Supplemental Material to:

Efrat Kligun and Yael Mandel-Gutfreund

Conformational readout of RNA by small ligands

2013; 10(6) http://dx.doi.org/10.4161/rna.24682

www.landesbioscience.com/journals/rnabiology/article/24682/

Figure S1: The physicochemical properties of ligand-binding pockets on RNA of 77 structures of RNA ligand complexes. BD denotes base donors, BA base acceptors, S sugar and P phosphate atoms. Numbers represent the index of the complex listed in Supplemental Table S1. The color scheme refers to the standardized score calculated against a background of 70,912 computed pockets (calculated by the *Solvent program*). Scores were scaled to range from -1 to 1. Significant biases relative to the background average are colored red and blue for over- and under-representation, respectively

Figure S2: (A) The structural properties of ligand-binding pockets on RNA of X-ray structures of RNA ligand complexes (indices are given in Supplemental Table S1). The color scheme refers to the standardized score calculated against a background of computed pockets derived from the same technique (X-ray) as the structure of the RNA-ligand complex (calculated by the *Solvent program*). Scores were scaled to range from -1 to 1. Significant preferences of properties relative to the background of all RNA pockets are colored red (1) while blue denotes under-representation (-1). (B) The structural properties of ligand-binding pockets on RNA of NMR structures of RNA ligand complexes

Supplementary Tables

Index	PDB	Ligand	RNA group	NMR/
				A-ray^^
1	2KX8	Arginine	7SK snRNA	NMR
2	1FMN	Flavin mononucleotide	FMN aptamer	NMR
3	1Q8N	Malachite green	Malachite green aptamer	NMR
4	1F1T	Tetramethylrosamine	Malachite green aptamer	2.80Å
5	1ET4	Vitamin B12	Vitamin B12 aptamer	2.30Å
6	1015	Theophylline	Theophylline aptamer	NMR
7	1KOC	Arginine	Arginine aptamer	NMR
8	1NEM	Neomycin B	Neomycin aptamer	NMR
9	1NBK	Argininamide	TAT protein aptamer	NMR
10	2ТОВ	Tobramycin	Tobramycin aptamer	NMR
11	1AM0	Adenosine monophosphate	AMP aptamer	NMR
12	1EHT	Theophylline	Theophylline aptamer	NMR
13	1TOB	Tobramycin	Tobramycin aptamer	NMR
14	1RAW	Adenosine monophosphate	ATP aptamer	NMR
15	2AU4	Guanosine triphosphate	GTP aptamer	NMR

16	1F27	Biotin	Biotin aptamer	1.30Å
17	1KOD	Citrulline	Citrulline aptamer	NMR
18	1NTA	Streptomycin	Streptomycin aptamer	2.90Å
19	2FD0	Lividomycin	DIS-HIV1	1.80Å
20	2FCX	Neomycin A	DIS-HIV1	2.00Å
21	3C7R	Neomycin	DIS-HIV1	1.70Å
22	3C5D	Lividomycin	DIS-HIV1	1.80Å
23	3C44	Paromomycin	DIS-HIV1	2.00Å
24	2FCZ	Ribostamycin	DIS-HIV1	2.01Å
25	1XPF	Spermine	DIS-HIV1	2.30Å
26	2FCY	Neomycin	DIS-HIV1	2.20Å
27	1FUF	Spermine	Duplex	1.70Å
28	2JUK	Guandinoneomycin B	HIV1 helix	NMR
29	2KTZ	ISH	HCV IRES	
			Domain IIa	NMR
			RNA	
30	3GX3	S-Adenosyl-L- homocysteine	-Adenosyl-L- SAM-I omocysteine riboswitch	
31	3E5F	SE-adenosyl- serenomethionine	SAM-III riboswitch	2.70Å
32	3E5E	S-Adenosyl-L- homocysteine	SAM-III riboswitch	2.90Å
33	3GX5	S-Adenosylmethionine	SAM-I riboswitch	2.40Å
34	3GX2	Sinefungin	SAM-I riboswitch	2.90Å
35	3E5C	S-Adenosylmethionine	thionine SAM-III riboswitch	
36	3NPQ	S-Adenosyl-L- homocysteine	SAM riboswitch	2.18Å
68	2QWY	S-Adenosylmethionine	SAM-II riboswitch	2.80Å
37	30WW	Glycine	Glycine riboswitch	2.80Å
38	3LA5	5-Azacytosine	Purine riboswitch	1.70Å

39	1Y26	Adenine	Purine	2.10Å	
			Tiboswitch		
41	3GAO	Xanthine	Purine	1 90Å	
10			riboswitch	1.9011	
42	3G4M	9H-purin-2-amine	Purine	2.40Å	
12	2COT	2 Elucroadonino	riboswitch Durino		
43	5001	2-Fluoroadennie	riboswitch	1.95Å	
44	3DS7	2'-Deoxyguanosine	Purine	1.05 %	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	riboswitch	1.85A	
45	2G9C	Pyrimidine-2,4,6-	Purine	1 70Å	
		truamine	riboswitch	1.70A	
46	3GER	6-Chloroguanine	Purine	1.70Å	
47	250(riboswitch		
4/	3F06	6-O-methylguanine	riboswitch	1.90Å	
48	2B57	9H-purine-2.6-diamine	Purine	a 4 a 8	
		,	riboswitch	2.15A	
49	2EES	Hypoxanthine	Purine	1 75 Å	
			riboswitch	1./JA	
50	1Y27	Guanine	Purine	2.40 Å	
			riboswitch		
40	3F2Q	Flavin	FMN 2.05		
		mononucleotide	riboswitch	2.95A	
1	4010	x • 1 • .•	. .		
51	3DIR	Lysine derivatives	Lysine	2.90Å	
52	3D0U	Lysine	Lysine	0	
	•2••	25,0000	riboswitch	2.80Å	
53	3DIG	Lysine derivatives	Lysine	2 80Å	
			riboswitch	2.0011	
54	3DIQ	Lysine derivatives	LLysine riboswite	2.70A	
55	3D10	Lysine derivatives	riboswitch	2.50Å	
56	3DIL	Lysine	Lysine	1.008	
		5	riboswitch	1.90Å	
57	3K1V	7-Deaza-7-	PreQ1	2.20Å	
		aminomethyl-guanine	riboswitch		
58	3GCA	PreQ0	PreQ1	2,75Å	
			riboswitch		
59	2L1V	7-Deaza-7-	PreQ1		
		aminomethyl-guanine	riboswitch	INIVIK	
(0)					
60	2HOM	Thiamine phosphate	TPP riboswitch	2 89Å	

		pylophosphate		
62	2CKY	Thiamine diphosphate	TPP riboswitch	2.90Å
63	3D2G	Thiamine diphosphate	TPP riboswitch	2.25Å
64	3D2V	Pylithiamine pylophosphate	TPP riboswitch	2.00Å
65	2GDI	Thiamine diphosphate	TPP riboswitch	2.05Å
66	1NYI	Guanosine-5'-	Hammerhead	2.85Å
		Monophosphate	Ribozyme	
67	2HO7	Glucose-6-phosphate	Glms ribozyme	2.90Å
69	1UUD	Designer ligands	TAR-HIV1	NMR
70	1LVJ	Acetylpromazine	TAR-HIV1	NMR
71	1ARJ	Arginine	TAR-HIV1	NMR
72	1QD3	Neomycin B	TAR-HIV1	NMR
73	1UTS	Designer ligands	TAR-HIV1	NMR
74	1AKX	Arginine	TAR-HIV2	NMR
75	1UUI	Designer ligands	TAR-HIV2	NMR
76	2KGP	Mitoxantrone	Splicing regulatory element	NMR
77	1EI2	Neomycin	Splicing	
			regulatory element	NMR

* Representative pockets are highlighted in gray

**For structures solved by x-ray crystallography the resolution of the structures is given

Table S2: Comparison between the predicted and known pockets using the program

 'Solvent'

PDB	Number of	Number of Common	PPV	Sensitivity
	pockets	nucleotides		
2KGP	9	2/9	0.17	0.22
3DIR	546	9/12	0.75	0.75
3GX3	249	11/17	0.92	0.65
1FMN	32	10/10	0.83	1
2KX8	63	11/11	0.92	1
3D0U	489	8/11	0.67	0.73
1Q8N	61	12/15	1	0.8
1UUD	23	12/15	1	0.8
2FD0	54	12/15	1	0.8
1LVJ	6	10/11	0.83	0.91
2JUK	13	12/16	1	0.75
1F1T	39	9/9	0.75	1
3E5F	97	11/11	0.92	1
3E5E	94	12/13	1	0.92
1ET4	432	10/10	0.83	1
3K1V	28	10/10	0.83	0.83
1ARJ	31	12/15	1	0.8
1015	51	10/10	0.83	1
3LA5	165	9/10	0.75	0.9
1NYI	44	1/5	NA	NA
3F2Q	212	11/21	0.92	0.52
1KOC	14	11/12	0.92	0.92
1NEM	29	12/17	1	0.71
2FCX	68	12/14	1	0.86

3GAO	134	8/11	0.67	0.73
3G4M	143	9/10	0.75	0.9
2HO7	381	11/18	0.92	0.61
1NBK	40	12/20	1	0.6
3GOT	130	7/10	0.58	0.7
3DIG	542	7/11	0.58	0.64
3C7R	50	12/15	1	0.8
1QD3	34	10/13	0.83	0.77
3C5D	51	12/26	1	0.46
2QWY	255	12/18	1	0.67
1FUF	24	12/20	1	0.6
3C44	76	12/16	1	0.75
2HOM	155	11/20	0.92	0.55
3DS7	378	11/13	0.92	0.85
3GCA	39	10/12	0.83	0.83
2TOB	12	12/17	1	0.71
2FCZ	158	12/14	1	0.86
1UTS	8	5/8	0.42	0.63
2G9C	138	7/10	0.58	0.7
1AM0	5	12/12	1	1
1Y26	162	7/10	0.58	0.7
1EHT	29	10/10	0.83	1
3GX5	266	12/17	1	0.71
1AKX	19	12/14	1	0.86
1TOB	29	12/17	1	0.71
3GER	129	9/12	0.75	0.75
1UUI	13	12/14	1	0.86

30WW	437	8/12	0.67	0.67
3FO6	142	8/10	0.67	0.8
3D2X	499	12/23	1	0.52
2CKY	346	12/24	1	0.5
1RAW	55	12/13	1	0.92
1XPF	56	12/16	1	0.75
2B57	131	7/10	0.58	0.7
2AU4	53	12/16	1	0.75
1F27	35	10/10	0.83	1
3D2G	496	12/22	1	0.55
3GX2	270	12/17	1	0.71
1KOD	23	12/13	1	0.92
2FCY	60	12/15	1	0.8
2L1V	48	1216	1	0.75
3DIQ	521	9/12	0.75	0.75
2EES	138	7/10	0.58	0.7
1Y27	149	8/11	0.67	0.73
3E5C	90	11/11	0.92	1
3D2V	507	12/23	1	0.52
3DJ0	530	7/10	0.58	0.7
1EI2	25	12/18	1	0.67
2KTZ	55	12/14	1	0.86
2GDI	372	12/20	1	0.6
3DIL	537	7/10	0.58	0.7
3NPQ	261	9/10	0.75	0.9
1NTA	39	12/15	1	0.8

Sensitivity and PPV were calculated for known binding sites that consist more than 5 nucleotides. Number of pockets represents the number of putative pockets that were predicted per each structure. The number of overlapping nucleotides were calculated for the pocket with the maximum number of overlapping nucleotides. Size of the predicted pocket was predefined as 12 nucleotides.

PDB	Number of pockets	Size of putative pocket	Size of the known binding site	Number of overlapping nucleotides	PPV	Sensitivity
2KGP	1	5	9	5	NA	NA
3DIR	11	7	12	4	0.57	0.33
3GX3	9	10	17	8	0.8	0.47
1FMN	1	6	10	6	1	0.6
2KX8	3	9	11	9	1	0.82
3D0U	17	12	11	9	0.75	0.82
1Q8N	3	14	15	13	0.93	0.87
1UUD	3	5	15	5	NA	NA
2FD0	6	12	15	9	0.75	0.6
1LVJ	2	6	11	6	1	0.55
2JUK	0	0	16	0	NA	NA
1F1T	3	4	9	4	NA	NA
3E5F	3	7	11	6	0.86	0.55
3E5E	5	4	13	4	NA	NA
1ET4	16	5	10	3	NA	NA
3K1V	2	6	12	6	1	0.5
1ARJ	2	13	15	11	0.85	0.73
1015	2	11	10	9	0.82	0.9

Table S3: Comparison between the predicted and the known pockets using the program 'Fpocket'

3LA5	7	8	10	7	0.88	0.7
1NYI	1	0	5	0	NA	NA
3F2Q	5	35	21	15	0.43	0.71
1KOC	3	9	12	8	0.89	0.67
1NEM	1	13	17	13	1	0.76
2FCX	4	4	14	4	NA	NA
3GAO	8	10	11	10	1	0.91
3G4M	6	14	10	4	0.29	0.4
2HO7	10	32	18	10	0.31	0.56
1NBK	3	8	20	5	0.63	0.25
3GOT	6	6	10	6	1	0.6
3DIG	17	7	11	6	0.86	0.55
3C7R	5	11	15	10	0.91	0.67
1QD3	5	12	13	7	0.58	0.54
3C5D	4	6	26	6	1	0.23
2QWY	17	16	18	16	1	0.89
1FUF	3	14	20	14	1	0.7
3C44	3	16	16	8	0.5	0.5
2HOM	8	25	20	14	0.56	0.7
3DS7	13	13	13	6	0.46	0.46
3GCA	1	16	12	9	0.56	0.75
2TOB	1	12	17	11	0.92	0.65
2FCZ	11	15	14	6	0.4	0.43
1UTS	5	7	8	7	1	0.88
2G9C	4	12	10	9	0.75	0.9
1AM0	2	8	12	6	0.75	0.5
1Y26	7	20	10	4	0.2	0.4
1EHT	2	5	10	5	NA	NA

3GX5	9	8	17	6	0.75	0.35
1AKX	3	7	14	7	1	0.5
1TOB	2	5	17	5	NA	NA
3GER	6	8	12	4	0.5	0.33
1UUI	3	8	14	5	0.63	0.36
30WW	21	5	12	3	NA	NA
3FO6	7	5	10	5	NA	NA
3D2X	15	27	23	15	0.56	0.65
2CKY	14	23	24	18	0.78	0.75
1RAW	4	8	13	5	0.63	0.38
1XPF	4	7	16	7	1	0.44
2B57	8	5	10	5	NA	NA
2AU4	2	14	16	12	0.86	0.75
1F27	3	10	10	5	0.5	0.5
3D2G	16	30	22	18	0.6	0.82
3GX2	8	14	17	6	0.43	0.35
1KOD	6	5	13	4	NA	NA
2FCY	7	8	15	7	0.88	0.47
2L1V	3	8	16	8	1	0.5
3DIQ	16	29	12	4	0.14	0.33
2EES	9	7	10	7	1	0.7
1Y27	6	10	11	5	0.5	0.45
3E5C	2	10	11	10	1	0.91
3D2V	10	15	23	11	0.73	0.48
3DJ0	16	7	10	4	0.57	0.4
1EI2	2	13	18	13	1	0.72
2KTZ	2	8	14	8	1	0.57
2GDI	17	11	20	11	1	0.55

3DIL	15	12	10	9	0.75	0.9
3NPQ	7	10	10	9	0.9	0.9
1NTA	4	10	15	10	1	0.67

Sensitivity and PPV were calculated between the known binding sites and the computed pockets that consist more than 5 nucleotides. Number of pockets represents the number of putative pockets that were calculated for each structure. The number of overlapping nucleotides were calculated for the pocket with the highest overlap.

Table S4: Detailed information on the distribution of nucleotides possessing the unique conformations in the representative ligand binding pockets

	Total					
	number in				syn+	syn+
Name	pocket	syn	C2_endo	c4_exo	c2_endo	c4_exo
2KX8	11	0	0	0	0	0
1FMN	10	0	0	2	0	0
1Q8N	15	3	1	1	0	1
1F1T	9	2	0	0	0	0
1ET4	10	1	3	0	1	0
1015	10	0	3	1	0	0
1KOC	12	3	3	4	2	1
1NEM	17	0	1	1	0	0
1NBK	20	1	0	4	0	0
2TOB	17	1	1	3	1	0
1AM0	12	1	1	1	0	0
1EHT	10	0	5	0	0	0
1TOB	17	1	4	0	0	0
1RAW	13	3	1	0	1	0
2AU4	16	2	1	1	0	0
1F27	10	1	1	0	0	0
1KOD	13	3	1	4	1	2
1NTA	15	2	3	1	0	1
2FD0	15	0	2	0	0	0
2FCX	14	0	2	0	0	0
3C7R	15	0	0	0	0	0
3C5D	26	0	2	0	0	0
3C44	16	0	0	0	0	0
2FCZ	14	0	2	0	0	0
1XPF	16	1	2	0	1	0
2FCY	15	0	2	0	0	0
1FUF	20	0	2	0	0	0
2JUK	16	0	1	1	0	0

2KTZ	14	0	1	1	0	0
3GX3	17	0	0	1	0	0
3E5F	11	0	1	0	0	0
3E5E	13	0	2	0	0	0
3GX5	17	0	1	0	0	0
3GX2	17	0	0	1	0	0
3E5C	11	0	3	0	0	0
3NPQ	10	1	4	0	1	0
30WW	12	1	2	0	0	0
3LA5	10	0	2	0	0	0
1Y26	10	0	2	1	0	0
3F2Q	21	1	3	1	1	0
3GAO	11	0	3	0	0	0
3G4M	10	0	2	1	0	0
3GOT	10	0	3	0	0	0
3DS7	13	0	1	0	0	0
2G9C	10	0	3	0	0	0
3GER	12	1	1	0	0	0
3FO6	10	0	0	0	0	0
2B57	10	0	2	0	0	0
2EES	10	0	3	0	0	0
1Y27	11	1	2	1	0	0
3DIR	12	3	4	0	2	0
3D0U	11	3	3	0	1	0
3DIG	11	3	3	1	1	0
3DIQ	12	3	4	1	1	0
3DJ0	10	3	3	0	1	0
3DIL	10	3	4	0	2	0
3K1V	12	1	1	0	1	0
3GCA	12	0	0	0	0	0
2L1V	16	1	0	1	0	0
2HOM	20	1	1	1	0	0
3D2X	23	2	4	0	1	0

2067	24	2	1	1	0	0
20101		-	-	-	•	· ·
3D2G	22	1	1	0	0	0
3D2V	23	2	2	1	0	0
2GDI	20	1	2	0	0	0
1NYI	5	0	0	0	0	0
2HO7	18	2	1	0	0	0
2QWY	18	0	1	1	0	0
1UUD	15	0	1	2	0	0
1LVJ	11	1	2	0	0	0
1ARJ	15	1	0	2	0	0
1QD3	13	1	4	0	0	0
1UTS	8	1	0	3	0	0
1AKX	14	0	3	0	0	0
1001	14	0	0	2	0	0
2KGP	9	0	0	4	0	0
1EI2	18	0	1	2	0	0

Table S5: RNA ligands interactions

		C2endo+ C4exo	syn	C2endo+C 4exo+syn	non-paired	non- canonical
drogen Bonds (306)*	Total Pockets	186	66	25	333	150
	Overlap	55	28	13	107	50
	P value	0.361	0.0076	0.0096	0.035	0.083
Hy	Percent of bonds	17.97	9.15	4.25	34.97	16.34
S	Total Pockets	186	66	25	333	150
Waal 5)*	Overlap	94	43	18	136	80
'an der (460	P value	0.014	0.0002	0.0029	0.850	0.004
>	Percent of bonds	20.17	9.23	3.86	29.18	17.17
	Total Pockets	186	66	25	333	150
hobic 1)*	Overlap	63	30	15	60	43
Hydrop (26	P value	0.0006	7.13e-05	0.0001	0.999	0.097
	Percent of bonds	24.14	11.49	5.75	22.99	16.48
	Total Pockets	186	66	25	333	150
natic 8)*	Overlap	24	9	1	23	15
Aron (11)	P value	0.1996	0.285	0.946	0.999	0.692
	Percent of bonds	20.34	7.63	0.85	19.49	12.71

* Total number of bonds of this category