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ABSTRACT Previous models for which theories of elec-
trolytic conductance have been developed are reviewed. Dis-
crepancies between theoretically derived values of parameters
and parameters characteristic of real physical systems suggested
the following revised model. Ions are counted as diffusion pairs
if their center-to-center distance r is in the range a < r < R, in
which a is contact distance and R is the diameter of the Gurney
cosphere. A fraction a of these pairs diffuse to contact to form
nonconducting dipolar pairs; a/(1 - a) = e(-Es/k) in which
E, is the difference in energy between a iffusion pair at r =
R and a contact pair, k is the Boltzmann constant, and T is the
absolute temperature. This model permits separate treatment
of long-range and short-range interionic effects. The former
(relaxation field and electrophoresis) depend on R and the values
of the dielectric constant and viscosity of the pure solvent. The
latter (formation of dipolar pairs) is described by Es, or alter-
natively by K, = exp(-Es/kl) in which Ks is the constant de-
scribing the steady state between solvent-separated diffusion
pairs and dipolar (contact) pairs. For solutions of the alkali ha-
lides, a simple empirical correlation is found between R and
the Pauling radii of the cations, and also between Es and the
sum of the radii of cation and anion.

The equivalent conductance A of symmetrical electrolytes is
described by the symbolic equation

A(c) = p[Ao(l + AX/X) + AAe]

equilibrium distribution f0jj(r) and corresponding potential
OOJ are changed to

fii = f0ji + f'y, /j = ioj + OfJ [3]
in which the primed quantities (proportional to X and to the
cosine of 0, the angle between the field direction and the vector
r that locates dV2 with respect to dVI) are the perturbations
generated by the external field. The solution f'ji of Eq. 2, ad-
justed to the boundary conditions, is then substituted in the
Poisson equation

Aip6' = (-4ir/Dnj)Yjejj, [4]
which on integration gives Y'd. In the derivation, two approx-
imations were made: the Boltzmann factor was set equal to the
truncated series et 1 + t + 42/2, and terms in Eqs. 2 and 4,
proportional to eIm and ejI, m > 2, were dropped. The re-
laxation field and the electrophoretic term are given by

AX = (On'/Ox)a ,ae = f F(xr)dr [5]

Substituting the results in Eq. 1 and setting p = 1 ("complete
dissociation") gives the equation for the limiting tangent

[1]
in which p is the fraction of solute that contributes to transport
current, Ao is the limiting value A(0), AX/X (<0) is the ratio
of relaxation field to external field, and AAe (.0) is propor-
tional to the velocity of the electrophoretic countercurrent. The
explicit formulation of Eq. 1 depends, of course, both on the
model chosen to represent the system and on mathematical
approximations made in the derivation of AX/X and AAe. The
purpose of this communication is to present a model to replace
the primitive model (rigid charged spheres of diameter a in a
continuum) on which most earlier theories are based. The new
model eliminates a number of artifacts that are properties of
the primitive model but that cannot be correlated unambigu-
ously with the properties of real physical systems.
The classical Debye-Huckel-Onsager (1-3) treatment of AX

and AAe begins with integration of the equation of continuity
(4)

divC(fq; vii) + div2 (fji Vji) = 0 [2]
in which fji = ninji gives the probability of finding simulta-
neously an ion of species j in an element of volume dVI and an
i ion in dV2; v j is the velocity of the i ion in dV2 (and con-
gruently for fqj and vi1). Local concentrations nfj = nj
exp(-eiij/kT) = njet in which 4'j is the potential at the dis-
tance r from the j ion. In the presence of an external field, the

ALT = Ao(I - acl/2) - floc/2 [6]
in which ao and 13o depend only on the valence type of the ions,
on the dielectric constant D and viscosity X of the continuum,
and on absolute temperature T.

Eq. 6 assumes that all the ions participate in net transport of
charge; if a fraction (1 - y) is assumed to form nonconducting
pairs (5), Eq. 1 becomes the Fuoss-Kraus (6) conductance
equation

A = y[Ao -Sc/2 1/2] [7]
in which S = (aoAo + Qo). A mass action equilibrium between
free and paired ions was postulated, with associated constant

KA = (1 - Y)ICTf2 [8]

where activity coefficient f was set equal to the Debye-Huckel
limiting value, -In f = flx/2, in which iB = e2/DkT and x2 =
8irnf3. For the primitive model (7)

KA = (47rN/1000) 0" r2exp(/3/r)dr [9]

The 2-parameter equation 7, A = A(c; AO, KA) satisfactorily
reproduces observed data for systems whose conductance curves
lie below the limiting tangent (ay < 1), but it is useless for the
analysis of data for most electrolytes in solvents of high di-
electric constant, for which A(c) > ALT, because -y(Ao -
SC1/211/2) can never exceed (Ao- Sc'12), because y < 1.

Theoretical investigations (8-15), based on the primitive
model, of the effects of the higher terms [of order (eij)m], which
had been neglected in the integration of the equation of con-
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tinuity, subsequently led to conductance functionsif thgen-
eral form

A(c) = AO- SC"2 + EC In c + cFi(xa) [10]

which lie above the limiting tangent in the usual working range
of concentration. Here, E = ElAo - 2E2, in which El and E2
(like ao and fio) depend only on ionic charges, DT and n. The
functional form of F,(xa) (>O, FA(0) = constant) depends on
the boundary condition used in evaluating AO (xa), a coefficient
that appears in the integration of the equation of continuity.
The terms (AO - SC"/2 + EC In c) = A' of Eq. 10 are indepen-
dent of the distance parameter that defined the model, but note
that Fi(xa) contains a explicitly. By combining Eqs. 10, with
c replaced by cy, and 8, withf = exp[-fix/2(1 + xa)] (in effect,
including the higher terms in the Fuoss-Kraus equation), the
conductance function (15) results

A = y[Ao + Sc1/2 y1/2 + Ec-y In cy + cy Fl(,l/2xa)] [11]

This equation was found to be generally useful: for small values
of KA, it gives curves that lie above the limiting tangent, and
as KA increases, the curves drop and eventually approach the
sigmoid type that is characteristic of salts in solvents of lower
dielectric constant, thereby providing a smooth transition from
strong to weak electrolyte types. Eq. 11 involves three param-
eters, A = A(c; Ao, KA, a); because KA = KA(a,D) by 9 for the
primitive model, the equation can be reduced to one in two
parameters, A(c; AO, KA) or A(c; AO,a).
Two predictions based on Eq. 9 are, however, contradicted

by experiment. First, because KA = KA (a, D), a given elec-
trolyte (a fixed) should have the same association constant in
different solvents of the same dielectric constant. Many vio-
lations(16-18) of the isodielectric rule have been reported.
Second, Eq. 9 requires that KA decrease as D increases and that
association case abruptly (KA = 0) for a = f//2: for example, if
a given salt is measured in a series of mixed solvents with in-
creasing dielectric constants, then at a critical value D =
e2/2akT, KA should become zero. Experimentally, KA usually
decreases as D increases, although a number of cases have been
reported (19, 20) in which KA remains constant or even de-
creases as D decreases. But KA never decreases to zero; it may
become numerically quite small but can never become less than
47rNa3/3000, the pairing constant for uncharged spheres in a
continuum.

Furthermore, two physically unrealistic features of the model
appear when Eq. 11 is written in the form

A = yAfo [1 + F2(cy, D, a)] + F3(cy, D, q, a)l [12]

First, the parameter a appears in AX and AAe. But the latter
are long-range effects, averaged over all the ions in the atmo-
sphere of the reference ion. As such, they should depend only
on ionic charges and on the bulk properties of the solvent, and
be completely independent of any short-range parameters such
as ionic diameters. Second, according to Eq. 5, Eq. 12 requires
the use of continuum D and v at r = a. The field strength at the
surface of a real ion is well over 100 MV/cm, far beyond di-
electric saturation; such fields must also alter the viscosity of
a hydrodynamic continuum. More significant, of course, is the
fact that D and n are macroscopic properties averaged over
many [0(1023)] molecules, and for a real system, D(r = a) and
n(r = a) are as meaningless as the temperature of a single ion
or solvent molecule. Conclusion: although Eq. 11 fits the data
in the sense that three parameters can be derived from data for
a real system such that A calculated by Eq. 11 equals A (ob-

* rved) within experimental error, the equation describes the
conductimetric behavior of a primitive model numerically
equivalent to the observed system, rather than physically
equivalent. The parameters refer only to the model; in partic-
ular, a is the diameter of a model ion, and not necessarily the
sum of the Pauling radii of cation and anion.

In 1974, a model was proposed (21) that (i) permits calcula-
tion (22) of AX and AAe in terms of solvent D and X, (ii) does
not involve a (ionic diameter) in the formulas for AX and AAe,
(iii) does not imply the isodielectric rule, and (iv) does not
predict that (OKA/OD) must be negative. The model cleanly
separated the problems of long-range and short-range inter-
actions. Ions are divided into two categories, paired and un-
paired. Electroneutrality requires that the volume integral of
the space charge p around an ion of charge i e be precisely we.
Paired cations are defined as those for which

OR 0O
4r pr2dr = -e, 4r f pr2dr = 0

and unpaired those for which

4 R pr2dr = 0, 4Irf pr2dr = -e

[13]

[14]

in which R is the diameter of the Gurney cosphere. By defini-
tion, the properties of the solvent at distances r 2 R/2 are un-
affected by the central ion. In calculating AX and AAe, a is
replaced by R in Eq. 5; because no other ion is inside the co-
sphere of an unpaired ion, long-range forces acting on the
sphere act on the central ion. The conductance function 12 is
thereby replaced by

A = ,yAo[l + F4(cy, D, R)] + F5(c-y, D, nt, R)} [15]
in which AX and AAe are calculated using D(r 2 R) and (r
> R) and are independent of a (as they should be). Note also
that the model automatically justifies the approximation of et
by (1 + t + 42/2), and because x2 = 8irnyfi and t < 1 for r >
R. we may use the linearized Poisson-Boltzmann equation AO,
= ApO, in order to calculate activity coefficients. [The elec-
trostatic energy Uk of an unpaired ion ek is ekz2lel/Drkl,
summed over all the other ions. Consider two paired ions em
and en. Their contribution (4 em/Drkm F en/Drkn) to the sum
practically cancels because rkm and rkn are nearly equal and
both are much larger than rmn < R. Hence unpaired ions feel
paired ions as virtual dipoles, and their contribution to Uk may
be neglected.] The activity coefficient (another manifestation
of long-range forces) is then given by

-In f = fAx/2(1 + xR) [16]
in which D (r > R) appears (implicitly in fx) and a is ab-
sent.
The conductance function 15 is a 3-parameter equation: A

= A(c; AO, R, KA). Short-range ion-ion and ion-solvent inter-
actions are subsumed in KA. The formulation (21) of KA in
terms of molecular parameters, however, requires too many
of the latter to be practically useful [conductance data can
provide three and only three parameters (21)], but at least it
shows that (OKA/8D) is not necessarily negative and it does not
imply the isodielectric rule. A more practical formulation of
KA will be presented below. Two other changes will also be
made: (i) the 1975 boundary condition (equation 2.14 of ref.
22) on f'21 is replaced (23) by f'2l(R) = 0 in accordance with
Eq. 14, whereby the 1975 approximation AO --1 is replaced
by an explicit function Ao(xR); (ii) paired ions will be divided
into two subsets, virtual dipoles and dipolar pairs. Previous
conductance theories postulate that all paired ions are non-
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conducting (p = y in Eq. 1); it will be shown that this under-
estimates p.

Consider first a real electrolytic solution: ions and solvent
molecules are in active thermal motion within a volume V. A
given particle gets from site (x,y,z) to site (x',y',z') by a series
of interchanges of position with other particles; such inter-
changes can occur because V is greater than the close-packed
volume of solute and solvent by the free volume characteristic
of liquids. Examine an instantaneous configuration of the sys-
tem: some of the n cations will have only solvent molecules as
nearest neighbors, while others will find an anion in its first shell
of neighbors. Such a grouping, adjacent cation and anion, is
defined as a contact pair. Let nP be the number of contact pairs
found. Then consider an ensemble of such systems, and denote
by a(1 - y) the ensemble average (np/n). The paired con-
figurations will be stabilized by coulomb attraction and by the
caging effect of the surrounding molecules; the pair will remain
in contact for a dwell time that is long compared to the time
constant for thermal motion. The pair will, however, eventually
dissociate by an ion-solvent interchange and the ions will then
diffuse to separated sites. The mechanism for the model spec-
ified by Eqs. 13 and 14 is a steady state between unpaired anions
diffusing into and out of spheres of radius R centered on the
cations. Debye (24) calculated the rate constant k1 for the dif-
fusion of anions into a volume AV containing a cation and
Eigen (25) calculated the rate constant k2 for the reverse dif-
fusion; the ratio k1/k2f2 is the equilibrium constant for the
"reaction"

A++B- (A+;.. B-) [17]
in which the symbol on the right denotes configurations in
which an anion and a cation are simultaneously in AV, together
with solvent molecules. If we set AV = 4wxR3/3 and use Eigen's
boundary conditions for r = R (instead of for r = a), the result
is k1/k2f2 = KR in which

KR = (47rNR3/3000)exp(f3/R) [18]
Assume that AX and AAe have been calculated using cy as

the concentration of active ions, "active" in the sense that they
affect the behavior of other free ions at distances r > R. Then
we substitute the result in Eq. 1 in order to obtain an explicit
A(c). Former theory has set p = y, but for the diffusion model,
p $ y, as shown by the following. Consider an anion at a dis-
tance r = R from a cation: either it will diffuse further away,
or it will diffuse (interchange positions with solvent molecules
inside the cosphere) towards the cation and eventually form a
contact pair A+B-. Along its diffusion path, it is in thermal
motion and subject to the force exerted by the external field.
Consequently, each Brownian jump will have a component of
motion in the field direction; in other words, some of the dif-
fusion paired ions contribute to transport current and therefore
p > A. Consider next the behavior of a contact pair: when the
field is applied, the pair will tend to orient in the field; if the
field is turned off after a time long compared to the time
characteristic of Brownian motion but short compared to the
half-life of a contact pair, the pair will return to random ori-
entation by rotational diffusion, without changing center-
to-center distance. In other words, contact pairs behave like
dipoles and contribute only to charging current but not to net
transport of charge. Let a be the time average fraction of a <
r . R pairs that are in contact. Then by the Einstein 2-state
theorem

aM/( - a) = exp(-E./kT) [19]

in which Es is the difference in energy between ions in state r

= R and state r = a. The concentration of diffusion pairs is c(l
-y); the concentration of dipolar pairs is ac(l - y); conse-
quently p = 1 - a(l- y) and the final conductance equation
becomes

A= [1-a(l -y)][Ao(1 +AX/X) + AAe] [20]

Explicit expansion of Eq. 20 is given in the Appendix.
Analysis of conductance data by use of the parametric

equation [20], A = A(c; AO, R, a), requires relationships between
a, y and R; these are found as follows. Consider the sequence
of "reactions"

A+ + B- # (A+ . . . B-) >-_ A+B- [21]

in which (A+. . . B-) denotes configurations in which an anion
and a cation are simultaneously in the volume 4rR3/3, sepa-
rated by at least one solvent molecule (a + s < r < R; s ' di-
ameter of solvent molecule). The first step (formation of dif-
fusion pairs) is described by

KR = (1- y) (1 - a)/c2f2
and the second (formation of dipolar pairs) by

Ks = a/(1 - a)

[22]

[23]
The pairing constant KA (previous nomenclature, KA= asso-
ciation constant) is then given by

KA = (1 - y)/C2f2= KR/(1- a) = KR (1+ KS) [24]
[The subscript A indicates the conductimetric origin of KA, the
subscript R indicates that KR depends explicitly on the pairing
distance, and the subscript s indicates that K. = exp(-Es/kT)
describes the short-range effects.] Note that KA is the product
of two factors, KR and (1 + Ks). The first depends explicitly on
R, the pairing distance; here we have the explanation for the
previously noted close coupling between association constants
and pairing distance. Note also that the complicated short-range
effects of approach of anion and cation to form a dipolar pair
are summarized in one parameter (given one of the three
quantities Ks, Es, or a, the other two are determined). Finally
because both ES and R must depend on molecular parameters
specific to cation, anion, and solvent molecules, this model does
not imply an isodielectric rule and the erratic variation of KA
with dielectric constant ceases to be a problem.

Determination of the parameters R and Es from experi-
mental data by means of Eq. 20 requires data of high precision
(±0.02%) spanning at least a 10-to-1 range of concentration,
and the highest concentration should be just under 2 X 10-7 D3
(about 0.1 M in water at 250 ). Such data are available for 10 of
the alkali halides. Analysis of these data produced R values that
are nearly independent of the anion but decrease systematically
with increasing atomic number of the cation. A simple empir-
ical correlation with the Pauling radii is shown in Fig. 1 (coor-
dinates bottom and right), where 1hR is plotted against a+. The
average line is given by

R = 11.82/(a+ + 1.06) [25]

Eq. 25 was used to calculate average R values (given in A) for
the alkali halides: R(LiX) = 7.12, R(NaX) = 5.88, R(KX) = 4.95,
R(RbX) = 4.65, R(CsX) = 4.30. Using these values, it was pos-
sible also to analyze data for the other five halides (marked with
an asterisk in Table 1) which covered too low a concentration
range for treatment by the 3-parameter equation A(c; AO, R,
Es/kT), which reduces to a problem in only two unknowns
instead of three, if R is given. The values of KR are as follows:
KR(LiX) = 2.49, KR(NaX) = 1.73, KR(KX) = 1.30, KR(RbX)
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(a++ al, A of the anions [a (Clh) = 1.81, a-(Br-) = 1.95; a-(I-) = 2.16]
3.5 are nearly the same, hence the insensitivity of R to anionic radii.

But the parameter Es/kT, which measures the contact energy
of a dipolar pair, ought to depend on the size of both anion and
cation. The expected correlation is shown in Fig. 1 (coordinates
left and top), where Es/kT is plotted against (a + + a-); the
points for the three halides of each alkali form a closed
group.

10.25

-40.20

--0.15

I I I
0.5 1.0 1.5

a+,A

0.10 -

FIG. 1. Dependence of conductimetric parameters on ionic radii.
Code: circles, chlorides; squares, bromides; diamonds, iodides; open,
Li+; top black, Na+; bottom black, K+; left black, Rb+; right black,
Cs+. Lowest line, coordinates bottom and right; upper lines, coordi-
nates top and left.

= 1.18, KR(CSX) = 1.06. Tahle 1 summarizes the results; a, %
represents percent deviation between Qbserved and calculated
conductances.
The correlation between R and cationic radius is consistent

with the expected effects of these ions on water structure and
hence on local properties. The smallest cation (Li+ with a+
0.60 A) has the most intense surface field; the value R(LiX) =

7.12 A indicates that the cosphere of Li+ contains both nearest
and next-nearest shells of water molecules. The average number
of neighboring water molecules controlled by the central cation
then decreases as the size of the cation decreases. The radii (A)

Table 1. Parameters for the alkali halides

Salt Es/kT a KS KA A0 a, % Ref.

LiCl 0.481 0.382 0.618 4.02 115.00 0.004 26
LiBr* 0.601 0.354 0.548 3.85 116.91 0.013 27
LiI 0.724 0.327 0.485 3.69 116.09 0.011 26
NaCl 0.400 0.401 0.670 2.89 126.58 0.008 28
NaBr 0.509 0.375 0.601 2.77 128.52 0.013 29
NaI 0.720 0.327 0.487 2.57 127.21 0.018 27
KCl 0.469 0.385 0.625 2.11 149.90 0.006 28
KBr 0.578 0.359 0.561 2.03 151.76 0.019 30
KI 0.794 0.311 0.452 1.89 150.64 0.013 31
RbCl* 0.341 0.416 0.711 2.02 153.64 0.009 32
RbBr* 0.420 0.397 0.657 1.96 155.44 0.004 33
RbI* 0.503 0.377 0.605 1.90 154.00 0.006 34
CsCl* 0.009 0.498 0.991 2.11 153.05 0.012 35
CsBr 0.160 0.460 0.852 1.96 155.37 0.004 36
CsI 0.284 0.430 0.753 1.86 154.18 0.003 36

* Calculated using R values from Eq. 25. See text.

APPENDIX

Using boundary conditions f'21(cx) = 0, f'2A(R) = 0, the equation of
continuity [21 has been integrated by the 1975 method (22) of successive
approximations; the result was substituted in the right side of the
Poisson-Boltzmann equation [4], which was integrated subject to the
boundary conditions v'(oo) = 0, (r OV//r - 0.R= O The results were
used to calculate the relaxation terms RX and EL in the conductance
equation

A = [1 - a(l - -y)][Ao(l + RX) + EL]

Expressed as functions of t = KR, # = e2/DkT, q2 = 1/2,

RX = -,BK/6 (I + q) (1 + t) (1 + qt) + ,B2K2[(1n t)/12
+ FH2 + (/3K)FH3)] + DXV

EL = -#oc/2'yl/21 [1/(1 + t) + fK(O.125 ln t + 0.5 HI)]
DXV = (flocl/2yl/2/3K/8AO)(0.5H2 - In t)

H1 = 0. 19295 - 0.18508 t - 0.32106 t2 + 0.40243 t3, 0 < t S 0.4

= 0.20742 - 0.31145 t + 0.06461 t2, 0.4 < t < 0.8

H2=-2.6851 +18.438t -35.735t2+28.476t3,0<t <0.3

=-2.0722 + 12.452 t - 15.804t2+ 6.0045 t3, 0.3 < t < 0.6

= -1.0425 + 6.9012 t - 5.8121 t2, 0.6 < t < 0.8

FH2 = 0. 13842 - 0.25289 t + 0. 16281 t2
- 0.044868 t3, 0 < t < 0.4

- 0.13558 - 0.23739 t + 0.14034 t2 - 0.041583 t3, 0.4 < t < 0.8

FH3 = 0.0084869 - 0.029776 t + 0.045001 t2
- 0.026344 t3, 0 < t 0.4

- 0.0067047 - 0.017767 t + 0.018269 t2
- 0.0068686 t3, 0.4 <t < 0.8

The nine equations above are interpolating polynomials, calculated
to match within 0.01% (within the indicated ranges of t) the explicit
terms of RX and EL, which are long and complicated functions of t
and 3K.
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