Supplemental Material to:

Karine Lapouge, Remo Perozzo, Justyna Iwaszkiewicz, Claire Bertelli, Vincent Zoete, Olivier Michielin, Leonardo Scapozza, Dieter Haas

RNA pentaloop structures as effective targets of regulators belonging to the RsmA/CsrA protein family

2013; 10(6) http://dx.doi.org/10.4161/rna.24771

www.landesbioscience.com/journals/rnabiology/article/24771/

SUPPLEMENTARY DATA:

Supplementary Table S1. Theoretical binding free energies (ΔG) ±SD for complex formation between RsmE and four RNA oligomers^a

Gene	RNA loop sequence ^b	ΔG_1	ΔG_2
		(kcal/mol)	(kcal/mol)
hcnA	ACGGA U	-87.2 ± 13.6	-69.3 ± 14.5
hcnA∆U	ACGGA-	-70.4 ± 11.6	-60.7 ± 11.7
pltA	AGGGA-	-81.5 ± 13.8	-66.7 ± 10.2
<i>pltA</i> +U	AGGGA U	-91.2 ± 14.0	-85.2 ± 12.2

^a The ΔG values were obtained by the MM-GBSA method as described in Materials and Methods and are averaged over four molecular dynamic trajectories. The RNA oligomers having higher (ΔG_1) and lower (ΔG_2) affinities for RsmE were treated separately.

^b -: no nucleotide.

Supplementary Table S2. Oligonucleotides used in this study

Oligonucleotides	Sequence (5'→3')		
6628	CCCATTCATTTTTCGCGGATGAACCCAGCATG		
6628rev	CTGGGTTCATCCGCGAAAAATGAATGGGGTAC		
9512	CCCATTCATTTTTCACGGAGAACCCAGCATG		
9512rev	CTGGGTTCTCCGTGAAAAATGAATGGGGGTAC		
9524	CCCAGTGCGCCTAACAGGGAGTGGGGCATG		
9524rev	CCCCACTCCCTGTTAGGCGCACTGGGGTAC		
9525	CCCAGTGCGCCTAACAGGGATGTGGGGCATG		
9525rev	CCCCACATCCCTGTTAGGCGCACTGGGGTAC		
9536	CTTCTGAAAAGAATGGAATCAAGAGGAGCATG		
9536rev	CTCCTCTTGATTCCATTCTTTTCAGAAGGTAC		
9537	CTTCTGAAAAGAATGGATCAAGAGGAGCATG		
9537rev	CTCCTCTTGATCCATTCTTTTCAGAAGGTAC		
10001	CCCATTCATTTTTCAGGGAGAACCCAGCATG		
10001rev	CTGGGTTCTGGGTGAAAAATGAATGGGGTAC		
10002	CCCATTCATTTTTCAGGAAGAACCCAGCATG		
10002rev	CTGGGTTCTTCCTGAAAAATGAATGGGGTAC		
10101	CCCAGTGCGCCTAACAAGGAGTGGGGGCATG		
10101rev	CCCCACTCCTTGTTAGGCGCACTGGGGTAC		
10102	CCCATTCATTTTCGCGGACGAACCCAGCATG		
10102rev	CTGGGTTCGTCCGCGAAAAATGAATGGGGTAC		

Supplementary Figure S1. RsmE cross-linking experiments. 12% sodium d polyacrylamide gel electrophoresis of RsmE cross-linking experiment: glutaraldehyde performed as described in ref 52. Lane 1 : RsmE (monomer lanes 2 and 3 : different concentrations of RsmE treated with glutaraldehy ladder: molecular weight markers.

Supplementary Figure S2. Correlation between mean computed ΔG values (Table 3) and experimentally obtained ΔG values (Table 2). The theoretical values were averaged over all trajectories; values for distinct RNA chains were treated separately and divided into groups of lower and higher ΔG observed per system. The assumption was made that the lower values represent the ΔG of the first RNA chain bound to the protein, and the higher ΔG values represent the second chain. Panel A shows the correlation between the lower theoretical ΔG values and the experimental ΔG_1 values; panel B shows the correlation between the higher theoretical ΔG values and the experimental ΔG_2 values. Purple star – *hcnA*; blue cross – *hcnA* ΔU ; green cross – *pltA*; blue square – *pltA*+U.

