Supporting Information

Brain-penetrant, Orally Bioavailable Microtubule-Stabilizing Small Molecules are Potential Candidates Therapeutics for Alzheimer's Disease and Related Tauopathies

Kevin Lou,^a Yuemang Yao,^b Adam Hoye,^a Michael James,^b Anne-Sophie Cornec,^a Edward Hyde,^b

Bryant Gay,^a Virginia M-Y Lee,^b John Q. Trojanowski,^b Amos B. Smith III,^a Kurt R. Brunden,^{b,*} and

Carlo Ballatore^{a,b,*}

^aDepartment of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St.,

Philadelphia, PA 19104-6323; ^bCenter for Neurodegenerative Diseases Research, Institute on

Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323

Table of Contents

S2-144. NMR spectra of test compounds.

S145-174. X-ray crystal structures of compounds 23, 36, and 43.

66.2 166.0 165.8 165.6 165.4 165.2 165.0 164.8 164.6 164.4 164.2 164.0 163.8 163.6 163.4 163.2 163.0 162.8 162.6 162.4 162.2 162.0 161.8 161.6 161.4 161.2 161.0 160.8 160.6 160.4 160.2 160.0 f1 (ppm)

-1700

164.4 164.3 164.2 164.1 164.0 163.9 163.8 163.7 163.6 163.5 163.4 163.3 163.2 163.1 163.0 162.9 162.8 162.7 162.6 162.5 162.4 162.3 162.2 162.1 162.0 161.9 161.8 161.7 161.6 161.5 11 (ppm)

S120

4.90 14.88 14.86 14.84 14.82 14.80 14.78 14.76 14.74 14.72 14.70 14.68 14.66 14.64 14.62 14.60 14.58 14.56 14.54 14.52 14.50 14.48 14.46 14.44 14.42 14.40 14.38 14.36 14.34 14.32 14.30 14.28 11 (ppm)

X-ray Structure Determination of Compound 23 (CCDC 992821)

Compound 1342, $C_{51}H_{27}N_{12}F_{18}Cl_3$, crystallizes in the triclinic space group P1 with a=9.6735(9)Å, b=17.3727(16)Å, c=18.984(3)Å, α =116.369(6)°, β =94.290(6)°, γ =102.067(4)°, V=2743.6(6)Å³, Z=2, and d_{calc}=1.521 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 143(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2378 frames were collected with a crystal to detector distance of 37.646 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	59.55	348.71	-26.26	739
ь ф	-15.50	349.33	93.82	-77.44	161
φ φ	-23.00	334.21	38.95	73.66	739
φ Φ	-23.00	315.83	12.48	28.88	739

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 54588 reflections were measured over the ranges 2.16 $\leq \theta \leq 25.46^{\circ}$, -11 $\leq h \leq 11$, -20 $\leq k \leq 20$, -22 $\leq I \leq 22$ yielding 9973 unique reflections (Rint = 0.0221). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6979, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). There was a region of disordered dichloromethane solvent for which a reliable disorder model could not be devised; the X-ray data were

corrected for the presence of disordered solvent using SQUEEZE^v. Refinement was by full-matrix least squares based on F² using SHELXL-97.^{vi} All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0523P)² + 1.7350P] where P = ($F_0^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0418 and wR2=0.1095 for 8420 observed reflections for which F > 4 σ (F) and R1=0.0490 and wR2=0.1152 and GOF =1.100 for all 9973 unique, non-zero reflections and 758 variables.^{vii} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.541 and -0.558 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1., 2., and 3. are ORTEP^{viii} representations of the molecule with 30% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 30% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 30% probability thermal ellipsoids.

Figure 3. ORTEP drawing of molecule no. 3 of the asymmetric unit with 30% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1342

Empirical formula	$C_{51}H_{27}N_{12}F_{18}CI_3$
Formula weight	1256.20
Temperature	143(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P1
Cell constants:	
а	9.6735(9) Å
b	17.3727(16) Å
C	18.984(3) Å
α	116.369(6)°
β	94.290(6)°
γ	102.067(4)°
Volume	2743.6(6) Å ³
Z	2
Density (calculated)	1.521 Mg/m ³
Absorption coefficient	0.277 mm ⁻¹
F(000)	1260
Crystal size	0.42 x 0.30 x 0.08 mm ³
Theta range for data collection	2.16 to 25.46°
Index ranges	$-11 \le h \le 11, -20 \le k \le 20, -22 \le l \le 22$
Reflections collected	54588
Independent reflections	9973 [R(int) = 0.0221]
Completeness to theta = 25.46°	98.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6979
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9973 / 0 / 758
Goodness-of-fit on F ²	1.100
Final R indices [I>2sigma(I)]	R1 = 0.0418, wR2 = 0.1095
R indices (all data)	R1 = 0.0490, wR2 = 0.1152
Largest diff. peak and hole	0.541 and -0.558 e.Å ⁻³

Table 2. Refined Po	ositional Parameters	for Compound 1342
---------------------	----------------------	-------------------

Atom	Х	У	Z	U _{eq} , A ²
N1	0.8166(2)	0.89569(12)	0.38599(11)	0.0409(4)
C2	0.8011(3)	0.93399(16)	0.33918(15)	0.0483(6)
C3	0.7854(3)	1.01934(16)	0.36733(15)	0.0457(5)
C4	0.7898(3)	1.06860(16)	0.44768(15)	0.0457(5)
C5	0.8032(2)	1.02975(15)	0.49690(14)	0.0400(5)
Č6	0.8150(2)	0.94320(13)	0.46355(12)	0.0303(4)
C7	0.8264(2)	0.89718(12)	0.51339(11)	0.0285(4)
N8	0.81890(18)	0.94255(11)	0.59020(10)	0.0309(4)
C9	0.8289(2)	0.90249(13)	0.63616(12)	0.0318(4)
C10	0.8515(2)	0.81631(13)	0.60421(12)	0.0313(4)
C11	0.8536(2)	0.77707(13)	0.52360(12)	0.0305(4)
N12	0.84032(18)	0.81383(11)	0.47587(10)	0.0303(3)
N13	0.8165(2)	0.94720(12)	0.71315(10)	0.0425(4)
C14	0.8111(3)	1.03908(15)	0.74971(14)	0.0485(6)
C15	0.6633(4)	1.05108(19)	0.7495(2) ´	0.0719(9)
C16	0.8730(2)	0.77124(13)	0.65359(11)	0.0309(4)
C17	1.0088(2)	0.76949(14)	0.68087(13)	0.0358(4)
C18	1.0345(2)	0.72719(15)	0.72481(14)	0.0411(5)
C19	0.9155(2)	0.68345(15)	0.74097(14)	0.0399(5)
C20	0.7775(2)	0.68088(17)	0.71585(14)	0.0430(5)
C21	0.7606(2)	0.72562(15)	0.67307(13)	0.0374(5)
Cl1	0.87222(7)	0.66915(4)	0.47631(3)	0.04536(15)
F1	0.5900(4)	1.0181(2)	0.7877(3)	0.187(2) (
F2	0.5880(3)	1.0162(2)	0.67598(19)	0.1486(14)
F3	0.6676(3)	1.13676(12)	0.78584(14)	0.0994(7)
F4	1.12268(14)	0.81173(10)	0.66266(10)	0.0559(4)
F5	0.93741(15)	0.64187(11)	0.78470(10)	0.0603(4)
F6	0.62692(14)	0.72591(12)	0.64871(9)	0.0570(4)
N1'	0.54045(18)	0.37955(11)	-0.01543(10)	0.0325(4)
C2'	0.5645(2)	0.32887(14)	-0.08834(12)	0.0378(5)
C3'	0.6854(2)	0.35081(15)	-0.11664(13)	0.0383(5)
C4'	0.7897(2)	0.42990(14)	-0.06701(13)	0.0359(5)
C5'	0.7676(2)	0.48358(13)	0.00865(12)	0.0311(4)
C6'	0.64195(19)	0.45678(12)	0.03224(11)	0.0262(4)
	0.6129(2)	0.51204(12)	0.11282(11)	0.0260(4)
IN8 [°]	0.72069(16)	0.58213(10)	0.16479(9)	0.0272(3)
040	0.6960(2)	0.63067(12)	0.23855(11)	0.0279(4)
	0.5607(2)	0.61044(13)	0.25908(11)	0.0289(4)
	0.4010(2)	0.53591(13)	0.19943(11)	0.0288(4)
	0.48341(17)	0.48499(10)	0.12054(9)	0.0284(3)
	0.80550(17)	0.03949(11) 0.72864(15)	0.29317(10) 0.27441(13)	0.0329(4)
C15'	1 0581(2)	0.60016(16)	0.27441(13)	0.0370(3)
C16'	0.5287(2)	0.66480(13)	0.33895(12)	0.0403(0)
C17'	0.5207(2)	0.63512(15)	0.39572(13)	0.0020(4)
C18'	0.4873(3)	0.68387(18)	0.00072(10) 0.47030(14)	0.0501(6)
C19'	0.4684(3)	0.76582(18)	0.48741(13)	0.0509(6)
C20'	0.4752(2)	0.80025(16)	0.43472(14)	0.0469(6)
C21'	0.5050(2)	0.74783(14)	0.36081(12)	0.0359(5)
CI1'	0.29230(5)	0.50227(4)	0.21704(3)	0.03918(13)
F1'	1.08979(16)	0.73367(12)	0.38125(8)	0.0630(4)
F2'	1.0280(2) ´	0.61123(12)	0.27177(1́4)	0.0909(̀7)́
F3'	1.18043(15)	0.72622(15)	0.28099(10)	0.0789(6)
F4'	0.53497(17)	0.55384(9)	0.37651(8)	0.0521(3)
F5'	0.43998(19)	0.81555(13)	0.56035(9)	0.0747(5)
F6'	0.50961(14)	0.77812(8)	0.30661(8)	0.0441(3)
N1"	1.00721(19)	0.95184(12)	0.84609(10)	0.0365(4)
C2"	1.1399(3)	0.99464(15)	0.84799(14)	0.0434(5)
C3"	1.2609(3)	1.00298(15)	0.89662(15)	0.0476(6)

C4"	1 2446(2)	0.96462(16)	0.94636(15)	0.0466(5)		
C5"	1.1090(2)	0.91914(15)	0.94515(13)	0.0386(5)		
Č6"	0.9931(2)	0.91395(13)	0.89424(11)	0.0307(4)		
C7"	0.8440(2)	0.86536(13)	0.89082(11)	0.0294(4)		
N8"	0.83392(17)	0.81398(11)	0.92667(9)	0.0291(3)		
C9"	0.7012(2) ´	0.77097(12)	0.92622(11)	0.0281(4)		
C10"	0.5774(2)	0.77924(13)	0.88853(12)	0.0308(4)		
C11"	0.6053(2)	0.83274(14)	0.85235(13)	0.0347(4)		
N12"	0.73525(18)	0.87725(11)	0.85229(10)	0.0347(4)		
N13"	0.68902(17)	0.71877(11)	0.96228(10)	0.0314(4)		
C14"	0.8069(2)	0.68915(13)	0.98229(12)	0.0319(4)		
C15"	0.8860(2)	0.74706(14)	1.06721(13)	0.0369(5)		
C16"	0.4314(2)	0.72922(14)	0.88618(12)	0.0328(4)		
C17"	0.3602(2)	0.64716(14)	0.82165(13)	0.0352(4)		
C18"	0.2281(2)	0.59612(15)	0.81874(15)	0.0410(5)		
C19"	0.1664(2)	0.62981(16)	0.88491(15)	0.0409(5)		
C20"	0.2277(2)	0.71073(17)	0.95069(15)	0.0433(5)		
C21"	0.3595(2)	0.75839(15)	0.94914(13)	0.0391(5)		
Cl1"	0.46135(6)	0.84401(4)	0.80065(4)	0.05298(17)		
F1"	0.80103(17)	0.75734(12)	1.12090(8)	0.0637(4)		
F2"	0.95687(19)	0.82886(9)	1.08157(9)	0.0651(4)		
F3"	0.98544(14)	0.71166(10)	1.08524(8)	0.0482(3)		
F4"	0.42598(15)	0.61492(9)	0.75865(8)	0.0518(3)		
F5"	0.03932(13)	0.58019(10)	0.88504(10)	0.0543(4)		
F6"	0.42356(16)	0.83819(10)	1.01384(9)	0.0596(4)		
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	$U_{a_{1}}=\frac{1}{3}U_{11}(aa^{2}+U_{22}(bb^{2}+U_{33}(cc^{2})^{2}+2U_{12}aa^{2}bb^{2}cos\gamma+2U_{13}aa^{2}cc^{2}cos\beta+2U_{22}bb^{2}cc^{2}cos\alpha$					

Atom	Х	У	Z	U _{iso} , A ^z
H2	0.8010	0.9013	0.2849	0.064
H3	0.7722	1.0428	0.3326	0.061
H4	0.7839	1.1272	0.4689	0.061
H5	0.8042	1.0614	0.5514	0.053
H13	0.8116	0.9201	0.7417	0.056
H14a	0.8609	1.0680	0.7217	0.065
H14b	0.8629	1.0691	0.8047	0.065
H18	1.1273	0.7281	0.7426	0.055
H20	0.6989	0.6503	0.7272	0.057
H2'	0.4952	0.2756	-0.1219	0.050
H3'	0.6970	0.3135	-0.1679	0.051
H4'	0.8729	0.4466	-0.0842	0.048
H5'	0.8361	0.5369	0.0432	0.041
H13'	0.7933	0.7271	0.3417	0.044
H14a'	0.9683	0.7933	0.2991	0.049
H14b'	0.9292	0.7057	0.2169	0.049
H18'	0.4807	0.6622	0.5071	0.067
H20'	0.4604	0.8559	0.4480	0.062
H2"	1.1515	1.0205	0.8144	0.058
H3"	1.3514	1.0338	0.8959	0.063
H4"	1.3242	0.9694	0.9803	0.062
H5"	1.0955	0.8923	0.9779	0.051
H13"	0.6072	0.7026	0.9738	0.042
H14a"	0.8739	0.6881	0.9466	0.042
H14b'	0.7703	0.6286	0.9737	0.042
H18"	0.1830	0.5415	0.7742	0.055
H20"	0.1825	0.7325	0.9943	0.058

Table 3. Positional Parameters for Hydrogens in Compound 1342

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atom	U ₁₁	U ₂₂	U ₃₃	U_{23}	U ₁₃	U ₁₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0.0545(11)	0.0365(10)	0.0345(10)	0.0205(8)	0.0055(8)	0.0102(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0644(16)	0.0455(13)	0.0402(12)	0.0273(11)	0.0064(11)	0.0100(11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Č3	0.0487(13)	0.0497(13)	0.0519(14)	0.0371(12)	0.0050(11)	0.0104(11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0476(13)	0.0404(12)	0.0607(15)	0.0319(12)	0.0091(11)	0.0166(10)
C6 0.0742(E) 0.0336(10) 0.0346(12) 0.0168(9) 0.0009(B) 0.0039(B) C7 0.0255(9) 0.0273(9) 0.0336(10) 0.0178(8) 0.0005(B) 0.0012(A) C11 0.0314(10) 0.0334(10) 0.0158(T) 0.0060(T) 0.0124(B) 0.0000(D) 0.0224(B) 0.0140(B) 0.0038(B) 0.0225(C) 0.0224(16) 0.040(2) 0.0307(15) C16 0.0356(10) 0.0311(10) 0.0223(10) 0.0053(B) 0.0009(B) 0.0158(B) 0.0158(B) 0.0158(B) 0.0158(B) 0.0158(B) 0.0158(B) 0.0158(B) 0.0156(B) 0.0158(B) 0.01	C5	0.0447(12)	0.0376(11)	0.0423(12)	0.0211(10)	0.0075(10)	0.0153(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0242(0)	0.0300(10)	0.0346(10)	0.0211(10)	0.0070(10)	0.0030(8)
C/T CO25(5) CO25(5) CO22(5) CO22(7) CO02(7) CO22(7) CO32(7) CO12(7) CO3(7) <	00 C7	0.0242(0)	0.00000(10)	0.0040(10)	0.0100(0)	0.0000(0)	0.0000(0)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.0233(9)	0.0273(9)	0.0309(10)	0.0137(0)	0.0012(7)	0.0032(7)
$ \begin{array}{c} C_{10} & 0.0320(10) & 0.0314(10) & 0.0236(10) & 0.0125(6) & 0.0003(6) & 0.0024(8) \\ C_{11} & 0.0311(10) & 0.0324(10) & 0.0334(10) & 0.0175(8) & 0.0008(8) & 0.0124(8) \\ N12 & 0.0324(9) & 0.0318(9) & 0.0294(8) & 0.0155(7) & 0.0068(7) & 0.0106(7) \\ N13 & 0.0652(13) & 0.0380(10) & 0.0294(8) & 0.0157(8) & 0.0008(8) & 0.0226(9) \\ C_{14} & 0.0677(16) & 0.0346(12) & 0.0316(11) & 0.0073(10) & 0.0098(1) & 0.0129(11) \\ C_{15} & 0.089(2) & 0.0415(15) & 0.092(2) & 0.0284(16) & 0.0058(8) & 0.0256(8) \\ C_{16} & 0.0356(10) & 0.0333(11) & 0.0233(10) & 0.0140(8) & 0.0058(8) & 0.0135(8) \\ C_{17} & 0.0322(10) & 0.0353(11) & 0.0439(12) & 0.0236(10) & 0.0058(9) & 0.0069(8) \\ C_{18} & 0.0321(11) & 0.0441(12) & 0.0453(13) & 0.0332(11) & 0.00058(9) & 0.0168(9) \\ C_{19} & 0.0390(12) & 0.0467(12) & 0.0463(13) & 0.0336(12) & 0.0007(8) & 0.0171(9) \\ C_{20} & 0.0350(11) & 0.0592(14) & 0.0474(13) & 0.0361(12) & 0.0070(8) & 0.0171(9) \\ C_{21} & 0.0308(10) & 0.0534(13) & 0.0354(11) & 0.0246(10) & 0.0070(8) & 0.0171(9) \\ C_{11} & 0.0714(4) & 0.0368(3) & 0.0401(3) & 0.0286(2) & 0.025(3) & 0.0291(3) \\ F_{1} & 0.207(3) & 0.134(2) & 0.356(5) & 0.175(3) & 0.0258(15) & 0.0613(15) \\ F_{2} & 0.0784(16) & 0.142(2) & 0.140(2) & 0.0358(10) & 0.0053(7) & 0.0078(7) \\ C_{2} & 0.0372(11) & 0.0487(10) & 0.126(1(8) & 0.0352(11) & 0.0058(15) & 0.0527(11) \\ F_{3} & 0.1354(19) & 0.0487(10) & 0.0322(9) & 0.0516(9) & 0.0055(7) & 0.0039(6) \\ F_{5} & 0.0452(8) & 0.0819(11) & 0.0322(11) & 0.0586(10) & 0.0033(7) & 0.0121(7) \\ F_{6} & 0.0323(7) & 0.1012(12) & 0.0652(9) & 0.0516(9) & 0.0055(7) & 0.0039(6) \\ C_{3} & 0.0447(12) & 0.0465(19) & 0.0322(9) & 0.0114(7) & 0.075(7) & 0.0078(7) \\ C_{2} & 0.0372(11) & 0.0330(10) & 0.0486(11) & 0.0254(10) & 0.0149(9) & 0.0155(9) \\ C_{5} & 0.0327(10) & 0.0311(10) & 0.0330(10) & 0.0186(9) & 0.0033(7) & 0.0088(7) \\ C_{7} & 0.0274(9) & 0.0276(9) & 0.0228(9) & 0.0156(8) & 0.0023(7) & 0.0088(7) \\ C_{7} & 0.0274(9) & 0.0276(9) & 0.0228(10) & 0.0138(8) & 0.0098(8) \\ C_{11} & 0.0226(8) & 0.0276(9) & 0.0284(11) & 0.0133(7) & 0.0037(7) $		0.0324(9)	0.0200(0)	0.0292(9)	0.0120(7)	-0.0004(7)	0.0076(7)
$ \begin{array}{c} C10 & 0.0314(10) & 0.034(10) & 0.0334(10) & 0.0177(8) & 0.0042(6) & 0.0174(8) \\ N12 & 0.0324(9) & 0.0318(9) & 0.0294(8) & 0.0158(7) & 0.0060(7) & 0.016(7) \\ N13 & 0.0652(13) & 0.0380(10) & 0.0263(9) & 0.0140(8) & 0.0038(8) & 0.0226(9) \\ C14 & 0.0677(16) & 0.0346(12) & 0.0316(11) & 0.0073(10) & 0.0009(11) & 0.0129(11) \\ C15 & 0.089(2) & 0.0415(15) & 0.092(2) & 0.0284(16) & 0.040(2) & 0.0307(15) \\ C16 & 0.0356(10) & 0.0311(10) & 0.0283(10) & 0.0140(8) & 0.0058(8) & 0.0136(8) \\ C17 & 0.0323(10) & 0.0353(11) & 0.0439(12) & 0.0236(10) & 0.0033(9) & 0.0069(8) \\ C18 & 0.0321(11) & 0.0447(12) & 0.0454(14) & 0.0366(11) & 0.0003(9) & 0.0168(9) \\ C19 & 0.0390(12) & 0.0477(13) & 0.0332(11) & 0.0034(9) & 0.0118(10) \\ C20 & 0.0350(11) & 0.0552(14) & 0.0474(13) & 0.0326(11) & 0.00070(8) & 0.0171(9) \\ C11 & 0.0714(4) & 0.0366(3) & 0.0401(3) & 0.0208(2) & 0.0205(3) & 0.0291(3) \\ F1 & 0.207(3) & 0.134(2) & 0.0456(5) & 0.175(3) & 0.220(4) & 0.116(2) \\ F2 & 0.0784(16) & 0.144(22) & 0.140(2) & -0.0139(19) & -0.0185(15) & 0.0527(11) \\ F4 & 0.0342(7) & 0.0655(9) & 0.0889(11) & 0.0582(9) & 0.0055(7) & 0.0039(6) \\ F5 & 0.0452(8) & 0.0819(11) & 0.0582(11) & 0.0538(15) & 0.0527(11) \\ F4 & 0.0323(7) & 0.1012(12) & 0.0652(9) & 0.0546(9) & 0.0115(6) & 0.0250(7) \\ C1' & 0.0372(11) & 0.0433(11) & 0.0312(11) & 0.0586(10) & 0.0033(7) & 0.012(17) \\ F6 & 0.0323(7) & 0.1012(12) & 0.0652(9) & 0.0546(9) & 0.0055(7) & 0.0078(7) \\ C2' & 0.0372(11) & 0.043(11) & 0.0312(11) & 0.0586(10) & 0.0033(7) & 0.012(17) \\ C4' & 0.0356(11) & 0.0442(12) & 0.0332(10) & 0.0168(9) & 0.0038(8) & 0.0068(8) \\ C1' & 0.0257(9) & 0.0276(9) & 0.0278(9) & 0.0142(9) & 0.0055(7) & 0.0078(7) \\ C2' & 0.0372(11) & 0.033(11) & 0.0322(11) & 0.0338(10) & 0.0136(8) & 0.0038(8) & 0.0084(8) \\ C1' & 0.0254(8) & 0.0284(8) & 0.0284(8) & 0.0023(7) & 0.0043(6) & 0.0066(8) \\ C1' & 0.0257(9) & 0.0276(9) & 0.0278(9) & 0.0132(6) & 0.0033(8) & 0.0068(8) \\ C1' & 0.02274(9) & 0.0276(9) & 0.0284(10) & 0.0138(8) & 0.0033(8) & 0.0068(8) \\ C1' & 0.02274(8) & 0.0284(8) & 0.0284(8) & 0.0033(7) & $	C10	0.0320(10)	0.0314(10)	0.0200(10)	0.0120(0)	-0.0003(8)	0.0000(0)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.0314(10)	0.0342(10)	0.0310(10)	0.0170(9)	0.0042(0)	0.0110(0)
N12 0.0324(9) 0.038(10) 0.0234(5) 0.0136(7) 0.0010(7) C14 0.0677(16) 0.0336(12) 0.0236(9) 0.0140(8) 0.0038(8) 0.0226(9) C14 0.0677(16) 0.0346(12) 0.0238(10) 0.0140(8) 0.009(21) 0.0128(11) C16 0.0356(10) 0.0311(10) 0.0283(10) 0.0140(8) 0.0058(8) 0.037(15) C17 0.0323(11) 0.0447(12) 0.0463(13) 0.0332(11) 0.0046(11) 0.0009(9) 0.0118(10) C19 0.0390(12) 0.0447(12) 0.0446(13) 0.0332(11) 0.0034(9) 0.0118(10) C21 0.0308(10) 0.0534(13) 0.0354(11) 0.0208(2) 0.0206(3) 0.0291(3) F1 0.037(16) 0.144(2) 0.140(2) 0.0139(19) 0.0116(10) 0.0527(11) C11 0.071(4) 0.0355(9) 0.0889(11) 0.0526(9) 0.0054(7) 0.0039(6) F2 0.078(16) 0.142(12) 0.140(2) 0.0139(9) 0.0114(7) 0.0257(7) 0		0.0311(10)	0.0301(10)	0.0334(10)			0.0124(8)
N13 0.0552(13) 0.0380(10) 0.0236(9) 0.0140(6) 0.0038(1) 0.0022(9) C14 0.0877(16) 0.0386(12) 0.0284(16) 0.040(2) 0.0307(15) C16 0.0356(10) 0.0311(10) 0.0283(10) 0.0140(8) 0.0053(8) 0.0135(8) C17 0.0321(11) 0.0447(12) 0.0439(12) 0.0236(10) 0.0009(9) 0.0198(9) C18 0.0321(11) 0.0447(12) 0.0453(13) 0.0332(11) 0.0000(9) 0.0118(10) C20 0.0350(11) 0.0552(14) 0.0474(13) 0.036(11) 0.0070(8) 0.0111(10) C21 0.0308(10) 0.0534(13) 0.0354(11) 0.0246(10) 0.0070(8) 0.0117(9) C11 0.0714(4) 0.0368(3) 0.0401(3) 0.0226(2) 0.0205(3) 0.0227(1) F1 0.207(3) 0.134(2) 0.356(5) 0.175(3) 0.220(4) 0.116(2) F3 0.1354(16) 0.142(2) 0.0489(1) 0.0528(1) 0.0458(1) 0.0252(1) F4		0.0324(9)	0.0318(9)	0.0294(8)	0.0158(7)	0.0060(7)	0.0106(7)
$ \begin{array}{c} C14 & 0.067/(16) & 0.0346(12) & 0.0316(11) & 0.0073(10) & 0.009(11) & 0.0129(11) \\ C15 & 0.089(2) & 0.0415(15) & 0.092(2) & 0.0284(16) & 0.0009(2) & 0.0307(15) \\ C16 & 0.0356(10) & 0.0311(10) & 0.0283(10) & 0.0140(8) & 0.0058(8) & 0.0135(8) \\ C18 & 0.0321(11) & 0.0441(12) & 0.0439(12) & 0.0236(10) & 0.0009(9) & 0.0069(8) \\ C19 & 0.0390(12) & 0.0467(12) & 0.0463(13) & 0.0332(11) & 0.0034(9) & 0.0118(10) \\ C20 & 0.0350(11) & 0.0592(14) & 0.0474(13) & 0.0336(12) & 0.0171(10) & 0.0110(10) \\ C21 & 0.0308(10) & 0.0534(13) & 0.0354(11) & 0.0246(10) & 0.0070(8) & 0.0171(9) \\ C11 & 0.0714(4) & 0.0368(3) & 0.0401(3) & 0.0208(2) & 0.0205(3) & 0.0291(3) \\ F1 & 0.207(3) & 0.134(2) & 0.140(2) & -0.0139(19) & -0.0185(15) & 0.0613(15) \\ F3 & 0.1354(19) & 0.0467(10) & 0.1261(18) & 0.0352(11) & 0.0581(15) & 0.0613(15) \\ F4 & 0.0342(7) & 0.0655(9) & 0.0889(11) & 0.0592(9) & 0.0055(7) & 0.0039(6) \\ F5 & 0.0422(8) & 0.0819(11) & 0.0852(11) & 0.0598(10) & 0.0033(7) & 0.0121(7) \\ F6 & 0.0323(7) & 0.1012(12) & 0.0652(9) & 0.0596(9) & 0.0115(6) & 0.0250(7) \\ N1' & 0.0316(9) & 0.0319(9) & 0.0302(9) & 0.0144(7) & 0.0075(7) & 0.078(7) \\ C2' & 0.0372(11) & 0.0343(11) & 0.0328(11) & 0.0254(10) & 0.0139(8) & 0.0068(9) \\ C3' & 0.0447(12) & 0.0446(12) & 0.0293(10) & 0.0142(9) & 0.0076(7) & 0.0078(7) \\ C4' & 0.0356(11) & 0.0442(12) & 0.0386(11) & 0.0254(10) & 0.0149(9) & 0.0155(9) \\ C5' & 0.0327(10) & 0.0311(10) & 0.0330(10) & 0.0186(9) & 0.0033(8) & 0.0068(8) \\ C10' & 0.0254(8) & 0.0276(9) & 0.0272(8) & 0.0138(10) & 0.0138(8) & 0.0068(8) \\ C11' & 0.0254(8) & 0.0224(8) & 0.0275(8) & 0.0133(7) & 0.0088(7) \\ N8' & 0.0254(8) & 0.0224(8) & 0.0275(8) & 0.0133(7) & 0.0088(7) \\ C4' & 0.0336(11) & 0.0422(13) & 0.038(10) & 0.0186(9) & 0.0033(8) & 0.0068(8) \\ C11' & 0.0254(8) & 0.0228(8) & 0.0238(8) & 0.0033(8) & 0.0068(8) \\ C11' & 0.0254(9) & 0.0276(8) & 0.0228(10) & 0.0132(8) & 0.0033(8) & 0.0068(8) \\ C11' & 0.0254(9) & 0.0327(10) & 0.038(11) & 0.0047(7) & 0.0032(7) \\ C4' & 0.0336(11) & 0.0422(13) & 0.0330(12) & 0.0033(8) & 0.0066(8) \\ C11' & 0$	N13	0.0652(13)	0.0380(10)	0.0263(9)	0.0140(8)	0.0038(8)	0.0226(9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	614	0.0677(16)	0.0346(12)	0.0316(11)	0.0073(10)	0.0009(11)	0.0129(11)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	015	0.089(2)	0.0415(15)	0.092(2)	0.0284(16)	0.040(2)	0.0307(15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.0356(10)	0.0311(10)	0.0283(10)	0.0140(8)	0.0058(8)	0.0135(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	017	0.0323(10)	0.0353(11)	0.0439(12)	0.0236(10)	0.0053(9)	0.0069(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C18	0.0321(11)	0.0441(12)	0.0545(14)	0.0306(11)	0.0000(9)	0.0108(9)
$ \begin{array}{cccccc} C20 & 0.0350(11) & 0.0592(14) & 0.0474(13) & 0.0361(12) & 0.0101(10) & 0.0110(10) \\ C11 & 0.0714(4) & 0.0368(3) & 0.0401(3) & 0.0246(10) & 0.0070(8) & 0.0171(9) \\ C11 & 0.0714(4) & 0.0368(3) & 0.0401(3) & 0.0208(2) & 0.0205(3) & 0.0291(3) \\ F1 & 0.207(3) & 0.134(2) & 0.356(5) & 0.175(3) & 0.220(4) & 0.116(2) \\ F2 & 0.0784(16) & 0.142(2) & 0.140(2) & -0.0139(19) & -0.0185(15) & 0.0613(15) \\ F3 & 0.1354(19) & 0.0487(10) & 0.1261(18) & 0.0352(11) & 0.0538(15) & 0.0527(11) \\ F4 & 0.0342(7) & 0.0655(9) & 0.0889(11) & 0.0592(9) & 0.0055(7) & 0.0039(6) \\ F5 & 0.0452(8) & 0.0819(11) & 0.0852(11) & 0.0698(10) & 0.0033(7) & 0.0121(7) \\ F6 & 0.0323(7) & 0.1012(12) & 0.0652(9) & 0.0114(7) & 0.0075(7) & 0.0078(7) \\ C2' & 0.0372(11) & 0.0343(11) & 0.0312(11) & 0.0076(9) & 0.0065(9) & 0.0069(9) \\ C3' & 0.0447(12) & 0.0416(12) & 0.0293(10) & 0.0142(9) & 0.0124(9) & 0.0174(10) \\ C4' & 0.0366(11) & 0.042(12) & 0.0386(11) & 0.0254(10) & 0.0149(9) & 0.0155(9) \\ C5' & 0.0327(10) & 0.0311(10) & 0.0330(10) & 0.0186(9) & 0.0039(8) & 0.0084(8) \\ C6' & 0.0259(9) & 0.0276(9) & 0.0276(8) & 0.0135(7) & 0.0040(6) & 0.0064(6) \\ C9' & 0.0274(9) & 0.0284(8) & 0.0275(8) & 0.0135(7) & 0.0040(6) & 0.0068(8) \\ C10' & 0.0267(9) & 0.0284(8) & 0.0275(8) & 0.0135(7) & 0.0043(6) & 0.0068(8) \\ C10' & 0.0267(9) & 0.0293(10) & 0.0128(8) & 0.0033(8) & 0.0084(8) \\ C10' & 0.0267(9) & 0.0293(10) & 0.0132(8) & 0.0033(8) & 0.0068(8) \\ C11' & 0.0266(8) & 0.0289(8) & 0.0285(8) & 0.0133(7) & 0.0043(6) & 0.0068(8) \\ C11' & 0.0266(8) & 0.0289(8) & 0.0285(8) & 0.0133(7) & 0.0043(6) & 0.0068(8) \\ C11' & 0.0266(8) & 0.0289(1) & 0.033(11) & 0.039(10) & 0.0156(8) & 0.0033(8) & 0.0068(8) \\ C11' & 0.0266(8) & 0.0289(10) & 0.0285(8) & 0.0133(7) & 0.0043(6) & 0.0068(8) \\ C11' & 0.0266(8) & 0.0289(10) & 0.0285(8) & 0.0033(8) & 0.0053(8) & 0.0053(8) \\ C11' & 0.0252(10) & 0.0382(11) & 0.039(11) & 0.0039(9) & 0.0053(8) & 0.0053(8) \\ C11' & 0.0252(10) & 0.0362(11) & 0.0298(10) & 0.0098(9) & 0.0035(8) & 0.0053(8) \\ C11' & 0.0252(10) & 0.0362(11) & 0.0298(10) & 0.0098($	C19	0.0390(12)	0.0467(12)	0.0463(13)	0.0332(11)	0.0034(9)	0.0118(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.0350(11)	0.0592(14)	0.0474(13)	0.0361(12)	0.0101(10)	0.0110(10)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C21	0.0308(10)	0.0534(13)	0.0354(11)	0.0246(10)	0.0070(8)	0.01/1(9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cl1	0.0714(4)	0.0368(3)	0.0401(3)	0.0208(2)	0.0205(3)	0.0291(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F1	0.207(3)	0.134(2)	0.356(5)	0.175(3)	0.220(4)	0.116(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F2	0.0784(16)	0.142(2)	0.140(2)	-0.0139(19)	-0.0185(15)	0.0613(15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F3	0.1354(19)	0.0487(10)	0.1261(18)	0.0352(11)	0.0538(15)	0.0527(11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F4	0.0342(7)	0.0655(9)	0.0889(11)	0.0592(9)	0.0055(7)	0.0039(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F5	0.0452(8)	0.0819(11)	0.0852(11)	0.0698(10)	0.0033(7)	0.0121(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F6	0.0323(7)	0.1012(12)	0.0652(9)	0.0596(9)	0.0115(6)	0.0250(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1'	0.0316(9)	0.0319(9)	0.0302(9)	0.0114(7)	0.0075(7)	0.0078(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C2'	0.0372(11)	0.0343(11)	0.0312(11)	0.0076(9)	0.0065(9)	0.0069(9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C3'	0.0447(12)	0.0416(12)	0.0293(10)	0.0142(9)	0.0124(9)	0.0174(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4'	0.0356(11)	0.0442(12)	0.0386(11)	0.0254(10)	0.0149(9)	0.0155(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C5'	0.0327(10)	0.0311(10)	0.0330(10)	0.0186(9)	0.0039(8)	0.0084(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C6'	0.0259(9)	0.0276(9)	0.0272(9)	0.0145(8)	0.0023(7)	0.0089(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C7'	0.0274(9)	0.0262(9)	0.0286(9)	0.0161(8)	0.0030(7)	0.0088(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8'	0.0254(8)	0.0284(8)	0.0275(8)	0.0135(7)	0.0040(6)	0.0064(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C9'	0.0273(9)	0.0276(9)	0.0284(10)	0.0138(8)	0.0019(7)	0.0066(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C10'	0.0267(9)	0.0293(10)	0.0292(10)	0.0132(8)	0.0033(8)	0.0068(8)
N12' 0.0266(8) 0.0289(8) 0.0285(8) 0.0133(7) 0.0043(6) 0.0060(6) N13' 0.0271(8) 0.0344(9) 0.0275(8) 0.0085(7) 0.0047(7) 0.0032(7) C14' 0.0303(10) 0.0402(11) 0.0316(11) 0.0147(9) 0.0031(8) -0.0017(9) C15' 0.0289(11) 0.0532(14) 0.0377(12) 0.0138(10) 0.0091(9) 0.0068(10) C16' 0.0226(9) 0.0362(11) 0.0298(10) 0.0098(9) 0.0035(8) 0.0053(8) C17' 0.0364(11) 0.0462(13) 0.0330(12) 0.0204(12) 0.0096(10) 0.0149(12) C18' 0.0453(13) 0.0682(17) 0.0330(12) 0.0204(12) 0.0096(10) 0.0149(12) C19' 0.0389(12) 0.0681(17) 0.0279(11) 0.0059(11) 0.0082(9) 0.0175(11) C20' 0.0322(11) 0.0449(13) 0.0031(11) 0.0030(9) 0.0154(10) C21' 0.0252(10) 0.0399(11) 0.0346(11) 0.0119(9) 0.0016(8) 0.0075(8) <t< td=""><td>C11'</td><td>0.0254(9)</td><td>0.0311(10)</td><td>0.0309(10)</td><td>0.0156(8)</td><td>0.0062(8)</td><td>0.0072(8)</td></t<>	C11'	0.0254(9)	0.0311(10)	0.0309(10)	0.0156(8)	0.0062(8)	0.0072(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N12'	0.0266(8)	0.0289(8)	0.0285(8)	0.0133(7)	0.0043(6)	0.0060(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N13'	0.0271(8)	0.0344(9)	0.0275(8)	0.0085(7)	0.0047(7)	0.0032(7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C14'	0.0303(10)	0.0402(11)	0.0316(11)	0.0147(9)	0.0031(8)	-0.0017(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15'	0.0289(11)	0.0532(14)	0.0377(12)	0.0138(10)	0.0091(9)	0.0068(10)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C16'	0.0226(9)	0.0362(11)	0.0298(10)	0.0098(9)	0.0035(8)	0.0053(8)
C18' 0.0453(13) 0.0682(17) 0.0330(12) 0.0204(12) 0.0096(10) 0.0149(12) C19' 0.0389(12) 0.0681(17) 0.0279(11) 0.0059(11) 0.0082(9) 0.0175(11) C20' 0.0322(11) 0.0443(13) 0.0449(13) 0.0031(11) 0.0030(9) 0.0154(10) C21' 0.0252(10) 0.0399(11) 0.0346(11) 0.0119(9) 0.0016(8) 0.0075(8) C11' 0.0274(2) 0.0450(3) 0.0355(3) 0.0140(2) 0.0092(2) 0.0013(2) F1' 0.0436(8) 0.1033(13) 0.0410(8) 0.0351(8) 0.0047(6) 0.0167(8) F2' 0.0617(11) 0.0548(10) 0.1255(17) 0.0152(10) -0.0079(10) 0.0276(8) F3' 0.0296(7) 0.1422(17) 0.0597(10) 0.0458(11) 0.0177(7) 0.0140(9)	C17'	0.0364(11)	0.0462(13)	0.0334(11)	0.0147(10)	0.0065(9)	0.0094(10)
C19'0.0389(12)0.0681(17)0.0279(11)0.0059(11)0.0082(9)0.0175(11)C20'0.0322(11)0.0443(13)0.0449(13)0.0031(11)0.0030(9)0.0154(10)C21'0.0252(10)0.0399(11)0.0346(11)0.0119(9)0.0016(8)0.0075(8)C11'0.0274(2)0.0450(3)0.0355(3)0.0140(2)0.0092(2)0.0013(2)F1'0.0436(8)0.1033(13)0.0410(8)0.0351(8)0.0047(6)0.0167(8)F2'0.0617(11)0.0548(10)0.1255(17)0.0152(10)-0.0079(10)0.0276(8)F3'0.0296(7)0.1422(17)0.0597(10)0.0458(11)0.0177(7)0.0140(9)	C18'	0.0453(13)	0.0682(17)	0.0330(12)	0.0204(12)	0.0096(10)	0.0149(12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C19'	0.0389(12)	0.0681(17)	0.0279(11)	0.0059(11)	0.0082(9) ′	0.0175(11)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C20'	0.0322(11)	0.0443(13)	0.0449(13)	0.0031(11)	0.0030(̀9)́	0.0154(10)
Cl1' 0.0274(2) 0.0450(3) 0.0355(3) 0.0140(2) 0.0092(2) 0.0013(2) F1' 0.0436(8) 0.1033(13) 0.0410(8) 0.0351(8) 0.0047(6) 0.0167(8) F2' 0.0617(11) 0.0548(10) 0.1255(17) 0.0152(10) -0.0079(10) 0.0276(8) F3' 0.0296(7) 0.1422(17) 0.0597(10) 0.0458(11) 0.0177(7) 0.0140(9)	C21'	0.0252(10)	0.0399(11)	0.0346(11)	0.0119(9) ′	0.0016(8)	0.0075(8) ′
F1'0.0436(8)0.1033(13)0.0410(8)0.0351(8)0.0047(6)0.0167(8)F2'0.0617(11)0.0548(10)0.1255(17)0.0152(10)-0.0079(10)0.0276(8)F3'0.0296(7)0.1422(17)0.0597(10)0.0458(11)0.0177(7)0.0140(9)	Cl1'	0.0274(2)	0.0450(3)	0.0355(3)	0.0140(2)	0.0092(2)	0.0013(2)
F2' 0.0617(11) 0.0548(10) 0.1255(17) 0.0152(10) -0.0079(10) 0.0276(8) F3' 0.0296(7) 0.1422(17) 0.0597(10) 0.0458(11) 0.0177(7) 0.0140(9)	F1'	0.0436(8)	0.1033(13)	0.0410(8)	0.0351(8)	0.0047(6)	0.0167(8)
F3' 0.0296(7) 0.1422(17) 0.0597(10) 0.0458(11) 0.0177(7) 0.0140(9)	F2'	0.0617(11)	0.0548(10)	0.1255(17)	0.0152(10)	-0.0079(10)	0.0276(8)
	F3'	0.0296(7)	0.1422(17)	0.0597(10)	0.0458(11)	0.0177(7)	0.0140(9)
F4' 0.0698(10) 0.0501(8) 0.0431(8) 0.0262(6) 0.0116(7) 0.0190(7)	F4'	0.0698(10)	0.0501(8)	0.0431(8)	0.0262(6)	0.0116(7)	0.0190(7)
F5' 0.0735(11) 0.0965(13) 0.0352(8) 0.0062(8) 0.0188(7) 0.0403(10)	F5'	0.0735(11)	0.0965(13)	0.0352(8)	0.0062(8)	0.0188(7)	0.0403(10)
F6' = 0.0432(7) = 0.0393(7) = 0.0493(8) = 0.0202(6) = 0.0055(6) = 0.0129(6)	F6'	0.0432(7)	0.0393(7)	0.0493(8)	0.0202(6)	0.0055(6)	0.0129(6)
N1" $0.0401(10)$ $0.0348(9)$ $0.0347(9)$ $0.0184(8)$ $0.0094(7)$ $0.0047(8)$	N1"	0.0401(10)	0.0348(9)	0.0347(9)	0.0184(8)	0.0094(7)	0.0047(8)
$C2^{"}$ 0.0457(13) 0.0413(12) 0.0475(13) 0.0260(11) 0.0166(10) 0.0055(10)	C2"	0.0457(13)	0.0413(12)	0.0475(13)	0.0260(11)	0.0166(10)	0.0055(10)
C3'' = 0.0360(12) = 0.0396(12) = 0.0605(15) = 0.0210(11) = 0.0142(11) = 0.0013(10)	C3"	0.0360(12)	0.0396(12)	0.0605(15)	0.0210(11)	0.0142(11)	0.0013(10)

Table 4. Refined Thermal Parameters (U's) for Compound 1342

C4"	0.0331(12)	0.0469(13)	0.0547(14)	0.0232(12)	0.0027(10)	0.0047(10)
C5"	0.0343(11)	0.0416(12)	0.0389(12)	0.0206(10)	0.0051(9)	0.0053(9)
C6"	0.0336(10)	0.0282(10)	0.0272(10)	0.0115(8)	0.0062(8)	0.0057(8)
C7"	0.0331(10)	0.0294(10)	0.0237(9)	0.0123(8)	0.0041(8)	0.0056(8)
N8"	0.0275(8)	0.0307(8)	0.0276(8)	0.0144(7)	0.0026(6)	0.0043(7)
C9"	0.0282(9)	0.0292(9)	0.0265(9)	0.0138(8)	0.0050(7)	0.0057(8)
C10"	0.0276(10)	0.0321(10)	0.0324(10)	0.0163(9)	0.0030(8)	0.0059(8)
C11"	0.0309(10)	0.0378(11)	0.0382(11)	0.0214(9)	0.0014(8)	0.0085(8)
N12"	0.0328(9)	0.0375(9)	0.0378(9)	0.0236(8)	0.0028(7)	0.0056(7)
N13"	0.0245(8)	0.0367(9)	0.0382(9)	0.0238(8)	0.0041(7)	0.0048(7)
C14"	0.0313(10)	0.0319(10)	0.0348(11)	0.0189(9)	0.0030(8)	0.0071(8)
C15"	0.0363(11)	0.0415(12)	0.0350(11)	0.0213(10)	0.0028(9)	0.0088(9)
C16"	0.0269(10)	0.0374(11)	0.0408(11)	0.0248(9)	0.0037(8)	0.0082(8)
C17"	0.0307(10)	0.0365(11)	0.0432(12)	0.0217(10)	0.0069(9)	0.0116(9)
C18"	0.0312(11)	0.0351(11)	0.0574(14)	0.0253(11)	-0.0023(10)	0.0059(9)
C19"	0.0227(10)	0.0514(13)	0.0648(15)	0.0423(12)	0.0048(10)	0.0083(9)
C20"	0.0306(11)	0.0604(15)	0.0513(14)	0.0344(12)	0.0129(10)	0.0162(10)
C21"	0.0328(11)	0.0429(12)	0.0411(12)	0.0208(10)	0.0049(9)	0.0078(9)
CI1"	0.0342(3)	0.0675(4)	0.0771(4)	0.0548(4)	-0.0008(3)	0.0091(3)
F1"	0.0584(9)	0.1033(13)	0.0373(8)	0.0329(8)	0.0143(7)	0.0360(9)
F2"	0.0834(11)	0.0404(8)	0.0500(8)	0.0195(7)	-0.0239(8)	-0.0087(7)
F3"	0.0397(7)	0.0668(9)	0.0466(8)	0.0345(7)	0.0000(6)	0.0164(6)
F4"	0.0457(8)	0.0454(8)	0.0503(8)	0.0124(6)	0.0131(6)	0.0069(6)
F5"	0.0252(6)	0.0685(9)	0.0866(11)	0.0560(9)	0.0058(6)	0.0040(6)
F6"	F6" 0.0484(8) 0.0604(9) 0.0468(8) 0.0102(7) 0.0132(6) 0.0023(7)					
The form o	f the anisotropic c	lisplacement pa	rameter is:			
exp[-2π²(a*	${}^{2}U_{11}h^{2}+b^{*2}U_{22}k^{2}+c$	* ² U ₃₃ l ² +2b*c*U	₂₃ kl+2a*c*U ₁₃ hl-	+2a*b*U ₁₂ hk)]		

Table 5. Bond Distances in Compound 1342, Å

N1-C6	1.334(3)	N1-C2	1.342(3)	C2-C3	1.382(3)
C3-C4	1.370(4)	C4-C5	1.387(3)	C5-C6	1.383(3)
C6-C7	1.497(3)	C7-N8	1.331(3)	C7-N12	1.342(2)
N8-C9	1.345(3)	C9-N13	1.346(3)	C9-C10	1.417(3)
C10-C11	1.375(3)	C10-C16	1.492(3)	C11-N12	1.333(3)
C11-CI1	1.7387(19)	N13-C14	1.445(3)	C14-C15	1.487(4)
C15-F1	1.277(4)	C15-F3	1.323(3)	C15-F2	1.327(4)
C16-C21	1.381(3)	C16-C17	1.387(3)	C17-F4	1.347(2)
C17-C18	1.374(3)	C18-C19	1.375(3)	C19-F5	1.351(2)
C19-C20	1.369(3)	C20-C21	1.373(3)	C21-F6	1.342(2)
N1'-C2'	1.340(3)	N1'-C6'	1.349(2)	C2'-C3'	1.375(3)
C3'-C4'	1.386(3)	C4'-C5'	1.385(3)	C5'-C6'	1.387(3)
C6'-C7'	1.488(3)	C7'-N12'	1.330(2)	C7'-N8'	1.338(2)
N8'-C9'	1.347(2)	C9'-N13'	1.354(2)	C9'-C10'	1.412(3)
C10'-C11'	1.376(3)	C10'-C16'	1.486(3)	C11'-N12'	1.333(2)
C11'-CI1'	1.7297(19)	N13'-C14'	1.429(3)	C14'-C15'	1.491(3)
C15'-F2'	1.326(3)	C15'-F1'	1.329(3)	C15'-F3'	1.337(3)
C16'-C21'	1.387(3)	C16'-C17'	1.389(3)	C17'-F4'	1.348(3)
C17'-C18'	1.377(3)	C18'-C19'	1.368(4)	C19'-F5'	1.354(3)
C19'-C20'	1.374(4)	C20'-C21'	1.385(3)	C21'-F6'	1.348(3)
N1"-C2"	1.331(3)	N1"-C6"	1.343(3)	C2"-C3"	1.375(4)
C3"-C4"	1.378(4)	C4"-C5"	1.375(3)	C5"-C6"	1.385(3)
C6"-C7"	1.492(3)	C7"-N8"	1.335(2)	C7"-N12"	1.340(3)
N8"-C9"	1.341(2)	C9"-N13"	1.350(2)	C9"-C10"	1.415(3)
C10"-C11"	1.378(3)	C10"-C16"	1.482(3)	C11"-N12"	1.331(3)
C11"-CI1"	1.738(2)	N13"-C14"	1.436(2)	C14"-C15"	1.500(3)
C15"-F1"	1.331(3)	C15"-F2"	1.336(3)	C15"-F3"	1.343(2)
C16"-C21"	1.379(3)	C16"-C17"	1.385(3)	C17"-F4"	1.348(3)
C17"-C18"	1.376(3)	C18"-C19"	1.372(3)	C19"-F5"	1.347(2)
C19"-C20"	1.367(4)	C20"-C21"	1.378(3)	C21"-F6"	1.352(3)

Table 6. Bond Angles in Compound 1342, °

C6-N1-C2	117.37(19)	N1-C2-C3	123.5(2)	C4-C3-C2	118.4(2)
C3-C4-C5	119.0(2) ´	C6-C5-C4	118.9(2)	N1-C6-C5	122.75(19)
N1-C6-C7	115.98(17)	C5-C6-C7	121.26(18)	N8-C7-N12	126.60(17)
N8-C7-C6	116.55(16)	N12-C7-C6	116.83(17)	C7-N8-C9	117.60(16)
N8-C9-N13	117.58(18)	N8-C9-C10	120.90(18)	N13-C9-C10	121.52(18)
C11-C10-C9	114.74(17)	C11-C10-C16	122.08(17)	C9-C10-C16	123.17(17)
N12-C11-C10	125.87(18)	N12-C11-Cl1	114.96(15)	C10-C11-Cl1	119.16(15)
C11-N12-C7	114.16(16)	C9-N13-C14	122.52(18)	N13-C14-C15	114.7(2) ´
F1-C15-F3	104.7(3) ´	F1-C15-F2	107.9(À) ´	F3-C15-F2	106.9(3)
F1-C15-C14	113.6(3)	F3-C15-C14	110.9(3)	F2-C15-C14	112.3(3)
C21-C16-C17	114.99(18)	C21-C16-C10	123.13(18)	C17-C16-C10	121.84(18)
F4-C17-C18	118.02(18)	F4-C17-C16	117.70(18)	C18-C17-C16	124.28(19)
C17-C18-C19	116.35(19)	F5-C19-C20	118.84(19)	F5-C19-C18	117.74(19)
C20-C19-C18	123.42(19)	C19-C20-C21	116.8(2) ´	F6-C21-C20	118.46(19)
F6-C21-C16	117.40(18)	C20-C21-C16	124.14(19)	C2'-N1'-C6'	117.15(17)
N1'-C2'-C3'	124.0(2)	C2'-C3'-C4'	118.42(19)	C5'-C4'-C3'	118.78(19)
C4'-C5'-C6'	119.08(19)	N1'-C6'-C5'	122.53(17)	N1'-C6'-C7'	116.24(16)
C5'-C6'-C7'	121.22(17)	N12'-C7'-N8'	126.66(17)	N12'-C7'-C6'	116.40(16)
N8'-C7'-C6'	116.92(16)	C7'-N8'-C9'	116.98(16)	N8'-C9'-N13'	117.98(17)
N8'-C9'-C10'	121.43(17)	N13'-C9'-C10'	120.59(17)	C11'-C10'-C9'	114.54(17)
C11'-C10'-C16'	122.84(17)	C9'-C10'-C16'	122.61(17)	N12'-C11'-C10'	125.65(18)
N12'-C11'-Cl1'	114.90(14)	C10'-C11'-Cl1'	119.45(15)	C7'-N12'-C11'	114.66(16)
C9'-N13'-C14'	123.39(17)	N13'-C14'-C15'	113.16(18)	F2'-C15'-F1'	107.0(2) ´
F2'-C15'-F3'	107.6(2) ´	F1'-C15'-F3'	105.22(18)	F2'-C15'-C14'	112.83(19)
F1'-C15'-C14'	113.27(19)	F3'-C15'-C14'	110.5(2) ´	C21'-C16'-C17'	115.58(19)
C21'-C16'-C10'	121.95(19)	C17'-C16'-C10'	122.46(19)	F4'-C17'-C18'	118.3(2) ´
F4'-C17'-C16'	117.79(18)	C18'-C17'-C16'	123.9(2) ´	C19'-C18'-C17'	116.6(2)
F5'-C19'-C18'	118.0(2) ´	F5'-C19'-C20'	118.1(2)	C18'-C19'-C20'	123.9(2)
C19'-C20'-C21'	116.5(2)	F6'-C21'-C20'	118.6(2)	F6'-C21'-C16'	117.97(18)
C20'-C21'-C16'	123.4(2)	C2"-N1"-C6"	117.05(19)	N1"-C2"-C3"	124.0(2) ´
C2"-C3"-C4"	118.4(2)	C5"-C4"-C3"	119.0(2)	C4"-C5"-C6"	118.8(2)
N1"-C6"-C5"	122.7 ồ (19)	N1"-C6"-C7"	116.48(17)	C5"-C6"-C7"	120.76(18)
N8"-C7"-N12"	127.00(18)	N8"-C7"-C6"	115.78(17)	N12"-C7"-C6"	117.23(17)
C7"-N8"-C9"	117.24(16)	N8"-C9"-N13"	118.03(17)	N8"-C9"-C10"	121.14(17)
N13"-C9"-C10"	120.82(17)	C11"-C10"-C9"	114.82(17)	C11"-C10"-C16"	124.39(18)
C9"-C10"-C16"	120.72(17)	N12"-C11"-C10"	125.76(18)	N12"-C11"-Cl1"	115.47(15)
C10"-C11"-Cl1"	118.77(16)	C11"-N12"-C7"	114.01(17)	C9"-N13"-C14"	122.78(16)
N13"-C14"-C15"	113.23(17)	F1"-C15"-F2"	106.78(19)	F1"-C15"-F3"	106.05(17)
F2"-C15"-F3"	106.12(17)	F1"-C15"-C14"	113.45(18)	F2"-C15"-C14"	113.06(17)
F3"-C15"-C14"	110.85(18)	C21"-C16"-C17"	115.15(19)	C21"-C16"-C10"	122.79(19)
C17"-C16"-C10"	121.98(19)	F4"-C17"-C18"	118.3(2) ´	F4"-C17"-C16"	117.73(18)
C18"-C17"-C16"	124.0(2) ´	C19"-C18"-C17"	116.6(̈́2)́	F5"-C19"-C20"	118.5(2) ´
F5"-C19"-C18"	118.1(2)	C20"-C19"-C18"	123.4(2)	C19"-C20"-C21"	116.7(2)
F6"-C21"-C20"	118.0(2)	F6"-C21"-C16"	117.88(19)	C20"-C21"-C16"	124.1(2)

ⁱ Bruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- ⁱⁱⁱ Sheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.
- ^{iv} Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.
- ^v v.d. Sluis, P. & A.L. Spek (1990). *Acta. Cryst.*, **A46**, 194.

vi Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^{vii} R1 = $\Sigma IIF_0I - IF_cII / \Sigma IF_0I$ wR2 = $[\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{\frac{1}{2}}$ GOF = $[\Sigma w(F_0^2 - F_c^2)^2 / (n - p)]^{\frac{1}{2}}$ where n = the number of reflections and p = the number of parameters refined.

^{viii} "ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

ⁱⁱ Bruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

X-ray Structure Determination of Compound 36 (CCDC 992820)

Compound 1384, $C_{14}H_8N_8F_6$, crystallizes in the monoclinic space group P2₁ (systematic absences 0k0: k=odd) with a=12.7869(7)Å, b=9.6365(5)Å, c=13.9992(7)Å, β =107.054(2)°, V=1649.14(15)Å³, Z=4, and d_{calc}=1.620 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1498 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	59.55	348.71	-26.26	739
t (i)	14.50	283.75	54.11	21.36	197
φ	-23.00	334.21	158.53	73.66	496
ω	-8.00	320.74	277.32	84.61	66

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 19505 reflections were measured over the ranges $1.67 \le \theta \le 25.40^\circ$, $-15 \le h \le 15$, $-11 \le k \le 11$, $-16 \le l \le 16$ yielding 5913 unique reflections (Rint = 0.0380). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.5973, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two

molecules of the title compound. Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0636P)² + 0.2595P] where P = ($F_0^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0426 and wR2=0.1027 for 4714 observed reflections for which F > 4 σ (F) and R1=0.0619 and wR2=0.1129 and GOF =1.035 for all 5913 unique, non-zero reflections and 508 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.262 and -0.269 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1. and 2. are ORTEP^{vii} representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1384

Empirical formula	$C_{14}H_8N_8F_6$
Formula weight	402.28
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2 ₁
Cell constants:	
a	12.7869(7) Å
b	9.6365(5) Å
C	13.9992(7) Å
β	107.054(2)°
Volume	1649.14(15) Å ³
Z	4
Density (calculated)	1.620 Mg/m ³
Absorption coefficient	0.153 mm ⁻¹
F(000)	808
Crystal size	0.32 x 0.18 x 0.04 mm ³
Theta range for data collection	1.67 to 25.40°
Index ranges	$-15 \le h \le 15, -11 \le k \le 11, -16 \le l \le 16$
Reflections collected	19505
Independent reflections	5913 [R(int) = 0.0380]
Completeness to theta = 25.40°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.5973
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5913 / 1 / 508
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0426, wR2 = 0.1027
R indices (all data)	R1 = 0.0619, wR2 = 0.1129
Absolute structure parameter	0.5(7)
Largest diff. peak and hole	0.262 and -0.269 e.Å ⁻³

Table 2. Refined Positional Para	meters for Compound 1384
---	--------------------------

Atom	Х	У	Z	U _{eq} , A²
C1	0.0765(3)	0.4464(4)	0.2853(2)	0.0230(8)
C2	0.1868(2)	0.5887(3)	0.2565(2)	0.0182(7)
C3	0.2952(2)	0.6980(3)	0.1796(2)	0.0179(7)
C4	0.2702(2)	0.6051(3)	0.0995(2)	0.0165(7)
C5	0.1957(2)	0.4974(3)	0.0976(2)	0.0172(7)
C6	0.3269(2)	0.6137(3)	0.0211(2)	0.0188(7)
C7	0.3141(3)	0.7241(3)	-0.0449(2)	0.0246(8)
C8	0.3675(3)	0.7346(4)	-0.1177(2)	0.0284(8)
Č9	0.4370(3)	0.6283(4)	-0.1217(2)	0.0298(9)
C10	0 4546(3)	0.5149(4)	-0.0607(2)	0.0268(8)
C11	0.3987(2)	0.5110(4)	0.0102(2)	0.0213(7)
C12	0.0007(2)	0.2734(3)	0.0166(2)	0.0210(7) 0.0234(7)
C13	0.2001(3)	0.1676(4)	0.0588(3)	0.0204(7)
C14	0.0466(3)	0.1070(4) 0.2371(4)	-0.0809(3)	0.0000(0)
N1	0.15816(10)	0.2071(4)	0.17072(18)	0.0420(10)
N2	0.0833(2)	0.4919(0)	0.10832(18)	0.0103(0)
N2	0.1265(2)	0.5905(5)	0.19032(10)	0.0221(0)
NO NA	0.1303(2)	0.0090(0)	0.32367(19)	0.0210(0)
IN4	0.2540(2)	0.0937(3)	0.257 19(16)	0.0202(0)
	0.3724(2)	0.8050(3)	0.1780(2)	0.0234(0)
	0.3828(2)	0.8874(3)	0.2487(2)	0.0288(7)
IN7	0.3985(3)	0.9690(4)	0.3093(2)	0.0393(8)
IN8	0.15876(19)	0.4106(3)	0.01930(18)	0.0194(6)
F1	0.24295(17)	0.8246(2)	-0.03960(14)	0.0331(5)
F2	0.48918(16)	0.6347(3)	-0.19400(15)	0.0417(6)
F3	0.41485(15)	0.4020(2)	0.07159(13)	0.0302(5)
	0.26574(18)	0.1488(2)	0.00208(17)	0.0472(6)
F5	0.1568(2)	0.0436(2)	0.06882(19)	0.0582(7)
F6	0.26334(18)	0.2044(2)	0.14953(14)	0.0459(6)
C1'	0.0883(3)	0.6406(4)	0.7847(2)	0.0270(8)
C2'	0.1902(2)	0.4855(4)	0.7540(2)	0.0188(7)
C3	0.2911(3)	0.3674(3)	0.6766(2)	0.0202(7)
C4'	0.2747(2)	0.4645(3)	0.5985(2)	0.0180(7)
C5 ¹	0.2084(2)	0.5784(3)	0.5995(2)	0.0162(7)
07	0.3314(2)	0.4521(3)	0.5195(2)	0.0181(7)
07	0.3120(2)	0.3454(3)	0.4497(2)	0.0198(7)
08	0.3634(3)	0.3329(4)	0.3773(2)	0.0257(8)
C9'	0.4371(3)	0.4357(4)	0.3739(2)	0.0254(8)
C10'	0.4604(3)	0.5463(4)	0.4382(2)	0.0264(8)
C11'	0.4068(2)	0.5507(4)	0.5099(2)	0.0212(7)
C12'	0.1573(3)	0.8188(4)	0.5324(2)	0.0248(7)
C13'	0.0452(3)	0.8545(4)	0.4686(3)	0.0410(9)
614	0.2423(3)	0.9067(5)	0.5026(4)	0.0536(12)
N1 [*]	0.1705(2)	0.5885(3)	0.68155(19)	0.0179(6)
N2'	0.1026(2)	0.6878(3)	0.70146(19)	0.0252(6)
IN3	0.13/9(2)	0.5188(3)		0.0236(7)
	0.2500(2)	0.3731(3)	0.75252(18)	0.0196(6)
IN5	0.302/(2)	0.2537(3)	0.0/41(2)	0.0203(7)
	0.3721(2)	0.1729(3)	0.7448(2)	
	0.38/4(3)	0.0924(4)	0.8050(3)	0.0514(10)
	0.1/90(2)	0.0720(3)	0.52512(18)	
	0.23/03(10)	0.2482(2)	0.40403(14)	0.0324(5)
		0.4290(3)	0.30222(14)	0.041/(6)
	0.42095(14)		0.57457(13)	0.0275(5)
	0.0317(2)	0.0447(3)	0.37181(15)	
F5'	0.0202(2)	0.9851(3)	0.4805(2)	0.0711(8)
	-0.03139(10)	0.7729(3)	0.46070(19)	0.0030(7)
U _{eq} ='/ ₃ [U ₁₁ (aa*) ² ·	+U ₂₂ (bb*) ⁻ +U ₃₃ (cc*) ² +	·2U ₁₂ aa*bb*cos γ+2	U ₁₃ aa*cc*cos β+2U ₂₃ bb'	`CC*COSα]

Table 3. Positional Parameters	for Hydrogens in	n Compound 1384
---------------------------------------	------------------	-----------------

Atom	Х	у	Z	U _{iso} , A ²
H1	0.0318	0.4038	0.3184	0.031
H8	0.3567	0.8097	-0.1612	0.038
H10	0.5017	0.4440	-0.0665	0.036
H12	0.0605	0.2740	0.0578	0.031
H14a	-0.0150	0.2983	-0.1123	0.063
H14b	0.0214	0.1430	-0.0925	0.063
H14c	0.0930	0.2472	-0.1324	0.063
H8a	0.1645	0.4406	-0.0368	0.026
H1'	0.0460	0.6885	0.8177	0.036
H8'	0.3493	0.2590	0.3326	0.034
H10'	0.5100	0.6147	0.4335	0.035
H12'	0.1619	0.8399	0.6020	0.033
H14a'	0.3119	0.8977	0.5524	0.080
H14b'	0.2200	1.0023	0.4974	0.080
H14c'	0.2483	0.8755	0.4393	0.080
H8a'	0.1737	0.6412	0.4661	0.024

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0214(17)	0.0227(19)	0.0278(18)	0.0010(15)	0.0119(14)	-0.0027(14)
C2	0.0159(16)	0.0201(18)	0.0191(16)	0.0026(14)	0.0057(13)	0.0042(14)
	0.0117(15)	0.0220(18)	0.0204(15)	0.0011(15)	0.0052(12)	-0.0009(13)
C4 C5	0.0122(15)	0.0164(17)	0.0197(16)	0.0037(14)	0.0027(12)	0.0014(13)
C6	0.0133(15)	0.0184(17) 0.0207(18)	0.0185(10) 0.0213(16)	-0.0030(14)	0.0057(12) 0.0059(13)	-0.0034(13)
C7	0.0216(18)	0.020(2)	0.0321(19)	-0.0028(16)	0.0083(15)	-0.0014(15)
C8	0.034(2)	0.022(2)	0.0281(18)	0.0007(16)	0.0081(16)	-0.0130(16)
C9	0.024Ì(Í8)	0.045(2)	0.0253(18)	-0.0100(18)	0.0142(15)	-0.0121(17)
C10	0.0209(17)	0.034(2)	0.0271(18)	-0.0057(17)	0.0095(14)	-0.0016(15)
C11	0.0150(16)	0.024(2)	0.0251(17)	0.0004(15)	0.0063(13)	-0.0041(14)
C12	0.0268(17)	0.0185(17)	0.0273(16)	-0.0012(13)	0.0116(14)	-0.0105(15)
C14	0.050(2) 0.044(2)	0.025(2)	0.030(2)	-0.0036(10)	0.0210(10) 0.0064(18)	-0.0033(17)
N1	0.044(2) 0.0164(13)	0.039(2) 0.0170(14)	0.040(2) 0.0189(13)	0.0000(19)	0.0004(10) 0.0075(10)	-0.0224(19)
N2	0.0215(13)	0.0247(16)	0.0235(13)	0.0018(12)	0.0118(11)	-0.0066(12)
N3	0.0195(14)	0.0238(17)	0.0234(14)	0.0029(13)	0.0081(12)	0.0024(12)
N4	0.0192(13)	0.0207(16)	0.0202(13)	-0.0003(12)	0.0047(11)	0.0022(12)
N5	0.0260(15)	0.0170(16)	0.0301(15)	-0.0038(13)	0.0125(12)	-0.0034(12)
N6	0.0236(15)	0.0280(18)	0.0347(17)	0.0018(16)	0.0083(13)	-0.0086(13)
N/	0.0391(18)	0.038(2)	0.0400(18)	-0.0115(17)	0.0108(15)	-0.0125(16)
	0.0220(14)	0.0223(15)	0.0153(13) 0.0380(11)	-0.0014(11)	0.0077(10)	-0.0053(12)
F2	0.0430(12) 0.0412(12)	0.0203(11) 0.0572(16)	0.0369(12)	-0.0042(3)	0.0109(9) 0.0272(10)	-0.0111(11)
F3	0.0268(10)	0.0318(12)	0.0342(10)	0.0065(9)	0.0122(8)	0.0100(9)
F4	0.0509(13)	0.0418(14)	0.0562(14)	-0.0121(12)	0.0271(11)	0.0053(11)
F5	0.0875(18)	0.0226(12)	0.0716(16)	-0.0001(11)	0.0343(14)	-0.0064(12)
F6	0.0558(14)	0.0394(13)	0.0360(11)	0.0045(10)	0.0033(10)	0.0126(11)
C1'	0.0250(17)	0.037(2)	0.0215(17)	-0.0015(16)	0.0101(14)	0.0063(17)
C2'	0.0151(15)	0.0257(19)	0.0150(15)	0.0000(15)	0.0034(13)	-0.0050(15)
C4'	0.0191(10) 0.0155(15)	0.0104(10)	0.0247(17) 0.0214(16)	-0.0003(15) 0.0007(14)	0.0056(13)	-0.0013(14) 0.0005(14)
C5'	0.0116(15)	0.0189(18)	0.0181(16)	-0.0001(13)	0.0043(12)	-0.0019(13)
C6'	0.0149(15)	0.0217(19)	0.0178(15)	0.0042(14)	0.0048(12)	0.0085(13)
C7'	0.0181(16)	0.0150(18)	0.0252(16)	0.0011(15)	0.0048(13)	0.0028(14)
C8'	0.0269(18)	0.027(2)	0.0214(16)	-0.0049(15)	0.0046(14)	0.0113(16)
C9'	0.0232(17)	0.033(2)	0.0230(18)	0.0063(16)	0.0117(14)	0.0118(16)
C10'	0.0155(16)	0.035(2)	0.0292(18)	0.0084(17)	0.0072(14)	0.0039(15)
	0.0141(15)	0.0240(19)	0.0245(17)	-0.0002(15)	0.0040(13) 0.0110(14)	0.0030(14) 0.0047(14)
C13'	0.0240(17) 0.034(2)	0.0210(10) 0.038(2)	0.0511(17)	0.0002(13)	0.0113(14) 0.0106(17)	0.0047(14) 0.0175(18)
C14'	0.047(2)	0.027(2)	0.095(3)	0.009(2)	0.035(2)	-0.0015(19)
N1'	0.0169(13)	0.017Ò(15)	0.0208(13)	0.002Ò(11)	0.0071(11)	0.0061(11)
N2'	0.0245(15)	0.0299(17)	0.0233(14)	-0.0003(13)	0.0101(11)	0.0073(13)
N3'	0.0227(15)	0.0317(18)	0.0190(14)	0.0008(13)	0.0100(12)	0.0025(12)
N4'	0.0180(13)	0.0169(16)	0.0241(14)	0.0022(12)	0.0065(11)	0.0015(11)
IN5 Ne'	0.0288(15)	0.0272(17)	0.0204(15)	0.0095(13)	0.0134(12)	0.0109(13)
N7	0.0594(10)	0.0294(19) 0.040(2)	0.0430(19) 0.061(2)	0.0103(17) 0.024(2)	0.0203(13) 0.034(2)	0.0123(13)
N8'	0.0193(13)	0.0147(14)	0.0201(13)	0.0004(12)	0.0071(10)	0.0038(11)
F1'	0.0374(11)	0.0230(12)	0.0396(11)	-0.0058(9)	0.0155(9)	-0.0046(9)
F2'	0.0411(12)́	0.0580(16)́	0.0349(12)́	0.0002(11́)	0.0249(1́0)	0.0085(ÌÍ)
F3'	0.0198(9)	0.0282(12)	0.0352(10)	-0.0053(9)	0.0091(8)	-0.0053(8)
F4'	0.0749(18)	0.0729(18)	0.0357(13)	0.0083(12)	0.0001(12)	0.0352(15)
	0.0649(17)	0.0479(16)	0.0900(19)	-0.0040(14)	0.0063(14)	0.0420(14)
F0 The form of	$\frac{0.0211(12)}{1000000000000000000000000000000000000$	0.0843(19)	0.0010(17)	0.0049(14)	0.0119(11)	0.0001(12)
1110 10111 01	$1 + a = a = b = b = b^2$	aspiacement βε		100*h*11 6101		
exµ[-∠π²(a° ∣	$U_{1111} + U = U_{22}K + 0$	J U33I +∠D C U	₂₃ ki+∠a u U ₁₃ NI	+∠a u U ₁₂ [1K)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1384

Table 5. Bond Distances in Compound 1384, Å

C1-N2	1.329(4)	C1-N3	1.350(4)	C2-N3	1.319(4)
C2-N4	1.330(4)	C2-N1	1.389(4)	C3-N4	1.335(4)
C3-C4	1.397(4)	C3-N5	1.434(4)	C4-C5	1.404(4)
C4-C6	1.484(4)	C5-N8	1.349(4)	C5-N1	1.371(4)
C6-C7	1.387(5)	C6-C11	1.389(5)	C7-F1	1.345(4)
C7-C8	1.386(5)	C8-C9	1.369(5)	C9-C10	1.364(5)
C9-F2	1.367(3)	C10-C11	1.384(4)	C11-F3	1.334(4)
C12-N8	1.455(4)	C12-C14	1.516(5)	C12-C13	1.518(5)
C13-F4	1.326(4)	C13-F6	1.338(4)	C13-F5	1.342(4)
N1-N2	1.394(4)	N5-N6	1.236(4)	N6-N7	1.131(4)
C1'-N2'	1.313(4)	C1'-N3'	1.359(5)	C2'-N4'	1.331(4)
C2'-N3'	1.336(4)	C2'-N1'	1.388(4)	C3'-N4'	1.318(4)
C3'-C4'	1.407(4)	C3'-N5'	1.435(4)	C4'-C5'	1.389(4)
C4'-C6'	1.494(4)	C5'-N8'	1.345(4)	C5'-N1'	1.375(4)
C6'-C11'	1.388(5)	C6'-C7'	1.389(4)	C7'-F1'	1.352(4)
C7'-C8'	1.366(4)	C8'-C9'	1.378(5)	C9'-F2'	1.355(3)
C9'-C10'	1.370(5)	C10'-C11'	1.372(4)	C11'-F3'	1.350(4)
C12'-N8'	1.453(4)	C12'-C13'	1.489(5)	C12'-C14'	1.529(5)
C13'-F4'	1.318(4)	C13'-F6'	1.336(5)	C13'-F5'	1.341(4)
N1'-N2'	1.375(4)	N5'-N6'	1.236(4)	N6'-N7'	1.120(4)

Table 6. Bond Angles in Compound 1384, °

	117 7/0)		107 7/0)		100 6(0)
	117.7(3)	N3-02-N4	127.7(3)	N3-62-N1	109.6(3)
N4-C2-N1	122.7(3)	N4-C3-C4	125.5(3)	N4-C3-N5	117.6(3)
C4-C3-N5	116.8(3)	C3-C4-C5	118.9(3)	C3-C4-C6	120.7(3)
C5-C4-C6	120.2(3)	N8-C5-N1	122.2(3)	N8-C5-C4	123.2(3)
N1-C5-C4	114.5(3)	C7-C6-C11	115.2(3)	C7-C6-C4	123.2(3)
C11-C6-C4	121.5(3)	F1-C7-C8	118.3(3)	F1-C7-C6	117.7(3)
C8-C7-C6	124.0(3)	C9-C8-C7	116.2(3)	C10-C9-F2	118.2(3)
C10-C9-C8	124.3(3)	F2-C9-C8	117.4(3)	C9-C10-C11	116.5(3)
F3-C11-C10	118.0(3)	F3-C11-C6	118.2(3)	C10-C11-C6	123.8(3)
N8-C12-C14	109.7(3)	N8-C12-C13	109.6(3)	C14-C12-C13	110.8(3)
F4-C13-F6	107.0(3)	F4-C13-F5	107.1(3)	F6-C13-F5	106.8(3)
F4-C13-C12	113.3(3)	F6-C13-C12	111.6(̀3)́	F5-C13-C12	110.6(3)
C5-N1-C2	123.0(3)	C5-N1-N2	127.6(3)	C2-N1-N2	109.3(2)
C1-N2-N1	100.3(3)	C2-N3-C1	103.1(3)	C2-N4-C3	115.2(3)
N6-N5-C3	111.5(3)	N7-N6-N5	173.7(3)	C5-N8-C12	129.0(3)
N2'-C1'-N3'	117.2(̀3)́	N4'-C2'-N3'	127.9(3)	N4'-C2'-N1'	123.5(3)
N3'-C2'-N1'	108.6(3)	N4'-C3'-C4'	126.5(3)	N4'-C3'-N5'	117.3(3)
C4'-C3'-N5'	116.1(3)	C5'-C4'-C3'	118.0(̀3)́	C5'-C4'-C6'	120.0(3)
C3'-C4'-C6'	121.8(3)	N8'-C5'-N1'	121.0(3)	N8'-C5'-C4'	123.5(3)
N1'-C5'-C4'	115.4(3)	C11'-C6'-C7'	115.0(3)	C11'-C6'-C4'	121.3(3)
C7'-C6'-C4'	123.7(3)	F1'-C7'-C8'	118.4(3)	F1'-C7'-C6'	117.4(3)
C8'-C7'-C6'	124.2(3)	C7'-C8'-C9'	116.4(3)	F2'-C9'-C10'	117.6(3)
F2'-C9'-C8'	118.6(3)	C10'-C9'-C8'	123.8(3)	C9'-C10'-C11'	116.4(3)
F3'-C11'-C10'	118.4(̀3)́	F3'-C11'-C6'	117.5(3)	C10'-C11'-C6'	124.1(3)
N8'-C12'-C13'	110.9(3)	N8'-C12'-C14'	110.5(3)	C13'-C12'-C14'	110.2(3)
F4'-C13'-F6'	105.7(3)	F4'-C13'-F5'	107.1(3)	F6'-C13'-F5'	106.8(3)
F4'-C13'-C12'	114.3(3)	F6'-C13'-C12'	112.4(3)	F5'-C13'-C12'	110.2(3)
N2'-N1'-C5'	128.1(3)	N2'-N1'-C2'	109.8(2)	C5'-N1'-C2'	121.8(3)
C1'-N2'-N1'	101.5(3)	C2'-N3'-C1'	102.9(3)	C3'-N4'-C2'	114.4(3)
N6'-N5'-C3'	112.0(3)	N7'-N6'-N5'	173.1(4)	C5'-N8'-C12'	127.9(3)

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} & \text{R1} = \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ & \text{wR2} = [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ & \text{GOF} = [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ & \text{where } n = \text{the number of reflections and } p = \text{the number of parameters refined.} \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 43 (CCDC 992823)

Compound 1346, $C_{19}H_{19}N_5F_2$, crystallizes in the triclinic space group P1 with a=6.7843(6)Å, b=10.9039(8)Å, c=12.5675(10)Å, α =67.575(4)°, β =87.517(4)°, γ =84.897(4)°, V=855.93(12)Å³, Z=2, and d_{calc}=1.379 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 143(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2916 frames were collected with a crystal to detector distance of 37.6 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	59.55	348.71	-26.26	739
ω	7.00	0.92	261.23	-20.60	192
φ	-23.00	315.83	257.18	28.88	219
¢ Ø	-10.50	336.23	38.95	73.66	531
φ.	-10.50	300.13	17.77	39.97	739
ф ф	22.00	14.84	145.80	97.50	496

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 39187 reflections were measured over the ranges $1.75 \le \theta \le 25.39^\circ$, $-8 \le h \le 8$, $-11 \le k \le 13$, $0 \le l \le 15$ yielding 3103 unique reflections (Rint = 0.0268). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7123, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least

squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0486P)² + 0.2795P] where P = ($F_0^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0342 and wR2=0.0883 for 2637 observed reflections for which F > 4 σ (F) and R1=0.0424 and wR2=0.0917 and GOF =1.035 for all 3103 unique, non-zero reflections and 240 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.191 and -0.211 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 30% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 30% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1346

Empirical formula	$C_{19}H_{19}N_5F_2$
Formula weight	355.39
Temperature	143(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	PĪ
Cell constants:	
а	6.7843(6) Å
b	10.9039(8) Å
с	12.5675(10) Å
α	67.575(4)°
β	87.517(4)°
γ	84.897(4)°
Volume	855.93(12) Å ³
Z	2
Density (calculated)	1.379 Mg/m ³
Absorption coefficient	0.101 mm ⁻¹
F(000)	372
Crystal size	0.38 x 0.08 x 0.03 mm ³
Theta range for data collection	1.75 to 25.39°
Index ranges	-8 ≤ h ≤ 8, -11 ≤ k ≤ 13, 0 ≤ l ≤ 15
Reflections collected	39187
Independent reflections	3103 [R(int) = 0.0268]
Completeness to theta = 25.39°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7123
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3103 / 0 / 240
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0883
R indices (all data)	R1 = 0.0424, wR2 = 0.0917
Largest diff. peak and hole	0.191 and -0.211 e.Å ⁻³

Atom	Х	У	Z	U _{eq} , A ²
C1	0.2579(2)	0.20417(14)	0.57814(12)	0.0238(3)
C2	0.2484(2)	0.23618(13)	0.67632(12)	0.0239(3)
C3	0.25158(18)	0.45642(13)	0.56282(11)	0.0185(3)
C4	0.25143(18)	0.59421(13)	0.55015(11)	0.0187(3)
C5	0.24492(18)	0.68663(13)	0.43598(11)	0.0188(3)
C6	0.24031(19)	0.83054(13)	0.38033(11)	0.0195(3)
C7	0.2317(2)	0.93879(14)	0.41333(12)	0.0240(3)
C8	0.2289(2)	1.06883(14)	0.33710(12)	0.0265(3)
C9	0.2332(2)	1.09044(13)	0.22160(12)	0.0240(3)
C10	0.2409(2)	0.99140(13)	0.17891(12)	0.0227(3)
C11	0.24497(19)	0.86152(13)	0.25946(11)	0.0200(3)
C12	0.25131(18)	0.63860(13)	0.34557(11)	0.0181(3)
C13	0.25689(18)	0.42410(13)	0.46225(11)	0.0186(3)
C14	0.2964(2)	0.56170(14)	0.76111(11)	0.0243(3)
C15	0.4326(3)	0.63943(17)	0.79986(14)	0.0371(4)
C16	0.1053(3)	0.53960(18)	0.82919(14)	0.0406(4)
C17	0.2675(2)	0.72811(14)	0.12946(11)	0.0228(3)
C18	0.0817(2)	0.78776(16)	0.05784(13)	0.0347(4)
C19	0.4550(2)	0.78083(15)	0.06379(13)	0.0314(3)
N1	0.26116(17)	0.29462(11)	0.47308(10)	0.0226(3)
N2	0.24485(16)	0.35927(11)	0.66958(10)	0.0222(3)
N3	0.25252(16)	0.74459(11)	0.24054(9)	0.0197(3)
N4	0.25857(16)	0.51450(11)	0.35295(9)	0.0198(3)
N5	0.25866(18)	0.63514(11)	0.63810(10)	0.0252(3)
F1	0.22582(15)	0.91794(8)	0.52761(7)	0.0375(2)
F2	0.22848(13)	1.21800(8)	0.14399(7)	0.0309(2)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	$+U_{22}(bb^*)^2+U_{33}(cc^*)^2+$	2U ₁₂ aa*bb*cos γ+2U	13aa*cc*cos β+2U23bb	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1346

Table 3. Positional Parameters	for Hydrogens	in Compound 1346
---------------------------------------	---------------	------------------

Atom	Х	У	Z	U _{iso} , A ²
H1	0.2622	0.1151	0.5878	0.032
H2	0.2446	0.1679	0.7485	0.032
H8	0.2243	1.1389	0.3623	0.035
H10	0.2432	1.0102	0.1002	0.030
H14	0.3645	0.4748	0.7715	0.032
H15a	0.5544	0.6479	0.7567	0.056
H15b	0.4596	0.5933	0.8804	0.056
H15c	0.3700	0.7263	0.7870	0.056
H16a	0.0414	0.6238	0.8241	0.061
H16b	0.1328	0.4852	0.9083	0.061
H16c	0.0201	0.4957	0.7985	0.061
H17	0.2764	0.6322	0.1468	0.030
H18a	-0.0329	0.7534	0.1033	0.052
H18b	0.0881	0.7646	-0.0087	0.052
H18c	0.0731	0.8829	0.0338	0.052
H19a	0.4462	0.8761	0.0384	0.047
H19b	0.4704	0.7559	-0.0017	0.047
H19c	0.5671	0.7438	0.1132	0.047
H5	0.2372	0.7198	0.6187	0.034

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0254(7)	0.0185(7)	0.0285(8)	-0.0099(6)	-0.0016(6)	-0.0017(5)
C2	0.0269(8)	0.0206(7)	0.0231(7)	-0.0069(6)	-0.0010(6)	-0.0028(5)
C3	0.0146(6)	0.0213(7)	0.0204(7)	-0.0089(6)	-0.0008(5)	-0.0009(5)
C4	0.0157(6)	0.0225(7)	0.0212(7)	-0.0118(6)	0.0006(5)	-0.0022(5)
C5	0.0170(7)	0.0204(7)	0.0212(7)	-0.0106(6)	0.0005(5)	-0.0019(5)
C6	0.0178(7)	0.0201(7)	0.0216(7)	-0.0089(6)	0.0001(5)	-0.0013(5)
C7	0.0300(8)	0.0249(7)	0.0198(7)	-0.0113(6)	0.0017(6)	-0.0035(6)
C8	0.0319(8)	0.0210(7)	0.0302(8)	-0.0136(6)	0.0007(6)	-0.0035(6)
C9	0.0243(7)	0.0189(7)	0.0270(8)	-0.0063(6)	-0.0004(6)	-0.0028(5)
C10	0.0234(7)	0.0233(7)	0.0209(7)	-0.0078(6)	-0.0011(5)	-0.0022(5)
C11	0.0173(7)	0.0222(7)	0.0229(7)	-0.0109(6)	-0.0005(5)	-0.0022(5)
C12	0.0152(6)	0.0201(7)	0.0202(7)	-0.0092(5)	-0.0010(5)	-0.0008(5)
C13	0.0152(6)	0.0203(7)	0.0227(7)	-0.0110(6)	-0.0008(5)	-0.0010(5)
C14	0.0325(8)	0.0239(7)	0.0186(7)	-0.0104(6)	-0.0016(6)	-0.0020(6)
C15	0.0461(10)	0.0423(10)	0.0301(9)	-0.0199(7)	-0.0021(7)	-0.0120(7)
C16	0.0425(10)	0.0510(10)	0.0322(9)	-0.0190(8)	0.0093(7)	-0.0134(8)
C17	0.0301(8)	0.0222(7)	0.0187(7)	-0.0106(6)	-0.0016(6)	-0.0012(6)
C18	0.0415(9)	0.0345(9)	0.0309(8)	-0.0152(7)	-0.0132(7)	0.0022(7)
C19	0.0396(9)	0.0308(8)	0.0256(8)	-0.0127(6)	0.0069(6)	-0.0061(6)
N1	0.0240(6)	0.0207(6)	0.0254(6)	-0.0115(5)	-0.0004(5)	-0.0012(5)
N2	0.0231(6)	0.0224(6)	0.0222(6)	-0.0092(5)	-0.0006(5)	-0.0029(5)
N3	0.0234(6)	0.0197(6)	0.0177(6)	-0.0091(5)	-0.0005(4)	-0.0018(4)
N4	0.0211(6)	0.0200(6)	0.0207(6)	-0.0103(5)	-0.0012(4)	-0.0014(4)
N5	0.0395(7)	0.0187(6)	0.0194(6)	-0.0094(5)	-0.0012(5)	-0.0019(5)
F1	0.0703(7)	0.0236(5)	0.0226(5)	-0.0132(4)	0.0032(4)	-0.0058(4)
F2	0.0441(5)	0.0169(4)	0.0289(5)	-0.0052(<u>3</u>)	-0.0018(<u>4</u>)	-0.0034(3)
The form of the anisotropic displacement parameter is:						
exp[-2π(a ^{*2} U ₁₁ h ² +b ^{*2} U ₂₂ k ² +c ^{*2} U ₃₃ l ² +2b*c*U ₂₃ kl+2a*c*U ₁₃ hl+2a*b*U ₁₂ hk)]						

Table 4. Refined Thermal Parameters (U's) for Compound 1346

Table 5. Bond Distances in Compound 1346, Å

C1-N1	1.3131(18)	C1-C2	1.402(2)	C2-N2	1.3104(18)
C3-N2	1.3577(17)	C3-C13	1.4341(18)	C3-C4	1.4491(18)
C4-N5	1.3447(17)	C4-C5	1.4039(18)	C5-C12	1.4187(18)
C5-C6	1.4519(18)	C6-C7	1.3885(19)	C6-C11	1.4244(19)
C7-F1	1.3651(16)	C7-C8	1.374(2) ′	C8-C9	1.378(2) ´
C9-F2	1.3590(16)	C9-C10	1.373(2)	C10-C11	1.3903(19)
C11-N3	1.3796(17)	C12-N4	1.3172(17)	C12-N3	1.3838(17)
C13-N4	1.3514(17)	C13-N1	1.3635(17)	C14-N5	1.4664(17)
C14-C16	1.508(2)	C14-C15	1.517(2) ´	C17-N3	1.4722(17)
C17-C19	1.519(2)	C17-C18	1.5255(19)		

Table 6. Bond Angles in Compound 1346

N1-C1-C2	122.82(13)	N2-C2-C1	122.10(13)	N2-C3-C13	120.60(12)
N2-C3-C4	119.79(12)	C13-C3-C4	119.61(12)	N5-C4-C5	120.57(12)
N5-C4-C3	124.62(12)	C5-C4-C3	114.80(11)	C4-C5-C12	118.68(12)
C4-C5-C6	135.46(12)	C12-C5-C6	105.81(11)	C7-C6-C11	115.70(12)
C7-C6-C5	137.53(13)	C11-C6-C5	106.77(11)	F1-C7-C8	116.66(12)
F1-C7-C6	119.48(12)	C8-C7-C6	123.86(13)	C7-C8-C9	116.87(13)
F2-C9-C10	117.28(12)	F2-C9-C8	118.31(12)	C10-C9-C8	124.41(13)
C9-C10-C11	116.53(13)	N3-C11-C10	128.53(12)	N3-C11-C6	108.84(11)
C10-C11-C6	122.63(12)	N4-C12-N3	121.87(11)	N4-C12-C5	128.52(12)
N3-C12-C5	109.61(11)	N4-C13-N1	115.32(11)	N4-C13-C3	124.53(12)
N1-C13-C3	120.15(12)	N5-C14-C16	110.91(12)	N5-C14-C15	107.87(12)
C16-C14-C15	112.20(12)	N3-C17-C19	111.85(11)	N3-C17-C18	111.57(11)
C19-C17-C18	112.43(12)	C1-N1-C13	116.93(12)	C2-N2-C3	117.36(12)
C11-N3-C12	108.97(10)	C11-N3-C17	127.81(11)	C12-N3-C17	123.18(11)
C12-N4-C13	113.74(11)	C4-N5-C14	131.70(12)		· · ·

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} & \text{R1} = \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ & \text{wR2} = [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ & \text{GOF} = [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ & \text{where } n = \text{the number of reflections and } p = \text{the number of parameters refined.} \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.