Supplemental Material to:

Mahipal V Suraneni, John R Moore, Dingxiao Zhang, Mark Badeaux, Marc D Macaluso, John DiGiovanni, Donna Kusewitt, and Dean G Tang

Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer

Cell Cycle 2014; 13(11) http://dx.doi.org/10.4161/cc.28757

http://www.landesbioscience.com/journals/cc/article/28757

Supplementary Figure legend:

Figure S1. Prostatic hyperplasia in 15-LOX2 Tg mice does not progress to PIN.

- (A). Representative whole-mount (WM) HE images of 12-week ventral prostates (VP) of the genotypes indicated.
- (B). Quantification of hyperplasia using a point-intersect method. A positive point consisted of the intersection of two major grid lines overlying epithelium. Bars represent mean ± S.D (n = 12 for each genotype).
- (C). Representative HE images of 12-week VPs of p53^{-/-} and 15-LOX2;p53^{-/-} mice (n = 5 for each genotype).

Figure S2. IHC of 15-LOX2, Myc, and α -SMA in 6-month old Hi-Myc and Myc;LOX prostates.

Shown are representative WM HE images from one 6.4 month-old Hi-Myc (top; a-d) and one 6.7 month-old Myc;LOX dTg (bottom; g-h) prostates. The orientation of the prostate is shown in the lower left panel (U, urethra; DP, dorsal prostate; LP, lateral prostate; VP, ventral prostate). Note the prominent adenocarcinomas in the Hi-Myc LP (a) compared to much less prominent lesions in the Myc;LOX LP (e). Serial WM sections were used in IHC of 15-LOX2, Myc, and α -SMA. Note that 15-LOX2 was strongly expressed in the VP and LP of the dTg prostates (f). α -SMA was lacking in the Hi-Myc LP tumors (d) but still observed in some Myc;LOX LP glands (h).

Figure S3. IHC of 15-LOX2, Myc, and α -SMA in 6-month old Hi-Myc and Myc;LOX prostates.

Shown are representative IHC images of 15-LOX2, Myc, and α -SMA from one 6.4 month-old Hi-Myc and one 7 month-old Myc;LOX dTg prostates. α SMA. α -SMA was lacking in the Hi-Myc tumor but still observed in the Myc;LOX LP glands (below).

Figure S4. 15-LOX2, Myc, and RB1CC1 in normal prostatic tissues and HPCa samples.

1

Shown are high-magnification IHC images (400x) of 15-LOX2, Myc, and RB1CC1 in the benign/normal (N) and tumor (T) regions of two HPCa samples (i.e., HPC11 and HPCa16) presented in Fig. 5A-B. Note the reciprocal expression patterns between 15-LOX2 and Myc. In contrast to 15-LOX2, which is lost HPCaT, RB1CC1 protein is not lost but actually overexpressed in HPCaT.

Figure S5. Overexpression of RB1CC1 causes NHP cell growth arrest, senescence, and/or apoptosis.

Primary strains of NHP cells of the equal numbers as indicated at different passages (P) were transfected with either the empty vector (p3xFLAG-CVM10) or the RB1CC1-encoding expression vector. Images were taken 72 h after transfection. Note significantly reduced cell numbers and apoptotic and senescent morphologies in RB1CC1-overexpressing cultures. Original magnifications, x200.

Antibody	Host	Clonality	Company	Catalog #
α-SMA	mouse	monoclonal	Sigma	A2547
β-Actin	mouse	monoclonal	Sigma	A5316
с-Мус	rabbit	monoclonal	Epitomics	1472-1
Lamin	goat	polyclonal	Santa Cruz	sc-6214
Phosphorylated-Rb	goat	polyclonal	Santa Cruz	sc-12901
pRb	rabbit	polyclonal	Santa Cruz	sc-50
p27	mouse	monoclonal	BD	554069
p53	rabbit	polyclonal	Cell Signaling	9287
RB1CC1	rabbit	polyclonal	Novus Biological	NBP1-30010
RB1CC1	rabbit	polyclonal	Sigma	SAB4200135
15LOX-2	rabbit	polyclonal	Oxford Biomed	LX 25

Table S1 . Primary antibodies used in the current study

Table S2. Real-time PCR	primers used in ge	ene expression studies and	d PCR primers used	for genotyping
-------------------------	--------------------	----------------------------	--------------------	----------------

Gene	Forward Primer (5'3')	Reverse Primer (5′3′)	Mouse/Human
C-Fos C-Jun RB1 RB1CC1	CTCCAGTGCCAACTTCATTCCCAC AACGACCTTCTATGACGATGCCCT C CATGCTGTTCAGGAGACATTCAAACG TCACCAGTAATGCCACTCAGTTGCC	GCAGCCATCTTATTCC CCCGTTGCTGGACTC ACACGGTCGCTGTTA TTGGATTTGTGTCCG	CTTTCCCTTCG GGATTATCAG CATACCATCTG TCCCAGC	human human human mouse
	Prin Forward Primer (5'3')	ners used for genot	yping Reverse Primer (5'3')	
β-Casein	GATGTGCTCCAGGCTAAAGTT		AGAAACGGAATGTTGTGGAGT	
β -Globin	GTGTTGTTTAGAATGGGAAGATGT		TAAAGAGAAAGGCAGGATGATGA	
C-Myc	CAATGTCTGTGTACAACTGCCAACTGGGATGC		TTACGCACAAGAGTTCCGTAGCTGT	ГС
P-53 WT	GTGTTTCATTAGTTCCCCACCTTGAC		AGAGCAAGAATAAGTCAGAAGCCG	
P-53-NULL	TTTACGGAGCCCTGGCGCTCGAT	GT	GTGGGAGGGACAAAAGTTCGAGGC	С

Suraneni et al., Fig. S2

Suraneni et al., Fig. S4

