecosystems where they are crucial to their water economy, this would 

provide a most useful shortcut in estimating this function based on species composition.   

 

FIG. S1: Cushions of subarctic clonal bryophytes from N Sweden. (A) Monospecific cushions 
(and a few macrolichens) showing different structures as determined by their clonal traits; 
(B) Mixed cushions in which non-additive interactions on water retention may occur. Photos 
by N.A. Soudzilovskaia and J.H.C. Cornelissen.  
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