SUPPORTING INFORMATION

Substituted *N*-(Biphenyl-4'-yl)methyl (*R*)-2-Acetamido-3methoxypropionamides: Potent Anticonvulsants That Affect Frequency (Use)-Dependence and Slow Inactivation of Sodium Channels

Hyosung Lee,^{1,a,b} Ki Duk Park,^{1,a,c} Robert Torregrosa,² Xiao-Fang Yang,⁴ Erik T. Dustrude,⁵ Yuying Wang,^{6,d} Sarah M. Wilson,⁵ Cindy Barbosa,^{5,6} Yucheng Xiao,^{5,6} Theodore R. Cummins,^{5,6} Rajesh Khanna^{4,*} and Harold Kohn^{1,3,*}

From the ¹Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and the ³Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States

²NeuroGate Therapeutics, Inc., 150 Fayetteville Street, Suite 2300, Raleigh, NC 27601

⁴Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85742, United States

⁵Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute and ⁶Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202

*Corresponding authors

TABLE of CONTENTS

Listing	2-3
Supporting figure legends	4-6
Supporting Information, Figure S1	7
Supporting Information, Figure S2	8
Supporting Information, Figure S3	9
Supporting Information, Figure S4	10
Supporting Information, Figure S5	11
Table S1. Elemental Analyses for New Compounds	12
Table S2. High Resolution Mass Spectrometry (ESI $^{+}$)	13
Scheme 1. Preparation of (Biphenyl-4-yl)methylamines 29-39	14
Scheme 2. Preparation of (Biphenyl-4-yl)methylamines 43 and 44	14
Scheme 3. Synthesis of Compounds (<i>R</i>)- 4 – (<i>R</i>)- 13	15
Scheme 4. Synthesis of (<i>R</i>)- 69 and (<i>R</i>)- 70	15
Scheme 5. Syntheses of Compounds (<i>R</i>)- 14 and (<i>R</i>)- 15	16
Scheme 6. Syntheses of Compound (<i>R</i>)- 16	16

Experimental Section	17-49
References	49-50
¹ H and 13C NMR spectral data	51-63

SUPPORTING FIGURE LEGENDS

Supporting Figure S1. Effects of (R)-A compounds with a polar, aprotic substituent at the 4"position on steady-state slow inactivation state of Na⁺ currents in CAD cells. A. Voltage protocol for slow inactivation. Currents were evoked by 5 s prepulses between -120 mV and -20 mV and then fast-inactivated channels were allowed to recover for 150 ms at a hyperpolarized pulse to -120 mV. The fraction of channels available at 0 mV was analyzed. B-D. Summary of steady-state slow activation curves for CAD cells treated with DMSO (control) or various concentrations of the indicated compounds. E. Concentration versus $V_{1/2}$ response curve for effects on slow inactivation. To estimate the half-maximal value for induction of slow inactivation, dose-response curves were fit using the equation: Y = A1 + (A2-A1)/(1 + A2-A1)10^((LOGx0-x)*p)), where Y is the measured response of the I_{Na} , A_2 and A_1 are the maximum and the minimum responses respectively of the I_{Na} obtained with a control sample, p is the slope parameter of the dose-response curve, x is the applied dose, and $\log X_0$ is the center of the curve that is the concentration for half the I_{Na} response. The curves were well fitted with this dose-response function ($R^2 > 0.989$). Each point is the mean±SEM of 4–6 CAD cell recordings. The half-maximal values for slow inactivation for the indicated compounds are shown in the inset to the figure.

Supporting Figure S2. Effects of (*R*)-A compounds with a polar, aprotic substituent at the 4"position on fast inactivation and steady-state activation states of Na⁺ currents in CAD cells. A. Voltage protocol for fast inactivation (*left*) and activation (*right*). **B.-D.** Representative Boltzmann fits for steady-state fast inactivation and activation for CAD cells treated with 0.1% DMSO (control) and 10 μ M of the indicated compounds are shown. The V_{1/2} and *k* of steadystate fast inactivation or activation were not different among any of the conditions tested (p > 0.05, one-way ANOVA). Data are from 3-6 cells per condition.

Supporting Figure S3. Effect on frequency (use)-dependent block by (*R*)-A compounds with a polar, aprotic substituent at the 4"-position on Na⁺ currents in CAD cells. A. Summary of average frequency-dependent decrease in current amplitude over time (± SEM) produced by control (0.1% DMSO) or by the presence of 1 uM (*R*)-4, (*R*)-6, and (*R*)-12. B. Summary of the maximal decrement in current amplitude observed at the end of the 30-pulse train for control, or 1 μ M (*R*)-4, (*R*)-6, and (*R*)-12. (*R*)-4 and (*R*)-6 caused a significant decrease in current amplitude compared with control (*, p < 0.05, one-way ANOVA with Dunnett's post-hoc test). Data are from 4–6 cells per condition.

Supporting Figure S4. Effects of (*R*)-A compounds with a polar, protic substituent at the 3"position on steady-state slow inactivation state of Na⁺ currents in embryonic cortical neurons. A. Voltage protocol for slow inactivation. Representative current traces from cortical neurons in the absence (control, 0.1% DMSO) or presence of 10 μ M (*R*)-15. The black and colored traces represent the currents evoked at –100 and –50 mV, respectively (also highlighted in the voltage protocol as a dashed thick line). B.-D. Summary of steady-state slow activation curves for neurons treated with DMSO (control) or 10 μ M (*R*)-13, (*R*)-15, or (*R*)-16. Significant druginduced slow inactivation was evident at voltages more depolarizing that -80 mV in neurons treated with (*R*)-**15**. **E**. Summary of the fraction of current available at -50 mV for neurons treated with DMSO (control) or 10 μ M (*R*)-**13**, (*R*)-**15**, or (*R*)-**16**. Asterisk (*) indicates statistically significant difference in fraction of current available between control and (*R*)-**15** (p < 0.05, Student's t-test). Data are from 5 cells per condition.

Supporting Figure S5. Effect on frequency (use)-dependent block by (*R*)-A compounds with a polar, aprotic or a polar, protic substituent at the 3"-position on Na⁺ currents in cortical neurons. Frequency (use)-dependence of block was examined by holding cells at the hyperpolarized potential of –70 mV and evoking currents at 10 Hz by 20-ms test pulses to –10 mV. A.-B. Summary of the maximal decrement in current amplitude observed at the end of the 30-pulse train for control, or the indicated compounds. None of the compounds tested caused a significant decrease in current amplitude compared with control (p > 0.05, one-way ANOVA with Dunnett's post-hoc test). Data are from 3–6 cells per condition.

Cmpd	Molecular Formula	Calculated (%)	Found (%)
(R)- 4	$C_{19}H_{21}FN_2O_3$	C, 66.26; H, 6.15; N, 8.13; F, 5.52	C, 65.97; H, 6.18; N, 8.11; F, 5.35
(<i>R</i>)- 5	$C_{19}H_{21}CIN_2O_3$	C, 63.24; H, 5.87; N, 7.76; Cl, 9.83	C, 63.29; H, 6.01; N, 7.77; Cl, 9.71
(R)- 6	$C_{19}H_{21}CIN_2O_3$	C, 63.24; H, 5.87; N, 7.76; Cl, 9.83	C, 63.00; H, 6.02; N, 7.69; Cl, 9.58
(R)- 7	$C_{19}H_{21}BrN_2O_3$	C, 56.31; H, 5.22; N, 6.91; Br, 19.72	C, 56.58; H, 5.14; N, 6.90; Br, 19.45
(R)- 8	$C_{19}H_{21}IN_2O_3$	C, 50.46; H, 4.68; N, 6.19; I, 28.06	C, 50.42; H, 4.64; N, 6.19; I, 27.76
(R)- 9	$C_{20}H_{21}N_3O_3$	C, 68.36; H, 6.02; N, 11.96	C, 68.06; H, 6.04; N, 11.76
(R)- 10	$C_{20}H_{21}F_3N_2O_3$	C, 60.91; H, 5.37; N, 7.10; F, 14.45	C, 61.02; H, 5.33; N, 7.17; F, 14.41
(R)- 11	$C_{20}H_{21}F_3N_2O_4$	C, 58.53; H, 5.16; N, 6.83; F, 13.89	C, 58.56; H, 5.28; N, 6.80; F, 13.81
(R)- 12	$C_{20}H_{21}F_{3}N_{2}O_{4}$	C, 58.53; H, 5.16; N, 6.83; F, 13.89	C, 58.50; H, 5.27; N, 6.82; F, 13.91
(R)- 14	$C_{20}H_{24}N_2O_4$	C, 67.40; H, 6.79; N, 7.86	C, 67.32; H, 6.98; N, 7.74
(R)- 15	$C_{20}H_{22}N_2O_5$	C, 64.45; H, 6.02; N, 7.52	C, 64.06; H, 6.09; N, 7.35
(R)- 46	$C_{21}H_{25}FN_2O_4$	C, 64.93; H, 6.49; N, 7.21; F, 4.89	C, 64.71; H, 6.53; N, 7.22; F, 4.92
(R)- 47	$C_{21}H_{25}CIN_2O_4$	C, 62.30; H, 6.22; N, 6.92; Cl, 8.76	C, 62.16; H, 6.32; N, 6.99; Cl, 8.61
(R)- 48	$C_{21}H_{25}CIN_2O_4$	C, 62.30; H, 6.22; N, 6.92; Cl, 8.76	C, 62.03; H, 6.30; N, 6.84; Cl, 8.55
(R)- 53	$C_{22}H_{25}F_3N_2O_5$	C, 58.15; H, 5.54; N, 6.16; F, 12.54	C, 57.99; H, 5.68; N, 6.11; F, 12.40
(R)- 54	$C_{22}H_{25}F_3N_2O_5$	C, 58.15; H, 5.54; N, 6.16; F, 12.54	C, 58.09; H, 5.67; N, 6.25; F, 12.40
(R)- 56	$C_{22}H_{27}FN_2O_4$	C, 65.66; H, 6.67; N, 6.96; F, 4.72	C, 65.58; H, 6.65; N, 6.84; F, 4.53
(R)- 57	$C_{22}H_{27}CIN_2O_4$	C, 63.08; H, 6.50; N, 6.69; Cl, 8.46	C, 62.94; H, 6.67; N, 6.65; Cl, 8.24
(R)- 58	$C_{22}H_{27}CIN_2O_4$	C, 63.08; H, 6.50; N, 6.69; Cl, 8.46	C, 62.88; H, 6.52; N, 6.68; Cl, 8.17
(R)- 63	$C_{23}H_{27}F_3N_2O_5$	C, 58.97; H, 5.81; N, 5.98; F, 12.17	C, 59.05; H, 5.97; N, 5.92; F, 12.06
(R)- 64	$C_{23}H_{27}F_3N_2O_5$	C, 58.97; H, 5.81; N, 5.98; F, 12.17	C, 58.92; H, 5.93; N, 5.95; F, 11.98
(R)- 68	$C_{13}H_{17}NO_4$	C, 62.14; H, 6.82; N, 5.57	C, 62.27; H, 6.72; N, 5.77
(R)- 72	$C_{23}H_{28}N_2O_5$	C, 66.97; H, 6.84; N, 6.79; O, 19.39	C, 67.59; H, 7.09; N, 6.57; O, 18.76

Table S1. Elemental Analyses for New Compounds

Cmpd	Molecular Formula	Found	Calculated
(R)- 7	$C_{19}H_{21}BrN_2O_3$	405.0814 [M + H] ⁺	405.0814
(R)- 8	$C_{19}H_{21}IN_2O_3$	453.0675 [M + H]⁺	453.0673
(R)- 9	$C_{20}H_{21}N_{3}O_{3}$	352.1660 [M + H]⁺	352.1661
(R)- 10	$C_{20}H_{21}F_3N_2O_3$	395.1582 [M + H]⁺	395.1583
(R)- 13	$C_{21}H_{25}N_3O_3$	384.1924 [M + H] ⁺	384.1923
(R)- 15	$C_{20}H_{22}N_2O_5$	371.1607 [M + H]⁺	371.1607
(R)- 16	$C_{19}H_{24}N_3CIO_3$	342.1817 $[M - Cl]^+$	342.1817
29 ·HCl	C ₁₃ H ₁₃ CIFN	202.1022 $[M - Cl]^+$	202.1032
34 ·HCl	$C_{14}H_{13}CIF_3NO$	268.0951 $[M - CI]^+$	268.0949
35 ·HCl	$C_{14}H_{13}CIF_3NO$	268.0949 $[M - CI]^+$	268.0949
36	$C_{15}H_{16}N_2O$	279.0937 [M + K]⁺	279.0900
37 ·HCl	C ₁₈ H ₂₄ CINO	292.1677 $[M + Na]^+$	292.1677
39 ·HCl	$C_{18}H_{23}CIN_2O_2$	$321.1630 [M - HCl + Na]^+$	321.1620
44 ·HCl	$C_{13}H_{13}CIN$	310.0093 $[M - Cl]^+$	310.0111
(R)- 49	$C_{21}H_{25}BrN_2O_4$	449.1076 [M + H] ⁺	449.1074
(R)- 50	$C_{21}H_{25}IN_2O_4$	497.0937 [M + H] ⁺	497.0935
(R)- 51	$C_{23}H_{27}N_3O_4$	396.1924 [M + H] ⁺	396.1923
(R)- 52	$C_{22}H_{25}F_{3}N_{2}O_{4}$	439.1874 [M + H] ⁺	439.1844
(R)- 55	$C_{23}H_{29}N_3O_5$	450.2007 $[M + Na]^+$	450.2005
(R)- 59	$C_{22}H_{27}BrN_2O_4$	463.1232 [M + H] ⁺	463.1234
(R)- 60	$C_{22}H_{27}IN_2O_4$	511.1094 [M + H] ⁺	511.1097
(R)- 61	$C_{23}H_{27}N_{3}O_{4}$	410.2084 [M + H] ⁺	410.2080
(R)- 62	$C_{23}H_{27}F_3N_2O_4$	453.2033 [M + H] ⁺	453.2001
(R)- 65	$C_{24}H_{31}N_3O_5$	442.2345 [M + H] ⁺	442.2342
(R)- 67	$C_{12}H_{15}NO_4$	238.1078 [M + H] ⁺	238.1079
(R)- 71	$C_{23}H_{30}N_2O_4$	399.2285 [M + H] ⁺	399.2284
(R)- 72	$C_{23}H_{28}N_2O_5$	413.2079 [M + H] ⁺	413.2076
(R)- 73	$C_{24}H_{32}N_2O_4$	413.2442 [M + H] ⁺	413.2440
(R)- 74	$C_{24}H_{30}N_2O_5$	427.2237 [M + H] ⁺	427.2233
(R)- 75	$C_{23}H_{31}N_3O_3$	$574.1320 [M + Cs]^+$	574.1318

Table S2. High Resolution Mass Spectrometry (ESI⁺)

Scheme 2. Preparation of (Biphenyl-4-yl)methylamines 43 and 44

Scheme 3. Synthesis of Compounds (R)-4 - (R)-13

Scheme 4. Synthesis of (R)-69 and (R)-70

Scheme 5. Synthesis of Compounds (R)-14 and (R)-15

Scheme 6. Synthesis of Compound (R)-16

EXPERIMENTAL SECTION

General Methods. Melting points were determined in open capillary tubes using a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra (IR) were run on an ATI Mattson Genesis FT-IR spectrometer. Absorption values are expressed in wavenumbers (cm⁻¹). Optical rotations were obtained on a Jasco P-1030 polarimeter at the sodium D line (589 nm) using a 1 dm path length cell. NMR spectra were obtained at 400 MHz (¹H) and 100 MHz (¹³C) using TMS as an internal standard. Chemical shifts (δ) are reported in parts per million (ppm) from tetramethylsilane. Low-resolution mass spectra were obtained with a BioToF-II-Bruker Daltonics spectrometer by Dr. S. Habibi at the University of North Carolina Department of Chemistry. The high-resolution mass spectrum was performed on a Bruker Apex-Q 12 Telsa FTICR spectrometer by Dr. S. Habibi. Elemental analyses were performed by Atlantic Microlab, Inc. (Norcross, GA). Reactions were monitored using thin-layer chromatography (TLC) plates (Aldrich, Cat # Z12272-6) and analyzed with 254 nm light and visualized with KMnO₄, Hanessian and ninhydrin stains. The reactions were purified by flash column chromatography using silica gel (Dynamic Adsorbents Inc., Cat # 02826-25). All chemicals and solvents were reagent grade and used as obtained from commercial sources without further purification. Yields reported are for purified products and were not optimized. Compounds were checked by TLC, ¹H and ¹³C NMR, MS, and elemental analyses. The analytical results are within ±0.40% of the theoretical value. The TLC, NMR and the analytical data confirmed the purity of the products was \geq 95%. General Procedure for the Preparation of (Biphenyl-4-yl)methylamine and (Biphenyl-4yl)methylamine Hydrochloride Derivatives 29 – 39 (Method A). To a dry CH₃CN solution (60 mL) of 4-bromobenzylamine (5.00 g, 26.9 mmol) was added the desired arylboronic acid (1-1.1

17

equiv). Then, a solution of 1 M K₂CO₃ (2.0 – 2.50 equiv) was added and the mixture was stirred and heated at reflux under Ar. After 15 min, tetrakis(triphenylphosphine)palladium(0)(Pd(PPh₃)₄) (0.04 equiv) was added and stirred at reflux (12–16 h). The mixture was filtered and evaporated in vacuo. The resulting residue was dissolved in EtOAc (200 mL) and washed with H₂O (1× 200 mL) and brine (1× 200 mL). In the case of **32**, the organic layer was dried (Na₂SO₄) and the solvent removed in vacuo to provide the crude free amine. In the case of **29** – **31** and **33** – **39**, either 4 M HCl in dioxane (2 equiv) or aqueous concentrated HCl was added dropwise to the organic layer and stirred at room temperature (1 h), and the precipitate filtered and washed with hexanes to obtain the crude amine hydrochloride salt as a yellow solid.

General Procedure for the Preparation of (Biphenyl-4-yl)methylamine Hydrochloride

Derivatives 43 and **44 (Method B).** Employing a procedure similar to Method A, and using *p*-aminomethylboronic acid (1.0 equiv), the 1,3-dihalobenzene (1.1 equiv), aqueous 1 M K₂CO₃ and Pd(PPh₃)₄ (0.05 equiv) in EtOH. For **43** and **44**, aqueous concentrated HCl was added to the organic layer and stirred at room temperature (1 h), and then the solvent was decanted from the pasty solid, washed, and then dried in vacuum to give the crude HCl salt as a yellow-orange solid.

General Procedure for the Preparation of Free (Biphenyl-4-yl)methylamine Derivatives 29 – 39, 43, and 44 (Method C). To a NaOH solution (pH 10, 200 mL) was added the 4biphenylmethylamine hydrochloride derivative (2–5 g) and then the aqueous layer extracted

with CH_2Cl_2 (3× 200 mL). The organic layers were combined, dried (Na₂SO₄), and concentrated in vacuo. The resulting residue was used without further purification.

General Procedure for the Mixed Anhydride Coupling Reaction (Method D). To a cooled THF or THF·DMSO (10:1) solution (–78 °C, dry ice acetone bath) of either (*R*)-*t*-Boc-D-serine ((*R*)-**45**) or (*R*)-2-acetamido-3-hydroxypropionic acid ((*R*)-**69**) or (*R*)-2-acetamido-3-methoxypropionic acid ((*R*)-**70**) ([C] ~ 0.1 – 0.8 M) were successively added *N*-methylmorpholine (NMM) (1.0–2.6 equiv), stirred for 2 min, isobutylchloroformate (IBCF) (0.8–1.3 equiv), stirred for 5 min, and then the desired benzylamine (0.7 –1.2 equiv). Upon addition the reaction mixture was allowed to warm to room temperature and further stirred (2–3 h). The salts were filtered through Celite® and rinsed with THF and the filtrate was concentrated in vacuo. The residue obtained was purified by column chromatography on SiO₂.

General Procedure for the Preparation of 2-N-(tert.-Butoxycarbonyl)amino-3-

methoxypropionamide Derivatives (Method E). To a CH_3CN or $CH_3CN \cdot DMF$ (10:1 – 20:1) solution of the (*R*)-*N*-(biphenyl-4-yl)methyl 2-*N*-(*tert.*-butoxycarbonyl)amino-3hydroxypropionamide derivative ([C] ~0.05–0.5 M) was successively added Ag₂O (5 equiv) and Mel (10 equiv) at room temperature. The reaction mixture was maintained at room temperature (2–3 d) and filtered through Celite, and the solvent was evaporated in vacuo. The residue was purified by column chromatography on SiO₂.

General Procedure for the Deprotection and Acetylation of (*R***)-***N***-(Biphenyl-4-yl)methyl 2-***N*-(*tert.*-Butoxycarbonyl)amino-3-methoxypropionamide Derivatives (Method F). A CH₂Cl₂ solution (0.1–0.3 M) of the (*R*)-*N*-(biphenyl-4-yl)methyl 2-*N*-(*tert.*-butoxycarbonyl)amino-3-methoxypropionamide derivative was treated with 4 M HCl in dioxane (3–4 equiv) at room temperature (2–6 h). The reaction mixture was evaporated in vacuo. The resulting residue was

dissolved in CH_2Cl_2 (0.1–0.3 M) and then triethylamine (2–3 equiv) and acetyl chloride (1.0–1.2 equiv) were carefully added at 0 °C and the resulting solution was stirred at room temperature (2–4 h). The resulting solution was washed with an aqueous 10% citric acid solution followed by a saturated aqueous NaHCO₃ solution. The organic layer was dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography on SiO₂ and/or recrystallized with EtOAc/hexanes.

Preparation of (4"-Fluorobiphenyl-4'-yl)methylamine Hydrochloride (29·HCl). Using Method A, 4-bromobenzylamine (17) (5.00 g, 26.9 mmol), 4-fluorophenylboronic acid (18) (3.77 g, 26.9 mmol), aqueous 1 M K₂CO₃ (60 mL), and Pd(PPh₃)₄ (1.24 g, 1.1 mmol) gave crude **29·HCl** as a yellow solid (4.99 g, 78%): R_f = 0.00 (hexanes/EtOAc 1/2); mp 315-317 °C; ¹H NMR (DMSO- d_6) δ 4.06 (s, CH₂), 7.28–7.34 (m, 2 ArH), 7.61–7.75 (m, 6 ArH), 8.70 (s, NH₃Cl); ¹³C NMR (DMSO- d_6) δ 41.7 (CH₂), 115.8 (d, *J* = 21.3 Hz, **C**_{3"}, **C**_{5"}), 126.7 (ArC), 128.7 (d, *J* = 8.0 Hz, **C**_{2"}, **C**_{6"}), 129.6 (ArC), 133.3 (ArC), 136.0 (d, *J* = 3.7 Hz, **C**_{1"}), 139.1 (ArC), 162.0 (d, *J* = 243.2 Hz, **C**_{4"}); HRMS (ESI⁺) 202.1022 [M – Cl]⁺ (calcd for C₁₃H₁₂FNH⁺ 202.1032).

Preparation of (3"-Chlorobiphenyl-4'-yl)methylamine Hydrochloride (30·HCl). Using Method A, 17 (5.00 g, 26.9 mmol), 3-chlorophenylboronic acid (19) (4.21 g, 26.9 mmol), aqueous 1 M K₂CO₃ (60 mL), and Pd(PPh₃)₄ (1.24 g, 1.1 mmol) gave crude **30·HCl** as a yellow solid (4.37 g, 64%): $R_f = 0.00$ (hexanes/EtOAc 1/2); mp 285-287 °C; ¹H NMR (DMSO- d_6) δ 4.07 (s, CH₂), 7.43– 7.76 (m, 8 ArH), 8.75 (s, NH₃Cl); ¹³C NMR (DMSO- d_6) δ 41.7 (CH₂), 125.4, 126.3, 126.9, 127.4, 129.7, 130.8, 133.8, 134.0, 138.5, 141.6 (ArC); LRMS (ESI⁺) 218.0 [M – Cl]⁺ (calcd for C₁₃H₁₂ClNH⁺ 218.0); HRMS (ESI⁺) signal not detected. Preparation of (4"-Chlorobiphenyl-4'-yl)methylamine Hydrochloride (31·HCl). Using Method A, 17 (5.00 g, 26.9 mmol), 4-chlorophenylboronic acid (20) (4.21 g, 26.9 mmol), aqueous 1 M K_2CO_3 (60 mL), and Pd(PPh_3)₄ (1.24 g, 1.1 mmol) gave crude **31·HCl** as a yellow solid (4.64 g, 68%): $R_f = 0.00$ (hexanes/EtOAc 1/2); mp 290-292 °C; ¹H NMR (DMSO- d_6) δ 4.07 (s, CH₂), 7.52– 7.73 (m, 8 ArH), 8.77 (s, NH₃Cl); ¹³C NMR (DMSO- d_6) δ 41.7 (CH₂), 126.7, 128.4, 128.9, 129.7, 132.5, 133.7, 138.3, 138.7 (ArC); LRMS (ESI⁺) 218.0 [M – Cl]⁺ (calcd for C₁₃H₁₂ClNH⁺ 218.0); HRMS (ESI⁺) signal not detected.

Preparation of (3"-Cyanobiphenyl-4'-yl)methylamine (32). Using Method A, 17 (5.76 g, 30.9 mmol), 3-cyanophenylboronic acid (21) (5.00 g, 34.0 mmol), aqueous 1 M K₂CO₃ (77.3 mL), and Pd(PPh₃)₄ (1.79 g, 1.5 mmol) gave the desired free amine 32 (7.06 g, 100%) as a colorless oil: R_f = 0.00 (hexanes/EtOAc 1/1); ¹H NMR (CDCl₃) δ3.92 (NCH₂), 7.32-7.83 (m, 8 ArH); ¹³C NMR (CDCl₃) δ46.1 (CH₂NH₃), 113.0 (ArC), 119.0 (CN), 127.3, 128.0, 129.7, 130.6, 130.7, 131.5, 132.1, 137.5, 142.3 (9 ArC); LRMS (ESI⁺) 209.1 [M + H]⁺ (calcd for C₁₄H₁₃N₂⁺ 209.1); HRMS (ESI⁺) signal not detected.

Preparation of (3'-(Trifluoromethyl)-4-biphenylmethammonium Chloride (33·HCl). Using Method A, **17** (2.45 g, 13.2 mmol), 3-trifluoromethylphenylboronic acid (**22**) (3.00 g, 15.8 mmol), aqueous 1 M K₂CO₃ (80 mL), and Pd(PPh₃)₄ (0.61 g, 0.50 mmol) gave **33·HCl** as a pale brownish solid (3.29 g, 87%): R_f = 0.00 (1:1 EtOAc/hexanes); mp 239–240 °C; ¹H NMR (DMSO- d_6) δ 4.08 (q, *J* = 5.5 Hz, Ar-CH₂), 7.61–7.66 (d, *J* = 8.4 Hz, 2 ArH), 7.69–7.77 (m, 2 ArH), 7.82 (d, *J* = 8.4 Hz, 2 ArH), 7.97–8.04 (m, 2 ArH), 8.56 (br s, NH₃); ¹³C NMR (DMSO- d_6) δ 41.8 (CH₂), 123.0 (q, J = 4.0 Hz), 124.2 (q, J = 272.0 Hz, **C**F₃), 124.3 (q, J = 4.0 Hz), 127.1, 129.7 (Ar**C**), 129.8 (q, J = 32.0 Hz), 130.1, 130.8, 134.1, 138.5, 140.5 (Ar**C**); HRMS (ESI⁺): no signal detected.

Preparation of (3"-Trifluoromethoxybiphenyl-4'-yl)methylamine Hydrochloride (34·HCl).

Using Method A, **17** (5.00 g, 26.9 mmol), 3-trifluoromethoxyphenylboronic acid (**23**) (5.54 g, 26.9 mmol), aqueous 1 M K₂CO₃ (60 mL), and Pd(PPh₃)₄ (1.24 g, 1.1 mmol) gave crude **34·HCl** as a yellow solid (6.11 g, 75%): $R_f = 0.00$ (hexanes/EtOAc 1/2); mp 285-287 °C; ¹H NMR (DMSO- d_6) δ 4.09 (s, CH₂), 7.38–7.40 (m, 1 ArH), 7.60–7.79 (m, 7 ArH), 8.75 (s, NH₃Cl); ¹³C NMR (DMSO- d_6) δ 41.7 (CH₂), 119.2, 119.9 (ArC), 120.1 (q, *J* = 254.9 Hz, OCF₃), 125.8, 126.9, 129.7, 130.9, 134.2, 138.3, 141.9, 149.0 (ArC); HRMS (ESI⁺) 268.0951 [M – Cl]⁺ (calcd for C₁₄H₁₂F₃NOH⁺ 268.0949).

Preparation of (4"-Trifluoromethoxybiphenyl-4'-yl)methylamine Hydrochloride (35·HCl).

Using Method A, **17** (5.00 g, 26.9 mmol), 4-trifluoromethoxyphenylboronic acid (**24**) (5.54 g, 26.9 mmol), aqueous 1 M K₂CO₃ (60 mL), and Pd(PPh₃)₄ (1.24 g, 1.1 mmol) gave crude **35·HCl** as a yellow solid (5.94 g, 73%): $R_f = 0.00$ (hexanes/EtOAc 1/2); mp 305-308 °C; ¹H NMR (DMSO- d_6) δ 4.06 (s, CH₂), 7.45 (d, J = 8.0 Hz, 2 ArH), 7.63 (d, J = 8.0 Hz, 2 ArH), 7.72 (d, J = 8.6 Hz, 2 ArH), 7.81 (d, J = 8.6 Hz, 2 ArH); ¹³C NMR (DMSO- d_6) δ 41.7 (CH₂), 120.1 (q, J = 254.9 Hz, OCF₃), 121.5, 126.9, 128.6, 129.7, 133.8, 138.6, 138.8, 148.0 (ArC); HRMS (ESI⁺) 268.0949 [M – Cl]⁺ (calcd for C₁₄H₁₂F₃NOH⁺ 268.0949).

Preparation of (3"-Acetamidobiphenyl-4'-yl)methylamine (36). Using Method A, 17 (4.72 g, 25.4 mmol), 3-acetylaminophenylboronic acid (25) (5.00 g, 27.9 mmol), aqueous 1 M K₂CO₃ (71 mL), and Pd(PPh₃)₄ (1.47 g, 1.3 mmol) gave the desired free amine **36** (6.00 g, 86%) as a colorless oil: R_f = 0.00 (hexanes/EtOAc 1/1); ¹H NMR (CDCl₃, CD₃OD)) δ 2.11 (s, C(O)CH₃), 3.80

(NCH₂), 7.22-7.80 (m, 8 ArH, NHC(O)); ¹³C NMR (CDCl₃) δ 24.3 (C(O)CH₃), 45.8 (CH₂NH₂), 118.7, 119.0, 122.8, 127.4, 127.9, 129.4, 132.2, 134.3, 138.9, 141.5 (10 ArC), 169.5 (NHC(O)); LRMS (ESI⁺) 279.1 [M + K]⁺ (calcd for C₁₅H₁₆N₂OK⁺ 279.1); HRMS (ESI⁺) 279.0937 [M + K]⁺ (calcd for C₁₅H₁₆N₂OK⁺ 279.0900).

Preparation of (3'-*tert*-Butoxymethylbiphenyl-4-yl)methylamine Hydrochloride (37·HCl). Using Method A, **17** (1.01 g, 5.40 mmol), 3-*tert*-butoxymethylphenylboronic acid (**26**) (1.00 g, 4.50 mmol), aqueous 1 M K₂CO₃ (13.5 mL), and Pd(PPh₃)₄ (0.26 g, 0.23 mmol) gave **37·HCl** as awhite solid (0.97 g, 80%): $R_f = 0.00$ (EtOAc/hexanes 1/1); mp 190-191 °C; ¹H NMR (CDCl₃, MeOD) δ 1.33 (s, *t*-Bu), 4.13 (s, CH₂N), 4.52 (s, CH₂O), 7.35-7.50 (m, 3 ArH), 7.51-7.57 (m, 3 ArH), 7.65 (d, *J* = 8.0 Hz, 2 ArH); ¹³C NMR (CDCl₃, MeOD) δ 27.4 (C(CH₃)), 43.0 (NHCH₂), 64.1 (CH₂O), 73.9 (C(CH₃)), 125.9, 126.1, 126.9, 127.6, 128.8, 129.3, 131.4, 140.0, 140.1, 141.9 (10 ArC); LRMS (ESI⁺) 270.2 [M + H]⁺ (calcd for C₁₈H₂₄NO⁺ 270.2); HRMS (ESI⁺) 292.1677 [M + Na]⁺ (calcd for C₁₈H₂₃NONa⁺ 292.1677).

Preparation of (3'-*tert*-Butoxycarbonylbiphenyl-4-yl)methylamine Hydrochloride (38·HCl). Using Method A, **17** (0.76 g, 4.09 mmol), 3-*tert*-butoxycarbonylphenylboronic acid (**27**) (1.00 g, 4.50 mmol), aqueous 1 M K₂CO₃ (10.0 mL), and Pd(PPh₃)₄ (0.24 g, 0.22 mmol) gave **38·HCl** as a white solid (1.31 g, 70%): R_f = 0.00 (hexanes/EtOAc 1/1); mp 194-197 °C; ¹H NMR (CD₃OD) δ 1.61 (s, *t*-Bu), 3.91 (d, *J* = 6.0 Hz, CH₂N), 7.48 (d, *J* = 8.0 Hz, 2 ArH), 7.46 (t, *J* = 8.0 Hz, 1 ArH), 7.59 (d, *J* = 8.0 Hz, 2 ArH), 7.73 (d, *J* = 7.8 Hz, ArH), 7.96 (d, *J* = 7.8 Hz, ArH), 8.22 (s, ArH); ¹³C NMR (CD₃OD) δ 28.4 (C(CH₃)₃), 45.0 (CH₂), 81.3 (C(CH₃)₃), 127.5, 128.1, 128.4, 128.7, 128.9, 131.1, 132.7, 138.8, 139.6, 140.8 (10 Ar**C**), 165.8 (**C**(O)O); LRMS (ESI⁺) 284.1 [M - CI]⁺ (calcd for $C_{18}H_{22}NO_2$ 284.2 HRMS (ESI⁺) no signal detected.

Preparation of (3'-*N***-(***tert***-Butoxycarbonyl)aminobiphenyl-4-yl)methylamine Hydrochloride** (**39·HCl).**¹ Using Method A, **17** (0.78 g, 4.20 mmol), 3-(*N*-*tert*butoxycarbonylamino)phenylboronic acid (**28**) (1.00 g, 4.20 mmol), aqueous 1 M K₂CO₃ (15.0

mL), and Pd(PPh₃)₄ (0.19 g, 0.20 mmol) gave **39·HCl** as a yellow solid (0.79 g, 56%): $R_f = 0.00$ (hexanes/EtOAc 1/2); mp 242-244 °C; ¹H NMR (DMSO- d_6) δ 1.49 (s, (CH₃)₃), 4.03–4.04 (br m, CH₂), 7.56–7.68 (m, 8 ArH), 8.59 (s, NH₃Cl), 9.47 (s, NH); ¹³C NMR (DMSO- d_6) δ 28.1 ((CH₃)₃), 41.8 (CH₂), 79.1 (C(CH₃)₃), 118.4, 126.1, 126.8, 129.5, 132.6, 133.0, 139.3, 139.8 (ArC), 155.2 (NC(O)O); HRMS (ESI⁺) 321.1630 [M – HCl + Na]⁺ (calcd for C₁₈H₂₂N₂O₂Na⁺ 321.1620).

Preparation of 3'-Bromo-4-biphenylmethylamine Hydrochloride (43·HCl). Using Method B, 1,3-dibromobenzene (41) (4.15 g, 17.6 mmol), a solution of *p*-aminomethylboronic acid (40) (3.00 g, 16.0 mmol) in EtOH (5 mL), aqueous 1 M K₂CO₃ (75 mL), and Pd(PPh₃)₄ (0.54 g, 0.48 mmol) gave crude 43·HCl as a yellow-orange solid (3.10 g, 65%): R_f = 0.00 (1:1 EtOAc/hexanes); mp 252–254 °C; ¹H NMR (DMSO-*d*₆) δ4.03 (s, CH₂), 7.38–7.45 (m, ArH), 7.53–7.62 (m, 3 ArH), 7.67–7.75 (m, 3 ArH), 7.86 (t, *J* = 6.8 Hz, ArH), 8.56 (br s, NH₃); ¹³C NMR (DMSO-*d*₆) δ41.7 (CH₂), 122.4, 125.8, 126.9, 129.2, 129.6, 130.4, 131.1, 134.0, 138.5, 141.9 (ArC); HRMS signal not detected.

Preparation of 3'-lodo-4-biphenylmethylamine Hydrochloride (44·HCl). Using Method B, 1,3diiodobenzene (**42**) (3.90 g, 11.7 mmol), a solution of **40** (2.00 g, 10.7 mmol) in EtOH (5 mL), aqueous 1 M K₂CO₃ (50 mL), and Pd(PPh₃)₄ (0.37 g, 0.32 mmol) gave crude **44·HCl** as a yelloworange paste (1.92 g, 52%): $R_f = 0.00$ (1:1 EtOAc/hexanes); ¹H NMR (DMSO- d_6) δ 4.06 (s, CH₂), 7.49–7.66 (m, 3 ArH), 7.69 (d, J = 8.2 Hz, 2 ArH), 7.83 (d, J = 8.2 Hz, 2 ArH), 7.93 (s, ArH), 8.57 (br s, NH₃); ¹³C NMR (DMSO- d_6) δ 42.3 (CH₂), 96.1, 125.6, 126.5, 127.3, 127.5, 129.4, 130.0, 133.9, 140.5, 140.7 (ArC); HRMS (ESI⁺) 310.0093 [M]⁺ (calcd for C₁₃H₁₃ClIN-Cl⁺ 310.0111).

Preparation of (*R*)-*N*-(4"-Fluorobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3hydroxypropionamide ((*R*)-46). Using Method D, (*R*)-*t*-Boc-D-serine ((*R*)-45) (2.00 g, 9.8 mmol), NMM (1.61 mL, 14.6 mmol), IBCF (1.61 mL, 12.4 mmol), and amine **29** (2.36 g, 11.7 mmol, prepared by Method C from **29**·H**C**I) gave (*R*)-**46** as a white solid (3.40 g, 90%): R_f = 0.55 (hexanes/EtOAc 1/3); mp 140-141 °C; [α]²⁶_D +14.5° (*c* 1.1, CHCl₃); IR (nujol) 3145, 2917, 2852, 1658, 1531, 1458, 1378, 1303, 1238, 1169, 1008, 827, 648 cm⁻¹; ¹H NMR (CDCl₃) δ1.42 (s, (CH₃)₃), 3.20-3.31 (br m, CHH'), 3.64–3.74 (br m, CHH'), 4.10–4.23 (br m, CH, OH), 4.39-4.54 (br m, CH₂N), 5.61–5.67 (br d, NHCH), 7.08–7.18 (m, 2 ArH, NHCH₂), 7.29–7.32 (m, 2 ArH), 7.46– 7.52 (m, 4 ArH); ¹³C NMR (DMSO-*d*₆) δ28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 78.2 (**C**(CH₃)₃), 115.7 (d, *J* = 21.3 Hz, **C**_{3"}, **C**_{5"}), 126.4, 127.6 (Ar**C**), 128.5 (d, *J* = 8.1 Hz, **C**_{2"}, **C**_{6"}), 136.5 (d, *J* = 2.9 Hz, **C**_{1"}), 137.6, 138.7 (Ar**C**), 155.2 (N**C**(O)O), 161.8 (d, *J* = 242.5 Hz, **C**_{4"}), 170.5 (**C**(O)); LRMS (M + Na)⁺(ESI⁺) 411.2 [M + Na]⁺ (calcd for C₂₁H₂₅FN₂O₄ Na⁺ 411.2); Anal. Calcd. for C₂₁H₂₅FN₂O₄: C, 64.93; H, 6.49; F, 4.89; N, 7.21. Found: C, 64.71; H, 6.53; F, 4.92; N, 7.22.

Preparation of (*R*)-*N*-(3"-Chlorobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3hydroxypropionamide ((*R*)-47). Using Method D, (*R*)-45 (3.00 g, 14.7 mmol), NMM (2.42 mL, 22.0 mmol), IBCF (2.42 mL, 18.6 mmol), and amine **30** (3.83 g, 17.6 mmol, prepared by Method C from **30**-HCl) gave (*R*)-47 as a white solid (4.73 g, 80%): $R_f = 0.55$ (hexanes/EtOAc 1/3); mp 107-108 °C; $[\alpha]^{26}_{D}$ +13.5° (*c* 1.1, CHCl₃); IR (nujol) 3316, 2924, 2859, 1659, 1534, 1459, 1378, 1302, 1247, 1170, 1010, 872, 777, 656 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.41 (s, (CH₃)₃), 3.58-3.65 (br m, CH₂OH), 4.02–4.08 (br m, CH), 4.29–4.42 (br m, CH₂N), 4.85-4.90 (br m, OH), 6.68 (d, *J* = 8.0 Hz, NHCH), 7.36–7.50 (m, 4 ArH), 7.61–7.70 (m, 4 ArH), 8.37–8.41 (br m, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 78.2 (C(CH₃)₃), 125.2, 126.3, 126.6, 127.1, 127.7, 130.7, 133.7, 137.0, 139.5, 142.1 (ArC), 155.2 (NC(O)O), 170.5 (C(O)); LRMS (ESI⁺) 405.2 [M + H]⁺ (calcd for C₂₁H₂₅ClN₂O₄H⁺ 405.2); Anal. Calcd. for C₂₁H₂₅ClN₂O₄: C, 62.30; H, 6.22; Cl, 8.76; N, 6.92. Found: C, 62.16; H, 6.32; Cl, 8.61; N, 6.99.

Preparation of (*R*)-*N*-(4"-Chlorobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3hydroxypropionamide ((*R*)-48). Using Method D, (*R*)-45, NMM (1.64 mL, 14.9 mmol), IBCF (1.64 mL, 12.7 mmol), and amine **31** (2.60 g, 12.0 mmol, prepared by Method C from **31**·HCl) gave (*R*)-48 as a white solid (3.72 g, 93%): $R_f = 0.55$ (hexanes/EtOAc 1/3); mp 148-149 °C; [α]²⁶_D +13.4° (*c* 1.0, CHCl₃); IR (nujol) 3297, 2924, 2859, 1660, 1535, 1459, 1377, 1307, 1248, 1171, 1098, 1007, 805, 645 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.40 (s, (CH₃)₃), 3.57-3.63 (br m, CH₂OH), 4.00– 4.05 (br m, CH), 4.27–4.40 (br m, CH₂N), 4.83-4.88 (br m, OH), 6.67 (d, *J* = 7.6 Hz, NHCH), 7.36 (d, *J* = 7.8 Hz, 2 ArH), 7.43 (d, *J* = 8.4 Hz, 2 ArH), 7.59 (d, *J* = 7.8 Hz, 2 ArH), 7.67 (d, *J* = 8.4 Hz, 2 ArH), 8.34–8.38 (br m, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.8 (OCH₂CH), 78.2 (C(CH₃)₃), 126.4, 127.7, 128.3, 128.8, 132.1, 137.2, 138.8, 139.1 (ArC), 155.2 (NC(O)O), 170.5 (C(O)); LRMS (ESI⁺) 405.2 [M + H]⁺ (calcd for C₂₁H₂₅ClN₂O₄H⁺ 405.2); Anal. Calcd. for C₂₁H₂₅ClN₂O₄: C, 62.30; H, 6.22; Cl, 8.76; N, 6.92. Found: C, 62.03; H, 6.30; Cl, 8.55; N,

6.84.

Preparation of (*R*)-*N*-(**3**"-Bromo-4-biphenyImethyl) 2-*N*-(*tert*-Butoxycarbonyl)amino-**3**hydroxypropionamide ((*R*)-**49**). Using Method D, (*R*)-**45** (2.40 g, 11.7 mmol), NMM (988 mg, 9.8 mmol), IBCF (1.33 g, 9.8 mmol), and **43** (2.56 g, 9.8 mmol, prepared by Method C from **43**-**HCl**) gave compound (*R*)-**49** as a white solid (2.51 g, 57%): $R_f = 0.41$ (1:20 MeOH/CH₂Cl₂); mp 116– 117 °C; [α]²³_D +11.8° (c = 1.0, CHCl₃); ¹H NMR (DMSO-*d*₆) δ 1.37 (s, (CH₃)₃C), 3.51–3.62 (m, CHCH₂), 3.93–4.04 (m, CHCH₂), 4.22–4.39 (m, NHCH₂), 4.82 (t, *J* = 5.7 Hz, OH), 6.63 (d, *J* = 7.8 Hz, NHCH), 7.32 (d, *J* = 8.2 Hz, 2 ArH), 7.38 (t, *J* = 8.0 Hz, ArH), 7.51 (d, *J* = 6.8 Hz, ArH), 7.55–7.66 (m, 3 ArH), 7.75–7.82 (m, ArH), 8.33 (t, *J* = 6.0 Hz, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.2 ((CH₃)₃C), 41.7 (NHCH₂), 56.9 (CH), 61.8 (CH₂OH), 78.2 ((CH₃)₃C), 122.3, 125.6, 126.6, 127.6, 129.1, 130.0, 131.0, 136.9, 139.5, 142.4 (ArC), 155.2 (NHC(O)), 170.5 (C(O)); LRMS (ESI⁺) 449.1 [M + H]⁺ (100%), 451.1 [M + 2 + H]⁺ (100%); HRMS (ESI⁺) 449.1076 [M + H]⁺ (calcd for C₂₁H₂₅⁷⁹BrN₂O₄H⁺ 449.1074).

Preparation of (R)-N-(3"-Iodo-4-biphenylmethyl) 2-N-(tert-Butoxycarbonyl)amino-3-

hydroxypropionamide ((*R*)-50). Using Method D, (*R*)-45 (1.00 g, 4.9 mmol), NMM (448 mg, 4.4 mmol), IBCF (605 mg, 4.4 mmol), and 44 (1.37 g, 4.4 mmol, prepared by Method C from 44·HCl) gave compound (*R*)-45 as a white solid (900 mg, 41%): $R_f = 0.46$ (1:20 MeOH/CH₂Cl₂); mp 84-86 $^{\circ}$ C; [α]²⁴_D +10.2° (c = 1.0, CHCl₃); ¹H NMR (CDCl₃) δ1.40 (s, (CH₃)₃C), 3.59–3.61 (m, CHCH₂), 3.98–4.04 (m CHCH₂), 4.27–4.39 (m, NHCH₂), 4.84–4.86 (m, OH), 6.66 (d, *J* = 7.8 Hz, NHCH), 7.25 (t, *J* = 7.8 Hz, ArH), 7.35 (d, *J* = 8.2 Hz, 2 ArH), 7.57–7.60 (m, 2 ArH), 7.65–7.72 (m, 2 ArH), 7.98 (s, ArH), 8.34 – 8.37 (m, NHCH₂); ¹³C NMR (CDCl₃) δ28.2 ((CH₃)₃C), 41.7 (NHCH₂), 57.0 (CH), 61.8 (CH₂OH), 78.2 ((CH₃)₃C), 95.5, 126.0, 126.6, 127.6, 131.0, 134.9, 135.9, 136.9, 139.3, 142.3

(Ar**C**), 155.2 (NH**C**(O)), 170.5 (**C**(O)); HRMS (ESI⁺) 497.0937 [M + H]⁺ (calcd for C₂₁H₂₅IN₂O₄H⁺ 497.0935).

Preparation of (*R*)-(3"-Cyanobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3hydroxypropionamide ((*R*)-51). Using Method D, (*R*)-45 (10.22 g, 50.8 mmol), NMM (13.7 g, 135.4 mmol), IBCF (6.94 g, 50.8 mmol), and amine **32** (7.06 g, 33.8 mmol) gave the desired product (*R*)-51 (6.40 g, 48%) as a colorless oil: $R_f = 0.32$ (CH₂Cl₂/CH₃OH 19/1); [α]^{22.5}_D +12.3 ° (c 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ 1.38 (s, (CH₃)₃C), 3.70-3.75 (br s, CHH'OH), 3.98-4.00 (m, CHH'OH), 4.23-4.27 (br s, CH), 4.42-4.46 (br s, NHCH₂), 5.83-5.89 (br s, NHCH), 7.31 (d, *J* = 8.0 Hz, 2 ArH), 7.39-7.51 (m, 3 ArH, NHCH₂), 7.56 (d, *J* = 8.0 Hz, ArH), 7.71 (d, *J* = 8.0 Hz, 2 ArH); ¹³C NMR (CDCl₃/CD₃OD) δ 28.4 (C(CH₃)₃), 43.0 (NCH₂), 55.6 (CH), 62.9 (OCH₂), 80.6 (C(CH₃)₃), 113.0 (ArC), 119.0 (CN), 127.3, 128.7, 129.2, 130.4, 131.1, 131.4, 137.9, 138.1, 142.9 (9 ArC), 156.3 ((CH₃)₃CN(H)C(O)O), 171.6 (C(O)); LRMS (ESI⁺) 396.2 [M + H]⁺ (calcd for C₂₂H₂₆N₃O₄⁺ 396.2); HRMS (ESI⁺) 396.1924 [M + H]⁺ (calcd for C₂₂H₂₆N₃O₄⁺ 396.1923).

Preparation of (*R*)-*N*-(3"-Trifluoromethyl)-4-biphenylmethyl 2-*N*-(*tert*-Butoxycarbonyl) amino-3-hydroxypropionamide ((*R*)-52). Using Method D, (*R*)-45 (930 mg, 4.5 mmol), NMM (417 mg, 4.1 mmol), IBCF (563 mg, 4.1 mmol), and amine **33** (1.04 g, 4.1 mmol, prepared by Method C from **33**·HCl) gave compound (*R*)-52 as a white solid (1.53 g, 77%): $R_f = 0.58$ (1:20 MeOH/CH₂Cl₂); mp 128–129 °C; [α]_D²² = +12.8° (c = 1.0, CHCl₃); ¹H NMR (DMSO-*d*₆) δ 1.40 ((CH₃)₃C), 3.54–3.65 (m, CHCH₂), 3.96–4.07 (m, CHCH₂), 4.26–4.44 (m, NHCH₂), 4.86 (t, *J* = 5.7 Hz, OH), 6.67 (d, *J* = 8.2 Hz, NHCH), 7.39 (d, *J* = 8.2 Hz, 2 ArH), 7.64–7.74 (m, 4 ArH), 7.90–8.01 (m, 2 ArH), 8.38 (t, *J* = 5.9 Hz, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.1 ((CH₃)₃C), 41.7 (NHCH₂), 57.0 (CH), 61.8 (CH₂OH), 78.2 ((CH₃)₃C), 122.9 (q, *J* = 4.0 Hz), 123.9 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 272.0 Hz, **C**F₃), 126.7, 127.7 (Ar**C**), 129.7 (q, J = 32.0 Hz), 130.0, 130.7, 136.9, 139.6, 141.0 (Ar**C**), 155.2 (NH**C**(O)), 170.5 (**C**(O)); LRMS (ESI⁺) 439.2 [M + H]⁺ (calcd for C₂₂H₂₆F₃N₂O₄⁺ 439.2); HRMS (ESI⁺) 439.1874 [M + H]⁺ (calcd for C₂₂H₂₆F₃N₂O₄⁺ 439.1844).

Preparation of (R)-N-(3"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-N-(tert.-

Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-53). Using Method D, (*R*)-45 (2.09 g, 10.2 mmol), NMM (1.68 mL, 15.3 mmol), IBCF (1.68 mL, 13.0 mmol), and amine 34 (3.27 g, 12.2 mmol, prepared by Method C from 34·HCl) gave (*R*)-53 as a white solid (3.79 g, 82%): $R_f = 0.55$ (hexanes/EtOAc 1/3); mp 96-97 °C; [α]²⁶_D +13.0° (*c* 1.1, CHCl₃); IR (nujol) 3176, 2949, 2850, 1689, 1657, 1530, 1458, 1374, 1294, 1159, 1085, 997, 788, 724 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (s, (CH₃)₃), 3.08-3.22 (br m, CHH'), 3.66–3.74 (br m, CHH'), 4.12–4.22 (br m, CH, OH), 4.39-4.59 (br m, CH₂N), 5.60–5.65 (br d, NHCH), 7.12–7.54 (m, 8 ArH, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 78.2 (C(CH₃)₃), 119.1, 119.6 (ArC), 120.1 (d, *J* = 254.9 Hz, OCF₃), 125.7, 126.7, 127.7, 130.8, 136.8, 139.7, 142.4, 149.0 (ArC), 155.2 (NC(O)O), 170.5 (C(O)); LRMS (ESI⁺) 477.1 [M + Na]⁺ (calcd for C₂₂H₂₅F₃N₂O₅Na⁺ 477.2); Anal. Calcd. for C₂₂H₂₅F₃N₂O₅: C, 58.15; H, 5.54; F, 12.54; N, 6.16. Found: C, 57.99; H, 5.68; F, 12.40; N, 6.11.

Preparation of (R)-N-(4"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-N-(tert.-

Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-54). Using Method D, (*R*)-45 (1.03 g, 5.0 mmol), NMM (0.82 mL, 7.5 mmol), IBCF (0.82 mL, 7.5 mmol), and amine **35** (1.60 g, 6.0 mmol, prepared by Method C from **35·HCl**) gave (*R*)-**54** as a white solid (1.92 g, 83%): R_f = 0.55 (hexanes/EtOAc 1/3); mp 166-167 °C; [α]²⁶_D+13.3° (*c* 0.8, CHCl₃); IR (nujol) 3304, 2924, 2859, 1658, 1534, 1457, 1378, 1284, 1230, 1162, 1009, 835, 647 cm⁻¹; ¹H NMR (CDCl₃) δ1.42 (s, (CH₃)₃), 3.30-3.40 (br m, CHH'), 3.64–3.74 (br m, CHH'), 4.11–4.22 (br m, CH, OH), 4.40-4.56 (br

m, CH₂N), 5.64–5.69 (br d, NHCH), 7.20–7.34 (m, 4 ArH, NHCH₂), 7.47–7.56 (m, 4 ArH); ¹³C NMR (DMSO- d_6) δ 28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.8 (OCH₂CH), 78.2 (C(CH₃)₃), 120.1 (d, J = 254.9 Hz, OCF₃), 121.4, 126.6, 127.7, 128.4, 137.1, 139.2, 139.3, 147.7 (ArC), 155.2 (NC(O)O), 170.5 (C(O)); LRMS (ESI⁺) 587.0 [M + Cs]⁺ (calcd for C₂₂H₂₅F₃N₂O₅Cs⁺ 587.1); Anal. Calcd. for C₂₂H₂₅F₃N₂O₅: C, 58.15; H, 5.54; F, 12.54; N, 6.16. Found: C, 58.09; H, 5.67; F, 12.40; N, 6.25.

Preparation of (*R*)-*N*-(3"-Acetylaminobiphenyl-4'-yl)methyl 2-*N*-(*tert*.-Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-55). Using Method D, (*R*)- 45 (7.54 g, 37.5 mmol),NMM (10.1 g, 99.9 mmol), IBCF (5.12 g, 37.5 mmol), and amine 36 (6.00 g, 25.0 mmol) gave the desired product (*R*)-55 (4.00 g, 38%) as a colorless oil: $R_f = 0.17$ (CH₂Cl₂/CH₃OH 19/1); [α]^{22.5}_D+17.3 ° (c 1.0, CH₃OH); ¹H NMR (CDCl₃) δ 1.41 (s, (CH₃)₃C), 2.14 (s, CH₃CO), 3.65-3.57 (m, CHH'OH), 3.97-4.07 (m, CHH'OH), 4.17-4.24 (br s, CH), 4.24-4.46 (m, NHCH₂), 5.73-5.77 (br d, NHCH), 7.19 (m, 3 ArH), 7.31 (t, *J* = 8.0 Hz, ArH), 7.41 (d, *J* = 8.0 Hz, 2 ArH), 7.47 (d, *J* = 8.0 Hz, ArH), 7.62 (s, ArH), 7.95 (br s, ArNHC(O)); ¹³C NMR (CDCl₃) δ 24.7 (CH₃CO), 28.4 (C(CH₃)₃), 43.3 (NCH₂), 55.4 (CH), 63.0 (OCH₂), 80.8 (C(CH₃)₃), 118.8, 119.2, 123.1, 127.5, 128.0, 129.6, 137.2, 138.6, 140.0, 141.6 (10 ArC), 156.5 ((CH₃)₃CN(H)C(O)O), 169.1, 171.6 (2 C(O)); LRMS (ESI⁺) 428.2 [M + H]⁺ (calcd for C₂₃H₂₉N₃O₅H⁺ 428.2); HRMS (ESI⁺) 450.2007 [M + Na]⁺ (calcd for C₂₃H₂₉N₃O₅Na⁺ 450.2005).

Preparation of (*R***)-2-***N***-Acetamido-3-hydroxypropionate Benzyl Ester (***(R***)-67).** To a suspension of D-serine benzyl ester hydrochloride ((*R*)-**66**) (5.00 g, 21.6 mmol) in CH₂Cl₂ (100 mL) was added triethylamine (4.59 g, 45.3 mmol) at -20 °C under Ar and stirred (10 min). To the resulting solution was added AcCl (1.52 g, 19.4 mmol) at -20 °C under Ar and then stirred (4 h). The reaction mixture was filtered and washed with aqueous 0.5 M HCl (2 × 100 mL) and brine (2

× 40 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo. The residue was purified by column choromatography (CH₂Cl₂/MeOH 19/1) to give the desired product (*R*)-**66** (6.07 g, 100%) as a white solid: $R_f = 0.26$ (CH₂Cl₂/MeOH 19/1); mp 78-79 °C; $[\alpha]^{25}_{D} - 20.6$ ° (c 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 1.96 (s, CH₃C(O)), 3.72-3.84 (m, HOCHH'), 3.90-3.97 (m, HOCHH'), 4.61-4.64 (m, CH), 5.14 (s, OCH₂Ph), 6.91 (d, *J* = 7.6 Hz, NHC(O)), 7.24-7.38 (m, 5 ArH); ¹³C NMR (CDCl₃) δ 23.0 (CH₃C(O)), 55.0 (CH), 62.9 (HOCH₂), 67.5 (OCH₂Ph), 128.2, 128.6, 128.7, 135.3 (4 Ar**C**), 170.7 (CH**C**O(O)), 171.3 (CH₃**C**(O)); HRMS (ESI⁺) 238.1078 [M + H]⁺ (calcd for C₁₂H₁₆NO₄⁺ 238.1079).

Preparation of (*R***)-2-***N***-Acetamido-3-methoxypropionate Benzyl Ester ((***R***)-68). To a solution of (***R***)-67 (1.00 g, 4.2 mmol) in acetonitrile (50 mL) was added CH₃I (5.98 gm 42.2 mmol) and Ag₂O (4.88 g, 21.1 mmol) at room temperature under Ar and stirred (36 h). The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by SiO₂ column choromatography (EtOAc/hexanes 1/1) to give the desired product (***R***)-68 (1.06 g, 100%) as a white solid: R_f = 0.23 (EtOAc/hexanes 1/1); mp 80-81 °C; [α]²⁵_D – 23.3 ° (c 1.0, CHCI₃); ¹H NMR (CDCI₃) δ2.05 (s, CH₃C(O)), 3.29 (s, OCH₃), 3.62 (dd,** *J* **= 3.2, 9.2 Hz, OCHH'), 3.81 (dd,** *J* **= 3.2, 9.2 Hz, OCHH'), 4.76-4.80 (m, CH), 5.16 (½AB_q,** *J* **= 12.2 Hz, OCHH'Ph), 5.26 (½AB_q,** *J* **= 12.2 Hz, OCHH'Ph), 6.27-6.38 (br s, NHC(O)), 7.27-7.38 (m, 5 ArH), addition of excess (***R***)-(–)-mandelic acid to a CDCI₃ solution of the product gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCI₃) δ23.4 (CH₃C(O)), 53.0 (CH), 59.4 (OCH₃), 67.5 (OCH₂Ph), 72.5 (CH₃OCH₂), 128.3, 128.6, 128.8, 135.6 (4 ArC), 170.1 (CHCO(O)), 170.5 (CH₃C(O)); LRMS (ESI⁺) 274.1 [M + H]⁺ (calcd for C₁₃H₁₈NO₄⁺ 274.1); Anal. Calcd. for C₁₃H₁₇NO₄: C, 62.14; H, 6.82; N, 5.57. Found: C, 62.27; H, 6.72; N, 5.77.**

Preparation of (*R*)-2-*N*-Acetamido-3-hydroxypropionic Acid ((*R*)-69). To a solution of (*R*)-2-*N*acetamido-3-hydroxypropionate benzyl ester ((*R*)-67) (1.47 g, 10.0 mmol) in MeOH (150 mL) was added Pd on activated carbon (10% Pd/C, wet) (0.53 g, 0.5 mmol) at room temperature and stirred (1 h) under H₂. The reaction mixture was filtered through Celite and concentrated in vacuo. The resulting residue was further dried under high vacuum (15-24 h) and (*R*)-69 was used without further purification: $R_f = 0.00$ (EtOAc); [α]²⁵_D – 26.0 ° (c 1.0, MeOH).

Preparation of (R)-2-*N***-Acetamido-3-methoxypropionic Acid**² **((R)-70).** To a solution of (*R*)-2-*N*-acetamido-3-methoxypropionate benzyl ester ((*R*)-**68**) (0.25 g, 1.0 mmol) in MeOH (15 mL) was added Pd on activated carbon (10% Pd/C, wet) (53.2 mg, 0.05 mmol) at room temperature and stirred (30 min) under H₂. The reaction mixture was filtered through Celite and concentrated in vacuo. The resulting residue (*R*)-**70** was further dried under high vacuum (15 h) and used without further purification: $R_f = 0.00$ (EtOAc); $[\alpha]^{25}_{D} - 19.2$ ° (c 1.0, MeOH); ¹H NMR (CDCl₃) δ 2.04 (s, CH₃C(O)), 3.33 (s, OCH₃), 3.58-3.65 (m, OCHH'), 3.75-3.85 (m, OCHH'), 4.63-4.76 (br s, CH), 6.75-6.95 (m, NHC(O), C(O)OH); ¹³C NMR (CDCl₃) δ 22.9 (CH₃C(O)), 52.9 (CH), 59.3 (OCH₃), 72.1 (CH₃OCH₂), 171.7 (CH₃C(O)), 172.4 (CHCO(O)H).

Preparation of (R)-N-(3"-tert-Butoxymethylbiphenyl-4'-yl)methyl 2-Acetamido-3-

hydroxypropionamide ((*R***)-71).** Using Method D, (*R*)-2-acetamido-3-hydroxypropionic acid ((*R*)-69) (1.70 g, 11.5 mmol), anhydrous THF/DMSO (150 mL/15 mL), NMM (1.17 g, 11.5 mmol), IBCF (1.26 g, 9.2 mmol), and amine **37** (2.07 g, 7.7 mmol, prepared by Method C from **37·HCl**) gave the desired product (*R*)-**70** (1.03 g, 34%) as a white solid: $R_f = 0.11$ (EtOAc/hexanes 1/1); mp 125-126 °C; $[\alpha]^{22.5}_{D}$ +9.6 ° (c 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ 1.24 (s, (CH₃)₃C), 1.95 (s,

CH₃C(O)), 3.29-3.64 (m, CHH'OH), 3.81-3.87 (m, CHH'OH), 4.35-4.45 (m, CH, CH₂O, CH₂N), 7.23-7.45 (m, 5 ArH), 7.46-7.52 (m, 3 ArH); ¹³C NMR (CDCl₃/CD₃OD) δ 22.8 (CH₃C(O)), 27.7 (C(CH₃)₃), 43.1 (NCH₂), 54.8 (CH), 62.5 (OCH₂), 64.3 (ArCH₂O), 73.9 (C(CH₃)₃), 126.0, 126.3, 126.7, 127.4, 127.9, 128.8, 139.8, 140.3, 140.5, 140.7 (10 ArC), 170.9, 171.7 (2 C(O)NH); LRMS (ESI⁺) 399.2 [M + H]⁺ (calcd for C₂₃H₃₀N₂O₄H⁺ 399.2); HRMS (ESI⁺) 399.2285 [M + H]⁺ (calcd for C₂₃H₃₀N₂O₄H⁺ 399.2284).

Preparation of (*R*)-*N*-(3"-tert-Butoxycarbonylbiphenyl-4'-yl)methyl 2-Acetamido-3hydroxypropionamide ((*R*)-72). Using Method D, (*R*)-69 (1.20 g, 8.2 mmol), anhydrous THF/DMSO (90 mL/9 mL), NMM (1.24 g, 12.3 mmol), IBCF (1.12 g, 8.2 mmol), and amine **38** (2.32 g, 8.2 mmol, prepared by Method C from **38**·HCl) gave the desired product (*R*)-72 (0.86 g, 50%) as a white solid: $R_f = 0.12$ (EtOAc/hexanes 1/1); mp 123-124 °C; [α]^{22.5}_D +10.7 ° (*c* 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ 1.62 (s, (CH₃)₃C), 2.05 (s, CH₃C(O)), 3.67-3.72 (m, CHH'OH), 3.94-3.99 (m, CHH'OH), 4.41-4.52 (m, CH, CH₂N), 7.29 (d, *J* = 7.8 Hz, 2 ArH), 7.48 (m, ArH), 7.58 (d, *J* = 7.8 Hz, 2 ArH), 7.74 (d, *J* = 7.6 Hz, ArH), 7.96 (d, *J* = 7.6 Hz, ArH), 8.18 (s, ArH); ¹³C NMR (CDCl₃/CD₃OD) δ 23.0 (CH₃C(O)), 28.3 (C(CH₃)₃), 43.2 (NCH₂), 54.6 (CH), 62.6 (OCH₂), 81.36 (C(CH₃)₃), 127.5, 128.1, 128.2, 128.4, 128.9, 131.1, 132.6, 137.4, 139.6, 141.9 (10 ArC), 166.5 (ArC(O)), 171.0, 171.5 (2 C(O)NH); LRMS (ESI⁺) 413.2 [M + H]⁺ (calcd for C₂₃H₂₈N₂O₅H⁺ 413.2); HRMS (ESI⁺) 413.2079 [M + H]⁺ (calcd for C₂₃H₂₈N₂O₅H⁺ 413.2076).

Preparation of (*R*)-*N*-(4"-Fluorobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3methoxypropionamide ((*R*)-56). Using Method E, (*R*)-46 (3.50 g, 9.0 mmol), Ag₂O (10.45 g, 45.1 mmol), and CH₃I (5.63 mL, 90.2 mmol) gave (*R*)-56 as a white solid (3.40 g, 94%): R_f = 0.40 (hexanes/EtOAc 1/1); mp 108-109 °C; $[\alpha]^{26}_{D}$ –19.7° (*c* 1.2, CHCl₃); IR (nujol) 3172, 2952, 2862, 1653, 1529, 1458, 1374, 1240, 1169, 1116, 1062, 818, 723, 611 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.41 (s, (CH₃)₃), 3.27 (s, OCH₃), 3.51-3.56 (br m, CH₂O), 4.21–4.26 (br m, CH), 4.30–4.41 (br m, CH₂N), 6.87 (d, *J* = 8.0 Hz, NHCH), 7.25–7.40 (m, 4 ArH), 7.57–7.70 (m, 4 ArH), 8.46–8.49 (br t, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.1 ((CH₃)₃), 41.8 (NCH₂), 54.4 (OCH₂CH), 58.1 (OCH₃), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 115.6 (d, *J* = 21.2 Hz, C_{3"}, C_{5"}), 126.4 (ArC), 127.6 (ArC), 128.5 (d, *J* = 8.1 Hz, C_{2"}, C_{6"}), 136.4 (d, *J* = 2.9 Hz, C_{1"}), 137.6 (ArC), 138.6 (ArC), 155.2 (NC(O)O), 161.8 (d, *J* = 242.5 Hz, C_{4"}), 170.5 (C(O)); LRMS (ESI⁺) 425.2 [M + Na]⁺ (calcd for C₂₂H₂₇FN₂O₄Na⁺ 425.2); Anal. Calcd. for C₂₂H₂₇FN₂O₄: C, 65.66; H, 6.67; F, 4.72; N, 6.96. Found: C, 65.58; H, 6.65; F, 4.53; N, 6.84.

Preparation of (*R*)-*N*-(3"-Chlorobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3methoxypropionamide ((*R*)-57). Using Method E, (*R*)-47 (4.00 g, 9.9 mmol), Ag₂O (11.47 g, 49.5 mmol), and CH₃I (6.18 mL, 99.0 mmol) gave (*R*)-57 as a sticky foam (4.00 g, 97%): R_f = 0.40 (hexanes/EtOAc 1/1); [α]²⁶_D -17.0° (*c* 1.1, CHCl₃); IR (nujol) 3162, 2923, 2857, 1659, 1459, 1375, 1247, 1164, 1109, 874, 771 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ1.40 (s, (CH₃)₃), 3.26 (s, OCH₃), 3.48-3.53 (br m, CH₂O), 4.16–4.22 (br m, CH), 4.27–4.39 (br m, CH₂N), 6.86 (d, *J* = 8.0 Hz, NHCH), 7.33–7.50 (m, 4 ArH), 7.61–7.70 (m, 4 ArH), 8.44–8.48 (br t, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.1 ((CH₃)₃), 41.7 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 125.2, 126.2, 126.6, 127.1, 127.6, 130.7, 133.7, 137.0, 139.3, 142.1 (ArC), 155.2 (NC(O)O), 170.1 (C(O)); LRMS (ESI⁺) 419.2 [M + H]⁺ (calcd for C₂₂H₂₇ClN₂O₄H⁺ 419.2); Anal. Calcd. for C₂₂H₂₇ClN₂O₄: C, 63.08; H, 6.50; Cl, 8.46; N, 6.69. Found: C, 62.94; H, 6.67; Cl, 8.24; N, 6.65. Preparation of (*R*)-*N*-(4"-Chlorobiphenyl-4'-yl)methyl 2-*N*-(*tert*.-Butoxycarbonyl)amino-3methoxypropionamide ((*R*)-58). Using Method E, (*R*)-48 (3.60 g, 8.9 mmol), Ag₂O (10.32 g, 44.5 mmol), and CH₃I (5.56 mL, 89.1 mmol) gave (*R*)-58 as a white solid (3.27 g, 88%): R_f = 0.40 (hexanes/EtOAc 1/1); mp 97-98 °C; [α]²⁶_D –19.3° (*c* 1.0, CHCI₃); IR (nujol) 3155, 2967, 2850, 1662, 1530, 1458, 1376, 1308, 1247, 1166, 1100, 1048, 806, 722 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.40 (s, (CH₃)₃), 3.26 (s, OCH₃), 3.47-3.53 (br m, CH₂O), 4.17–4.22 (br m, CH), 4.28–4.39 (br m, CH₂N), 6.87 (d, *J* = 8.0 Hz, NHCH), 7.34 (d, *J* = 7.2 Hz, 2 ArH), 7.50 (d, *J* = 8.0 Hz, 2 ArH), 7.60 (d, *J* = 7.2 Hz, 2 ArH), 7.68 (d, *J* = 8.0 Hz, 2 ArH), 8.44–8.47 (br t, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ 28.1 ((CH₃)₃), 41.7 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 126.4, 127.6, 128.3, 128.8, 132.2, 137.2, 138.8, 139.0 (ArC), 155.2 (NC(O)O), 170.0 (C(O)); LRMS (ESI⁺) 419.2 [M + H]⁺ (calcd for C₂₂H₂₇ClN₂O₄H⁺ 419.2); Anal. Calcd. for C₂₂H₂₇ClN₂O₄: C, 63.08; H, 6.50; Cl, 8.46; N, 6.69. Found: C, 62.88; H, 6.52; Cl, 8.17; N, 6.68.

Preparation of (*R*)-*N*-(3"-Bromo-4-biphenylmethyl) 2-*N*-(*tert*-Butoxycarbonyl)amino-3methoxypropionamide ((*R*)-59). Using Method E, Ag₂O (4.30 g, 18.7 mmol), MeI (5.31 g, 37.4 mmol), and (*R*)-49 (1.68 g, 3.7 mmol) gave compound (*R*)-59 as a colorless sticky foam (1.32 g, 76%): $R_f = 0.48$ (1:20 MeOH/CH₂Cl₂); [α]²⁴_D -13.3° (c = 1.0, CHCl₃); ¹H NMR (CDCl₃) δ1.44 (s, (CH₃)C), 3.38 (s, OCH₃), 3.52 (dd, *J* = 3.4, 9.1 Hz, CHH'OCH₃), 3.85 (dd, *J* = 3.7, 9.1 Hz, CHH'OCH₃), 4.23-4.35 (m, CHCH₂), 4.45-4.59 (m, NHCH₂), 5.37-5.49 (m, NHCH), 6.82-6.84 (m, NHCH₂), 7.28-7.34 (m, 3 ArH), 7.41-7.55 (m, 4 ArH), 7.69-7.70 (m, ArH); ¹³C NMR (CDCl₃) δ28.2 (C(CH₃)₃), 43.0 (NHCH₂), 54.1 (CH), 59.1 (OCH₃), 72.0 (CH₂O), 80.3 ((CH₃)₃C), 122.9, 125.6, 127.3, 127.9, 130.0, 130.2, 130.3, 137.8, 138.8, 142.8 (ArC), 155.5 (NHC(O)), 170.4 (C(O)); LRMS (ESI⁺) 463.1 [M + H]⁺ (100%), 465.1 [M + 2 + H]⁺ (100%); HRMS (ESI⁺) 463.1232 [M + H]⁺ (calcd for $C_{22}H_{27}^{79}BrN_2O_4H^+$ 463.1234).

$C_{22}H_{27}$ BIN₂O₄H 403.1234).

Preparation of (R)-N-(3"-Iodo-4-biphenylmethyl) 2-N-(tert-Butoxycarbonyl)amino-3-

methoxypropionamide ((*R*)-60). Using Method E, Ag₂O (2.10 g, 9.0 mmol), MeI (2.57 g, 18.1 mmol), and (*R*)-50 (900 mg, 1.8 mmol) gave compound (*R*)-60 as a colorless sticky foam (674 mg, 73%): $R_f = 0.62$ (1:20 MeOH/CH₂Cl₂); $[\alpha]^{24}_{D} - 12.9^{o}$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃) δ1.45 (s, (CH₃)₃C), 3.40 (s, OCH₃), 3.53 (dd, *J* = 3.6, 9.1 Hz, CHH'OCH₃), 3.87 (dd, *J* = 3.7, 9.1 Hz, CHH'OCH₃), 4.28–4.32 (m, CHCH₂), 4.47–4.60 (m, NHCH₂), 5.40– 5.44 (m, NHCH), 6.79 (t, *J* = 5.0 Hz, NHCH₂), 7.17 (t, *J* = 7.8 Hz, ArH), 7.35 (d, *J* = 8.2 Hz, 2 ArH), 7.44–7.60 (m, 3 ArH), 7.65–7.71 (m, ArH), 7.92 (s, ArH); ¹³C NMR (CDCl₃) δ28.3 (C(CH₃)₃), 43.1 (NHCH₂), 58.1 (CH), 59.1 (OCH₃), 72.0 (CH₂O), 78.6 ((CH₃)₃C), 94.8, 126.3, 127.3, 127.9, 130.4, 136.0, 136.2, 137.7, 138.8, 142.9 (ArC), 155.3 (NHC(O)), 170.4 (C(O)); HRMS (ESI⁺) 511.1094 [M + H]⁺ (calcd for C₂₂H₂₇IN₂O₄H⁺ 511.1097).

Preparation of (*R*)-*N*-(3"-Cyanobiphenyl-4'-yl)methyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3methoxypropionamide ((*R*)-61). Using Method E, (*R*)-51 (6.40 g, 15.9 mmol), acetonitrile (300 mL), DMF (30 mL), Ag₂O (18.5 g, 79.5 mmol), and CH₃I (22.50 g, 159.3 mmol) were stirred (48 h). The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was diluted in CH₂Cl₂ (200 mL) and washed with H₂O (2 × 200 mL) and saturated aqueous brine (2 × 100 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and then purified by SiO₂ column chromatography (CH₂Cl₂/CH₃OH 20/1) and further purified by recrystallization (EtOAc/hexanes) to give the desired product (*R*)-61 (3.10 g, 48%) as a colorless oil: R_f = 0.50 (CH₂Cl₂/CH₃OH 20/1); [α]²⁵_D +16.9 ° (c 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 1.35 (s, (CH₃)₃CO), 3.27 (s, OCH₃), 3.46-3.50 (m, CHH'OCH₃), 3.70-3.74 (m, CHH'OCH₃), 4.20-4.50 (m, CH, CH₂N), 5.59-5.65 (br s, N(H)CH), 7.17-7.30 (m, 2 ArH, N(H)CH₂), 7.35-7.52 (m, 4 ArH), 7.68-7.73 (m, 2 ArH); ¹³C NMR (CDCl₃) δ 28.1 (C(CH₃)₃), 42.7 (NCH₂), 54.1 (CH), 58.9 (OCH₃), 72.2 (OCH₂), 80.2 (C(CH₃)₃), 112.7 (ArC), 118.6 (CN), 127.0, 127.9, 128.6, 129.5, 130.5, 131.4, 137.5, 138.6, 141.7 (9 ArC), 155.5 (NHC(O)O), 170.5, (C(O)CH); LRMS (ESI⁺) 410.2 [M + H]⁺ (calcd for C₂₃H₂₈N₃O₄⁺ 410.2); HRMS (ESI⁺) 410.2084 [M + H]⁺ (calcd for C₂₃H₂₈N₃O₄⁺ 410.2080).

Preparation of (*R*)-*N*-(3"-Trifluoromethyl)-4-biphenylmethyl 2-*N*-(*tert*-Butoxycarbonyl) amino-3-methoxypropionamide ((*R*)-62). Using Method E, Ag₂O (3.96 g, 17.1 mmol), MeI (4.85 g, 34.2 mmol), and (*R*)-52 (1.50 g, 3.4 mmol) gave compound (*R*)-62 as a colorless sticky foam (1.39 g, 90%): $R_f = 0.72$ (1:20 MeOH/CH₂Cl₂); $[\alpha]^{22}_{D} - 30.9^{\circ}$ (c = 1.0, CHCl₃); ¹H NMR (DMSO- d_6) δ 1.39 (s, (CH₃)₃C), 3.32 (s, OCH₃), 3.49–3.51 (m, CHCH₂), 4.15–4.25 (m, CHCH₂), 4.28–4.42 (m, NHCH₂), 6.86 (d, *J* = 8.2 Hz, NHCH), 7.38 (d, *J* = 8.2 Hz, 2 ArH), 7.65–7.73 (m, 4 ArH), 7.94 (s, ArH), 7.97 (d, *J* = 6.7 Hz, ArH), 8.48 (t, *J* = 6.1 Hz, NHCH₂); ¹³C NMR (DMSO- d_6) δ 28.1 (C(CH₃)₃), 41.7 (NHCH₂), 54.3 (OCH₃), 58.1 (CH), 72.0 (CH₂O), 78.2 ((CH₃)₃C), 122.9 (q, *J* = 4.0 Hz), 123.9 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 272.0 Hz, CF₃), 126.8, 127.7 (ArC), 129.7 (q, *J* = 32.0 Hz), 130.0, 130.6, 136.9, 139.5, 141.0 (ArC), 155.2 (NHC(O)), 170.1 (C(O)); LRMS (ESI⁺) 453.2 [M + H]⁺ (calcd for C₂₃H₂₈F₃N₂O4⁺ 453.2); HRMS (ESI⁺) 453.2033 [M + H]⁺ (calcd for C₂₃H₂₈F₃N₂O4⁺ 453.2001).

Preparation of (R)-N-(3"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-N-(tert.-

Butoxycarbonyl)amino-3-methoxypropionamide ((*R***)-63). Using Method E, (***R***)-53 (2.54 g, 5.6 mmol), Ag₂O (6.48 g, 28.0 mmol), and CH₃I (3.50 mL, 55.9 mmol) gave (***R***)-63 as a white solid (2.29 g, 88%): R_f = 0.40 (hexanes/EtOAc 1/1); mp 83-84 °C; [\alpha]^{26}_{D} –16.5° (***c* **1.1, CHCl₃); IR (nujol) 3166, 2913, 2842, 1662, 1527, 1459, 1375, 1254, 1161, 1051, 952, 855, 782, 646 cm⁻¹; ¹H NMR**

(DMSO- d_6) δ 1.40 (s, (CH₃)₃), 3.27 (s, OCH₃), 3.51–3.53 (m, CH₂OCH₃), 4.19–4.24 (m, CH), 4.30-4.41 (m, CH₂N), 6.88 (d, J = 8.0 Hz, NHCH), 7.34–7.38 (m, 3 ArH), 7.57–7.72 (m, 5 ArH), 8.48 (t, J= 6.0 Hz, NHCH₂); ¹³C NMR (DMSO- d_6) δ 28.1 ((CH₃)₃), 41.7 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 119.1, 119.6 (ArC), 120.1 (d, J = 254.9 Hz, OCF₃), 125.7, 126.7, 127.7, 130.8, 136.8, 139.5, 142.3, 149.0 (ArC), 155.2 (NC(O)O), 170.1 (C(O)); LRMS (ESI⁺) 491.1 [M + Na]⁺ (calcd for C₂₃H₂₇F₃N₂O₅Na⁺ 491.2); Anal. Calcd. for C₂₃H₂₇F₃N₂O₅: C, 58.97; H, 5.81; F, 12.17; N, 5.98. Found: C, 59.05; H, 5.97; F, 12.06; N, 5.92.

Preparation of (R)-N-(4"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-N-(tert.-

Butoxycarbonyl)amino-3-methoxypropionamide ((*R***)-64). Using Method E, (***R***)-54 (0.93 g, 2.1 mmol), Ag₂O (2.37 g, 10.2 mmol) and CH₃I (1.28 mL, 20.5 mmol) gave (***R***)-64 as a white solid (0.88 g, 91%): R_f = 0.40 (hexanes/EtOAc 1/1); mp 131-132 °C; [α]²⁶_D -16.7° (***c* **0.9, CHCl₃); IR (nujol) 3332, 2924, 2858, 2657, 1532, 1458, 1378, 1260, 1151, 1047, 953, 839, 677 cm⁻¹; ¹H NMR (CDCl₃) \delta 1.44 (s, (CH₃)₃), 3.39 (s, OCH₃), 3.52 (dd,** *J* **= 6.0, 9.2 Hz, CHH'OCH₃), 3.92 (dd,** *J* **= 4.0, 9.2 Hz, CHH'OCH₃), 4.25–4.32 (br m, CH), 4.48-4.58 (br m, CH₂N), 5.36–5.44 (br d, NHCH), 6.76–6.81 (m, NHCH₂), 7.28 (d,** *J* **= 8.0 Hz, 2 ArH), 7.35 (d,** *J* **= 8.4 Hz, 2 ArH), 7.50–7.59 (m, 4 ArH); ¹³C NMR (DMSO-***d***₆) \delta 28.1 ((CH₃)₃), 41.7 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 120.1 (d,** *J* **= 254.9 Hz, OCF₃), 121.4, 126.6, 127.6, 128.4, 137.2, 139.1, 139.3, 147.7 (ArC), 155.2 (NC(O)O), 170.1 (C(O)); LRMS (ESI⁺) 601.1 [M + Cs]⁺ (calcd for C₂₃H₂₇F₃N₂O₅Cs⁺ 601.1); Anal. Calcd. for C₂₃H₂₇F₃N₂O₅: C, 58.97; H, 5.81; F, 12.17; N, 5.98. Found: C, 58.92; H, 5.93; F, 11.98; N, 5.95.**

Preparation of (*R*)-*N*-(3"-Acetylaminobiphenyl-4'-yl)methyl 2-*N*-(*tert*.-Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-65). Using Method E and the workup conditions for (*R*)-61, (*R*)-55 (4.00 g, 9.36 mmol), acetonitrile (200 mL), DMF (10 mL), Ag₂O (10.80 g, 46.8 mmol), and CH₃I (13.28 g, 93.6 mmol) gave the desired product (*R*)-65 (1.80 g, 44%) as a colorless oil: R_f = 0.28 (CH₂Cl₂/CH₃OH 20/1); [α]²⁵_D +21.9 ° (c 1.0, CHCl₃); ¹H NMR (CDCl₃) δ1.43 (s, (CH₃)₃CO), 2.19 (s, CH₃CO), 3.38 (s, OCH₃), 3.48-3.54 (m, CHH'OCH₃), 3.80-3.87 (m, CHH'OCH₃), 4.23-4.29 (br s, CH), 4.47-4.54 (br s, CH₂N), 5.40-5.44 (br s, N(H)CH), 6.77-6.81 (br s, N(H)CH₂), 7.24-7.38 (m, 4 ArH), 7.42-7.54 (m, 3 ArH, ArNHC(O)), 7.71 (s, ArH), addition of excess (*R*)-(-)-mandelic acid to a CDCl₃ solution of the product gave only one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ24.9 (CH₃CO), 28.5 (C(CH₃)₃), 43.4 (NCH₂), 54.3 (CH), 59.3 (OCH₃), 72.3 (OCH₂), 118.7, 119.0, 123.2, 127.6, 128.1, 129.6, 137.5, 138.6, 140.1, 141.8, (10 ArC), 155.8 (NHC(O)O), 168.6, 170.6 (2 **C**(O)), the *t*-butyl carbon resonance was not detected and is believed to be overlap with the nearby solvent resonance; LRMS (ESI⁺) 442.2 [M + H]⁺ (calcd for C₂₄H₃₂N₃O₅⁺ 442.2); HRMS (ESI⁺) 442.2345 [M + H]⁺ (calcd for C₂₄H₃₂N₃O₅⁺ 442.242).

Preparation of (*R*)-*N*-(3"-*tert*.-Butoxymethylbiphenyl-4'-yl)methyl 2-Acetamido-3methoxypropionamide ((*R*)-73). Using Method E and the workup conditions for (*R*)-61, (*R*)-71 (1.03 g, 2.6 mmol), acetonitrile (30 mL), DMF (3 mL), Ag₂O (2.99 g, 12.9 mmol), CH₃I (3.67 g, 25.8 mmol) gave the desired product (*R*)-73 (0.65 g, 61%) as a white solid: $R_f = 0.31$ (EtOAc/hexanes 1/1); mp 139-140 °C; $[\alpha]^{23}_{D} - 21.7 °$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃) δ1.31 (s, (CH₃)₃CO), 2.01 (CH₃C(O)), 3.37 (s, OCH₃), 3.46-3.51 (m, CHH'OCH₃), 3.76-3.80 (m, CHH'OCH₃), 4.45-4.55 (m, ArCH₂O, CH₂N), 4.60-4.64 (m, CH), 6.72-6.74 (br d, N(H)CH), 7.08-7.12 (br t, N(H)CH₂), 7.29-7.50 (m, 5 ArH), 7.52-7.57 (m, 3 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-**73** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.3 (CH₃C(O)), 27.9 (C(CH₃)₃), 43.4 (NCH₂), 52.8 (CH), 59.3 (OCH₃), 64.3 (ArCH₂O), 72.0 (OCH₂), 73.9 (C(CH₃)₃), 126.1, 126.3, 126.7, 127.6, 128.0, 128.9, 137.0, 140.6, 140.7, 140.8 (10 ArC), 170.2, 170.7 (2 C(O)NH); LRMS (ESI⁺) 413.2 [M + H]⁺ (calcd for C₂₄H₃₂N₂O₄H⁺ 413.2); HRMS (ESI⁺) 413.2442 [M + H]⁺ (calcd for C₂₄H₃₂N₂O₄H⁺ 413.2440).

Preparation of (R)-N-(3"-tert.-Butoxycarbonylbiphenyl-4'-yl)methyl 2-Acetamido-3-

methoxypropionamide ((*R*)-74). Using Method E and the workup conditions for (*R*)-61, (*R*)-72 (0.90 g, 2.2 mmol), acetonitrile (50 mL), DMF (5 mL), Ag₂O (2.53 g, 10.9 mmol), and CH₃I (3.10 g, 21.8 mmol) gave the desired product (*R*)-74 (0.31 g, 33%) as a white solid: $R_f = 0.39$ (EtOAc/hexanes 1/1); mp 166-168 °C; $[\alpha]^{22.5}_{D}$ +11.8 ° (c 1.0, CH₃OH); ¹H NMR (CDCl₃) δ 1.61 (s, (CH₃)₃CO), 2.05 (s, CH₃C(O)), 3.39 (s, OCH₃), 3.45-3.50 (m, CHH'OCH₃), 3.80-3.84 (m, CHH'OCH₃), 4.51-4.54 (m, CH₂N), 4.55-4.61 (br s, CH), 6.54-6.58 (br s, N(H)CH), 6.91-6.95 (br s, N(H)CH₂), 7.35 (d, *J* = 7.8 Hz, 2 ArH), 7.47-7.49 (br t, ArH), 7.57-7.59 (d, *J* = 7.8 Hz, 2 ArH), 7.72-7.74 (m, ArH), 7.95-7.77 (m, ArH), 8.19 (s, ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-73 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.4 (CH₃C(O)), 28.4 (C(CH₃)₃), 43.5 (NCH₂), 52.8 (CH), 59.4 (OCH₃), 71.8 (OCH₂), 81.4 (C(CH₃)₃), 127.7, 128.2, 128.3, 128.5, 128.9, 131.2, 132.8, 137.5, 139.8, 141.0 (10 ArC), 165.9 (ArC(O)O), 170.3, 170.7 (2 C(O)NH); LRMS (ESI⁺) 427.2 [M +H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺ (calcd for C₂₄H₃₀N₂O₅H⁺ 427.2); HRMS (ESI⁺) 427.2237 [M + H]⁺

Preparation of (*R***)-***N***-(3**^{*''*}**-***tert.***-Butoxycarbonylaminobiphenyl-4**^{*'*}**-yl)methyl 2-Acetamido-3methoxypropionamide ((***R***)-75).**¹ To a cooled THF solution (–78 °C, dry ice acetone bath) of (*R*)- **70**² (0.18 g, 1.1 mmol) were successively added *N*-methylmorpholine (NMM) (0.18 mL, 1.6 mmol), stirred for 2 min, isobutylchloroformate (IBCF) (0.18 mL, 1.4 mmol), stirred for 5 min, and then **39** (0.39 g, 1.3 mmol, prepared by Method C from **39**·HCl). Upon addition the reaction mixture was allowed to warm to room temperature and further stirred (2–3 h). The salts were filtered and rinsed with THF and the filtrate was concentrated in vacuo. The residue obtained was purified by column chromatography on SiO₂ to give (*R*)-**75** as a white solid (0.34 g, 70%): *R*_f = 0.45 (MeOH/CHCl₃ 1/15); mp 187-188 °C; $[\alpha]^{26}_{D}$ -12.7° (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃) δ 1.53 (s, (CH₃)₃), 2.04 (s, C(O)CH₃), 3.40 (s, OCH₃), 3.45 (dd, *J* = 7.6, 9.2 Hz, CHH'OCH₃), 3.82 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 4.45–4.58 (m, CH₂N, CH), 6.44 (d, *J* = 6.4, NHCH), 6.55 (s, NH-tBoc), 6.76–6.79 (br t, NHCH₂), 7.23 (d, *J* = 8.6 Hz, 2 ArH), 7.42 (d, *J* = 8.6 Hz, 2 ArH), 7.49–7.53 (m, 4 ArH); ¹³C NMR (DMSO-*d*₆) δ 22.5 (C(O)CH₃), 28.1 ((CH₃)₃), 41.7 (NCH₂), 52.6 (OCH₃), 58.2 (OCH₂CH), 72.1 (OCH₂CH), 79.1 (C(CH₃)₃), 118.4, 125.9, 126.7, 127.5, 133.5, 137.9, 138.2, 138.9 (ArC), 152.7 (NC(O)O), 169.5, 169.8 (2 C(O)); HRMS (ESI⁺) 574.1320 [M + Cs]⁺ (calcd for C₂₄H₃₁N₃O₅Cs⁺ 574.1318).

Preparation of (*R*)-*N*-(4"-Fluorobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((*R*)-4). Using Method F, (*R*)-56 (3.17 g, 7.9 mmol) and 4 M HCl (6.90 mL, 27.6 mmol), followed by Et₃N (2.42 mL, 17.3 mmol) and AcCl (0.61 mL, 8.7 mmol) gave (*R*)-4 as a white solid (2.50 g, 92%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 189-190 °C; $[\alpha]^{26}_{D} - 17.8^{\circ}$ (*c* 1.0, CHCl₃); IR (nujol) 3295, 2922, 2860, 1634, 1550, 1460, 1372, 1314, 1222, 1101, 916, 823, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (s, C(O)CH₃), 3.40 (s, OCH₃), 3.44–3.48 (m, CHH'OCH₃), 3.83 (dd, *J* = 3.9, 9.0 Hz, CHH'OCH₃), 4.45–4.59 (m, CH₂N, CH), 6.43–5.46 (br d, NHCH), 6.81–6.85 (m, NHCH₂), 7.12 (t, *J* = 8.6 Hz, 2 ArH), 7.32 (d, *J* = 7.6 Hz, 2 ArH), 7.49–7.54 (m, 4 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-**4** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (DMSO-*d*₆) δ 22.6 (C(O)CH₃), 41.8 (NCH₂), 52.7 (OCH₂CH), 58.2 (OCH₃), 72.1 (OCH₂CH), 115.7 (d, *J* = 21.3 Hz, **C**_{3"}, **C**_{5"}), 126.5 (Ar**C**), 127.6 (Ar**C**), 128.5 (d, *J* = 8.0 Hz, **C**_{2"}, **C**_{6"}), 136.4 (d, *J* = 2.9 Hz, **C**_{1"}), 137.6 (Ar**C**), 138.6 (Ar**C**), 161.8 (d, *J* = 242.4 Hz, **C**_{4"}), 169.5, 169.8 (2 **C**(O)); LRMS (ESI⁺) 367.1 [M + Na]⁺ (calcd for C₁₉H₂₁FN₂O₃Na⁺ 367.1); Anal. Calcd. for C₁₉H₂₁FN₂O₃: C, 66.26; H, 6.15; F, 5.52; N, 8.13. Found: C, 65.97; H, 6.18; F, 5.35; N, 8.11.

Preparation of (R)-N-(3"-Chlorobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((R)-5). Using Method F, (R)-57 (4.00 g, 9.6 mmol) and 4 M HCl (8.36 mL, 33.4 mmol), followed by Et₃N (2.93 mL, 21.0 mmol) and AcCl (0.74 mL, 10.5 mmol) gave (R)-5 as a white solid (2.85 g, 83%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 172-173 °C; $[\alpha]^{26}_{D} - 15.8^{\circ}$ (*c* 1.1, CHCl₃); IR (nujol) 3286, 3071, 2950, 2879, 1637, 1549, 1458, 1383, 1307, 1247, 1132, 784, 717, 609 cm⁻¹; ¹H NMR $(CDCl_3) \delta 2.00 (s, C(O)CH_3), 3.37 (s, OCH_3), 3.49 (dd, J = 7.0, 9.0 Hz, CHH'OCH_3), 3.78 (dd, J = 4.0, J = 0.0)$ 9.0 Hz, CHH'OCH₃), 4.43 (1/2HH'_α, J = 5.8, 15.0 Hz, CHH'Ar), 4.49 (1/2HH'_α, J = 5.8, 15.0 Hz, CHH'Ar), 4.62–4.67 (m, CH), 6.71 (d, J = 6.8 Hz, NHCH), 7.15–7.18 (m, NHCH₂), 7.30–7.52 (m, 8 Ar**H**), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (R)-**5** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.3 (C(O)CH₃), 43.3 (NCH₂), 52.7 (OCH₂CH), 59.2 (OCH₃), 72.1 (OCH₂CH), 125.3, 127.3, 127.5, 128.1, 130.2, 134.8, 137.9, 139.1, 142.6 (ArC), 170.3, 170.6 (2 C(O)), the remaining aromatic peak was not detected and is believed to overlap with the observed signals; LRMS (ESI⁺) 383.1 [M + Na]⁺ (calcd for C₁₉H₂₁ClN₂O₃Na⁺ 383.1); Anal. Calcd. for C₁₉H₂₁ClN₂O₃: C, 63.24; H, 5.87; Cl, 9.83; N, 7.76. Found: C, 63.29; H, 6.01; Cl, 9.71; N, 7.77.

Preparation of (*R*)-*N*-(4"-Chlorobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((*R*)-6). Using Method F, (*R*)-58 (2.80 g, 6.7 mmol) and 4 M HCl (6.70 mL, 26.7 mmol), followed by Et₃N (2.10 mL, 14.7 mmol) and AcCl (0.52 mL, 7.4 mmol) gave (*R*)-6 as a white solid (1.83 g, 76%): R_f = 0.40 (MeOH/CH₂Cl₂ 1/20); mp 215-216 °C; [α]²⁶_D –16.9° (*c* 1.1, CHCl₃); IR (nujol) 3288, 2926, 2858, 1634, 1544, 1459, 1375, 1311, 1198, 1102, 918, 811, 740 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03 (s, C(O)CH₃), 3.39 (s, OCH₃), 3.44–3.48 (m, CHH'OCH₃), 3.82 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 4.45–4.61 (m, CH₂N, CH), 6.45–6.49 (br d, NHCH), 6.86–6.91(m, NHCH₂), 7.32 (d, *J* = 8.0 Hz, 2 ArH), 7.39 (d, *J* = 8.4 Hz, 2 ArH), 7.48–7.52 (m, 4 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-6 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ23.4 (C(O)CH₃), 43.4 (NCH₂), 52.7 (OCH₂CH), 59.3 (OCH₃), 71.9 (OCH₂CH), 127.5, 128.2, 128.5, 129.2, 133.7, 137.5, 139.3, 139.4 (ArC), 170.3, 170.5 (2 C(O)); LRMS (ESI⁺) 361.2 [M + H]⁺ (calcd for C₁₉H₂₁ClN₂O₃H⁺ 361.2); Anal. Calcd. for C₁₉H₂₁ClN₂O₃: C, 63.24; H, 5.87; Cl, 9.83; N, 7.76. Found: C, 63.00; H, 6.02; Cl, 9.58; N, 7.69.

Preparation of (*R*)-*N*-(3"-Bromo-4-biphenylmethyl) 2-Acetamido-3-methoxypropionamide ((*R*)-7). Using Method F, 4 M HCl in dioxane (3.5 mL), (*R*)-59, (1.30 g, 2.8 mmol), Et₃N (862 mg, 8.5 mmol), and AcCl (268 mg, 3.4 mmol) gave compound (*R*)-7 as a white solid (620 mg, 54%): *R_f* = 0.44 (1:20 MeOH/CH₂Cl₂); mp 171–173 °C; $[\alpha]^{26}_{D}$ –17.3° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 2.00 (s, (CH₃C(O)), 3.37 (s, OCH₃), 3.45–3.49 (m, CHH'OCH₃), 3.79 (dd, *J* = 4.0, 9.0 Hz, CHH'OCH₃), 4.40–4.55 (m, NHCH₂), 4.56–4.66 (m, CHCH₂), 6.60 (d, *J* = 6.4 Hz, NHCH), 6.98–7.08 (br s, NHCH₂), 7.24–7.35 (m, 3 ArH), 7.39–7.56 (m, 4 ArH), 7.68 (s, ArH), addition of excess (*R*)-(–)mandelic acid to a CDCl₃ solution of (*R*)-7 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.1 (C(O)CH₃), 43.1 (NHCH₂), 52.5

(CHCH₂), 59.1 (OCH₃), 71.8 (CHCH₂), 122.9, 125.6, 127.3, 127.9, 130.0, 130.2, 130.3, 137.6, 138.8, 142.7 (Ar**C**), 170.1, 170.3 (2 **C**(O)); LRMS (ESI⁺) 405.0 [M + H]⁺ (100%), 407.0 [M + 2 + H]⁺ (100%); HRMS (ESI⁺) 405.0814 [M + H]⁺ (calcd for $C_{19}H_{21}^{79}BrN_2O_3H^+$ 405.0814). Anal. Calcd. for C₁₉H₂₁BrN₂O₃: C, 56.31; H, 5.22; Br, 19.72; N, 6.91. Found: C, 56.58; H, 5.14; Br, 19.45; N, 6.90. Preparation of (R)-N-(3"-Iodo-4-biphenylmethyl) 2-Acetamido-3-methoxypropionamide ((R)-8). Using Method F, 4 M HCl in dioxane (2.0 mL), (R)-60, (670 mg, 1.3 mmol), Et₃N (515 mg, 3.9 mmol), and AcCl (123 mg, 1.6 mmol) gave compound (R)-8 as a white solid (515 mg, 87%): $R_f =$ 0.41 (1:20 MeOH/CH₂Cl₂); mp 161–163 °C; $[\alpha]^{26}_{D}$ –11.0° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 2.05 (s, CH₃C(O)), 3.41 (s, OCH₃), 3.43–3.50 (m, CHH'OCH₃), 3.84 (dd, J = 4.3, 9.3 Hz, CHH'OCH₃), 4.46– 4.55 (m, NHCH₂), 4.57–4.60 (m, CHCH₂), 6.45 (d, J = 6.8 Hz, NHCH), 6.83 (t, J = 4.8 Hz, NHCH₂), 7.17 (t, J = 7.8 Hz, ArH), 7.34 (d, J = 8.2 Hz, 2 ArH), 7.48–7.55 (m, 3 ArH), 7.68 (d, J = 7.8 Hz, ArH), 7.92 (s, ArH), addition of excess (R)-(–)-mandelic acid to a CDCl₃ solution of (R)-8 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.2 (C(O)CH₃), 43.2 (NHCH₂), 52.4 (CHCH₂), 59.1 (OCH₃), 71.6 (CHCH₂), 94.8, 126.3, 127.4, 127.9, 130.4, 136.0, 136.2, 137.6, 138.9, 142.9 (Ar**C**), 170.0, 170.3 (2 **C**(O)); HRMS (ESI⁺) 453.0675 [M + H]⁺ (calcd for C₁₉H₂₁IN₂O₃H⁺ 453.0673). Anal. Calcd. for C₁₉H₂₁IN₂O₃: C, 50.46; H, 4.68; I, 28.06; N, 6.19. Found: C, 50.42; H, 4.64; I, 27.76; N, 6.19.

Preparation of (*R*)-*N*-(3"-Cyanobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((*R*)-9). Using Method F, (*R*)-61 (3.10 g, 7.6 mmol) and 4 M HCl (9.5 mL, 38.0 mmol), followed by Et₃N (2.30 g, 22.7 mmol) and AcCl (0.71 g, 9.1 mmol) gave the desired product (*R*)-9 (2.00 g, 75%) as a white solid: $R_f = 0.42$ (CH₂Cl₂/CH₃OH 19/1); mp 122-123 °C; [α]^{24.5}_D -16.0 ° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 2.03 (s, CH₃C(O)), 3.40 (s, OCH₃), 3.47-3.52 (m, CHH'OCH₃), 3.79-3.84 (m, CHH'OCH₃), 4.48-4.54 (m, CH₂N), 4.59-4.63 (m, CH), 6.56-6.59 (br d, NHCH₂), 7.03-7.07 (br t, NHC(O)), 7.36 (d, J = 8.4 Hz, 2 ArH), 7.48-7.64 (m, 4 ArH), 7.76-7.82 (m, 2 ArH), addition of excess (R)-(–)-mandelic acid to a CDCl₃ solution of (R)-**9** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.4 (CH₃CO), 43.3 (NCH₂), 52.7 (CH), 59.3 (OCH₃), 71.9 (OCH₂), 113.2 (ArC), 119.0 (CN), 127.5, 128.3, 129.8, 130.8, 130.9, 131.6, 138.2, 138.5, 142.9 (9 ArC), 170.4, 170.6 (2 C(O)); LRMS (ESI⁺) 352.2 [M + H]⁺ (calcd for C₂₀H₂₂N₃O₃⁺ 352.2); HRMS (ESI⁺) 352.1660 [M + H]⁺ (calcd for C₂₀H₂₂N₃O₃⁺ 352.1661); Anal. Calcd. for C₂₀H₂₁N₃O₃: C, 68.36; H, 6.02; N, 11.96. Found: C, 68.06; H, 6.04; N, 11.76.

Preparation of (R)-N-(3"-Trifluoromethyl)-4-biphenylmethyl 2-Acetamido-3-

methoxypropionamide ((*R*)-10). Using Method F, (*R*)-62, (1.34 g, 3.0 mmol), Et₃N (896 mg, 8.9 mmol), 4 M HCl in dioxane (3.0 mL, 12.0 mmol), and AcCl (348 g, 4.4 mmol) gave compound (*R*)-10 as a white solid (1.02 g, 88%): $R_f = 0.42$ (1:20 MeOH/CH₂Cl₂); mp 161–162 °C; $[\alpha]^{24}_D - 13.7^\circ$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 2.03 (s, CH₃C(O)), 3.40 (s, OCH₃), 3.49 (dd, *J* = 4.3, 9.3 Hz, CHH'OCH₃), 3.81 (dd, *J* = 4.3, 9.3 Hz, CHH'OCH₃), 4.45–4.58 (m, NHCH₂) 4.61–4.64 (m, CHCH₂), 6.58 (d, *J* = 7.0 Hz, NHCH), 7.04 (t, *J* = 5.3 Hz, NHCH₂), 7.36 (d, *J* = 8.2 Hz, 2 ArH), 7.51–7.62 (m, 4 ArH), 7.73 (d, *J* = 7.4 Hz, ArH), 7.80 (s, ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-10 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ 23.1 (C(O)CH₃), 43.1 (NHCH₂), 52.5 (CHCH₂), 59.1 (OCH₃), 71.7 (CHCH₂), 123.7 (q, *J* = 4.0 Hz), 124.0 (q, *J* = 4.0 Hz), 124.1 (q, *J* = 272.0 Hz, CF₃), 127.4, 126.0, 129.2, 130.2 (ArC), 131.2 (q, *J* = 32.0 Hz), 137.9, 138.9, 141.4 (ArC), 170.1, 170.4 (2 C(O)); MS (ESI⁺) 395.2 [M + H]⁺ (calcd for C₂₀H₂₂F₃N₂O₃⁺ 395.2); HRMS (ESI⁺) 395.1583 [M + H]⁺ (calcd for

C₂₀H₂₂F₃N₂O₃⁺ 395.1582); Anal. Calcd. for C₂₀H₂₁F₃N₂O₃: C, 60.91; H, 5.37; F, 14.45; N, 7.10. Found: C, 61.02; H, 5.33; F, 14.41; N, 7.17.

Preparation of (R)-N-(3"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-Acetamido-3-

methoxypropionamide ((*R*)-11). Using Method F, (*R*)-63 (2.14 g, 4.6 mmol) and 4 M HCl (4.00 mL, 16.0 mmol), followed by Et₃N (1.40 mL, 10.1 mmol) and AcCl (0.36 mL, 5.0 mmol) gave (*R*)-11 as a white solid (1.69 g, 90%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 139-140 °C; [α]²⁶_D –13.5° (c 1.3, CHCl₃); IR (nujol) 3274, 3071, 2951, 2857, 1639, 1557, 1458, 1378, 1291, 1153, 1048, 975, 785, 720, 604 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03 (s, C(O)CH₃), 3.40 (s, OCH₃), 3.47 (dd, *J* = 7.4, 9.2 Hz, CHH'OCH₃), 3.82 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 4.46–4.61 (m, CH₂N, CH), 6.49 (d, *J* = 6.4 Hz, NHCH), 6.89–6.93 (m, NHCH₂), 7.18–7.21 (m, 1 ArH), 7.33–7.54 (m, 7 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-11 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (DMSO-*d*₆) δ 22.5 (C(O)CH₃), 41.7 (NCH₂), 52.7 (OCH₂CH), 58.2 (OCH₃), 72.1 (OCH₂CH), 119.1, 119.6 (ArC), 120.1 (q, *J* = 254.9 Hz, OCF₃), 125.7, 126.7, 127.7, 130.8, 136.8, 139.5, 142.3, 149.0 (ArC), 169.4, 169.8 (2 C(O)); LRMS (ESI⁺) 433.1 [M + Na]⁺ (calcd for C₂₀H₂₁F₃N₂O₄Na⁺ 433.1); Anal. Calcd. for C₂₀H₂₁F₃N₂O₄: C, 58.53; H, 5.16; F, 13.89; N, 6.83. Found: C, 58.56; H, 5.28; F, 13.81; N, 6.80.

Preparation of (R)-N-(4"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-Acetamido-3-

methoxypropionamide ((*R*)-12). Using Method F, (*R*)-64 (0.81 g, 1.7 mmol) and 4 M HCl (1.49 mL, 6.0 mmol), followed by Et₃N (0.53 mL, 3.8 mmol) and AcCl (0.13 mL, 1.9 mmol) gave (*R*)-12 as a white solid (0.59 g, 84%): R_f = 0.40 (MeOH/CH₂Cl₂ 1/20); mp 194-195 °C; [α]²⁶_D -14.3° (*c* 0.9, CHCl₃); IR (nujol) 3294, 3093, 2924, 2858, 1640, 1557, 1458, 1382, 1279, 1215, 1165, 814, 697, 612 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (s, C(O)CH₃), 3.39 (s, OCH₃), 3.48 (dd, *J* = 7.4, 9.2 Hz,

CHH'OCH₃), 3.81 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 4.45–4.55 (m, CH₂N), 4.58–4.63 (m, CH), 6.56 (d, *J* = 6.4 Hz, NHCH), 6.98–7.01 (m, NHCH₂), 7.27 (d, *J* = 8.0 Hz, 2 ArH), 7.33 (d, *J* = 8.0 Hz, 2 ArH), 7.49–7.58 (m, 4 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-**12** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (DMSO-*d*₆) δ 22.5 (C(O)CH₃), 41.7 (NCH₂), 52.7 (OCH₂CH), 58.2 (OCH₃), 72.1 (OCH₂CH), 120.1 (q, *J* = 254.9 Hz, OCF₃), 121.4, 126.6, 127.7, 128.4, 137.1, 139.1, 139.3, 147.7 (ArC), 169.4, 169.8 (2 C(O)); LRMS (ESI⁺) 433.1 [M + Na]⁺ (calcd for C₂₀H₂₁F₃N₂O₄Na⁺ 433.1); Anal. Calcd. for C₂₀H₂₁F₃N₂O₄: C, 58.53; H, 5.16; F, 13.89; N, 6.83. Found: C, 58.50; H, 5.27; F, 13.91; N, 6.82.

Preparation of (R)-N-(3"-Acetylaminobiphenyl-4'-yl)methyl 2-Acetamido-3-

methoxypropionamide ((*R*)-13). Using Method F, (*R*)-65 (1.80 g, 4.1 mmol) and 4 M HCl (3.1 mL, 12.4 mmol), followed by Et₃N (1.24 g, 12.2 mmol) and AcCl (0.38 g, 4.9 mmol) gave the desired product (*R*)-13 (1.05 g, 71%) as a white powder: $R_f = 0.20$ (CH₂Cl₂/CH₃OH 19/1); mp 150-151 °C; [α]^{24.5}_D +11.1 ° (*c* 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ2.04 (s, CH₃C(O)), 2.16 (s, CH₃C(O)), 3.47 (s, OCH₃), 3.52-3.57 (m, CHH'OCH₃), 3.68-3.73 (m, CHH'OCH₃), 4.40-4.52 (m, CH₂N), 4.54-4.60 (m, CH), 7.29-7.40 (m, 4 ArH), 7.50-7.56 (m, 3 ArH), 7.76 (s, ArH); ¹³C NMR (CDCl₃/CD₃OD) δ22.8, 23.9 (2 CH₃CO), 43.1 (NCH₂), 53.1 (CH), 59.1 (OCH₃), 72.0 (OCH₂), 118.6, 119.0, 122.8, 127.4, 127.9, 129.3, 137.1, 138.8, 140.3, 141.5, (10 ArC), 170.4, 171.5 (2 C(O)), one carbonyl resonance was not detected and believed to be overlapped with an adjacent peak; LRMS (ESI⁺) 384.2 [M + H]⁺ (calcd for C₂₁H₂₆N₃O₃ ⁺ 384.2); HRMS (ESI⁺) 384.1924 [M + H]⁺ (calcd for C₂₁H₂₆N₃O₃ ⁺ 384.2); HRMS (ESI⁺) 384.1924 [M + H]⁺ (calcd for C₂₁H₂₆N₃O₃ ⁺ 384.2)].

Preparation of (R)-N-(3"-Hydroxymethylbiphenyl-4'-yl)methyl 2-Acetamido-3-

methoxypropionamide ((*R*)-14). To a solution of (*R*)-73 (0.65 g, 1.6 mmol) in CH₂Cl₂ (16 mL) was added 4 M HCl in dioxane (1.5 mL, 6.0 mmol) and stirred at room temperature (4 h). The reaction mixture was evaporated in vacuo and recrystallized (CH₃OH/EtOAc/hexanes) to give the desired product (*R*)-14 (0.51 g, 90%) as a white solid: $R_f = 0.48$ (CH₂Cl₂/CH₃OH 9/1); mp 152-153 °C; [α]^{22.5}_D +12.7 ° (*c* 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ 2.00 (s, CH₃C(O)), 3.34 (s, OCH₃), 3.45-3.49 (m, CHH'OCH₃), 3.67-3.72 (m, CHH'OCH₃), 4.42-4.46 (m, CH₂N), 4.51-4.55 (m, CH), 4.69 (s, CH₂OH), 7.27-7.31 (m, 3 ArH), 7.35-7.41 (m, ArH), 7.44-7.46 (m, ArH), 7.50-7.54 (m, 3 ArH); ¹³C NMR (CDCl₃/CD₃OD) δ 23.1 (CH₃C(O)), 43.3 (NCH₂), 52.9 (CH), 59.3 (OCH₃), 65.0 (ArCH₂OH), 72.0 (CH₃OCH₂), 125.7, 126.1, 126.3, 127.5, 128.0, 129.1, 137.1, 140.4, 141.0, 141.8 (10 ArC), 170.3, 171.2 (2 C(O)NH); LRMS (ESI⁺) 357.1 [M + H]⁺ (calcd for C₂₀H₂₄N₂O₄H⁺ 357.2); Anal. Calcd. for C₂₀H₂₄N₂O₄: C, 67.40; H, 6.79; N, 7.86. Found: C, 67.32; H, 6.98; N, 7.74.

Preparation of (*R*)-*N*-(3"-Carboxybiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((*R*)-15). Using the previous procedure, (*R*)-74 (0.31 g, 0.7 mmol) and 4 M HCl (0.8 mL, 3.2 mmol) gave the desired product (*R*)-15 (0.21 g, 82%) as a white solid: $R_f = 0.56$ (CH₂Cl₂/CH₃OH 9/1); mp 196-197 °C; [α]²³_D +9.6 ° (*c* 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ1.99 (s, CH₃C(O)), 3.46-3.50 (m, CHH'OCH₃), 3.63-3.66 (m, CHH'OCH₃), 4.39 (dd, *J* = 5.8, 14.0 Hz, CHH'N), 4.46 (dd, *J* = 5.8, 14.0 Hz, CHH'N), 4.50-4.55 (br t, CH), 6.78-6.84 (m, N(H)CH₂), 7.16-7.21 (m, ArH), 7.28-7.56 (m, N(H)C(O), 7 ArH), the methoxy proton resonance was not detected and believed to be overlapped with the adjacent peak near δ 3.40; ¹³C NMR (CDCl₃/CD₃OD) δ22.8 (CH₃C(O)), 43.1 (NCH₂), 52.9 (CH), 59.1 (OCH₃), 72.1 (OCH₂), 127.4, 128.0, 128.4, 128.8, 128.9, 131.0, 131.5, 137.5, 139.4, 141.0 (10 ArC), 168.9 (ArC(O)), 170.4, 171.5 (2 C(O)NH); LRMS (ESI⁺) 371.2 [M +

H]⁺ (calcd for C₂₀H₂₂N₂O₅H⁺ 371.2); HRMS (ESI⁺) 371.1607 [M + H]⁺ (calcd for C₂₀H₂₂N₂O₅H⁺ 371.1607); Anal. Calcd. for C₂₀H₂₂N₂O₅·0.13H₂O: C, 64.45; H, 6.02; N, 7.52. Found: C, 64.06; H, 6.09; N, 7.35.

Preparation of (*R*)-*N*-(3"-Aminobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide Hydrochloride ((*R*)-16). Using the procedure for (*R*)-14, (*R*)-75 (1.18 g, 3.59 mmol) and 4 M HCl (2.7 mL, 10.80 mmol) gave the desired product (*R*)-16 (0.91 g, 90%) as a yellow solid: $R_f = 0.00$ (EtOAc/hexanes 1/1); mp 99-100 °C; [α]^{23.5}_D +10.4 ° (*c* 1.0, CH₃OH); ¹H NMR (CDCl₃/CD₃OD) δ 1.99 (s, CH₃C(O)), 3.36 (s, OCH₃), 3.50 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 3.78 (dd, *J* = 7.2, 9.2 Hz, CHH'OCH₃), 4.43 (dd, *J* = 5.8, 15.0 Hz, CHH'N), 4.48 (dd, *J* = 5.8, 15.0 Hz, CHH'N), 4.59-4.64 (m, CH), 6.63-6.67 (m, N(H)CH, 1 ArH), 6.85 (m, 1 ArH), 6.93-6.96 (m, 1 ArH), 6.99-7.05 (br t, N(H)CH₂), 7.20 (t, *J* = 7.8 Hz, 1 ArH), 7.26 (d, *J* = 6.0 Hz, 2 ArH), 7.49 (dd, *J* = 1.6, 6.4 Hz, 2 ArH); ¹³C NMR (CD₃OD) δ22.6 (CH₃C(O)), 42.8 (NCH₂), 52.8 (CH), 58.3 (OCH₃), 72.1 (OCH₂), 121.2, 122.0, 126.0, 126.6, 127.8, 130.4, 132.8, 137.2, 139.5, 141.4, (10 ArC), 169.6, 169.9 (2 C(O)NH); LRMS (ESI⁺) 364.2 [M + Na- HCl]⁺ (calcd for C₁₉H₂₃NaN₃O₃⁺ 364.2); HRMS (ESI⁺) 342.1817 [M – Cl]⁺ (calcd for C₁₉H₂₄N₃O₃ 342.1817).

Refererences

- Park, K.D.; Yang, X.-F.; Lee, H.; Dustrude, E.T.; Wang, Y.; Khanna, R.; Kohn, H. Discovery of lacosamide affinity bait agents that exhibit potent voltage-gated sodium channel blocking properties. ACS Chem. Neurosci., 2013, 4, 463–474.
- Salome, C., Salome-Grosjean, E., Park, K. D., Morieux, P., Swendiman, R., DeMarco, E., Stables, J. P., and Kohn, H. Synthesis and anticonvulsant activities of (*R*)-*N*-(4'-

substituted)benzyl 2-acetamido-3-methoxypropionamides. J. Med. Chem. 2010, 53,

1288–1305.

(R)-N-(3"-Chlorobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((R)-5)

(R)-N-(3"-Bromo-4-biphenylmethyl) 2-Acetamido-3-methoxypropionamide ((R)-7)

(R)-N-(3"-Iodo-4-biphenylmethyl) 2-Acetamido-3-methoxypropionamide ((R)-8)

(R)-N-(3"-Cyanobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((R)-9)

(R)-N-(3"-Trifluoromethyl)-4-biphenylmethyl 2-Acetamido-3-methoxypropionamide ((R)-10)

(*R*)-*N*-(4"-Trifluoromethoxybiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((*R*)-12)

(R)-N-(3"-Acetylaminobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide ((R)-13)

(*R*)-*N*-(3"-Aminobiphenyl-4'-yl)methyl 2-Acetamido-3-methoxypropionamide Hydrochloride ((*R*)-16)

120 110 100 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130

80 70 60

50 40 30 20 10 0 -10

90