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ABSTRACr A lattice model of protein is studied by a Monte
Carlo simulation method. The native conformation of the lattice
protein molecule is stabilized by specific long-range and
short-range interactions. By comparing results of simulation for
different relative weights of the long- and short-range interac-
tions, it is concluded that the specific long-range interactions
are essential for highly cooperative stabilization of the native
conformation and that the short-range interactions accelerate
the folding and unfolding transitions.

The importance of both the short-range and long-range inter-
actions in protein folding has long been recognized. The im-
portance of the short-range interactions was inferred first by
the fair success of predicting secondary structures in the native
structure of proteins from their amino acid sequences (1). The
importance of the long-range interactions can be deduced from
various facts, among which we will cite the following two. (i)
Large protein fragments do not conserve the same conforma-
tions they possess in the native structure of an intact (uncleaved)
protein when isolated from their complementing fragments (2),
or the probability of assuming such a conformation is very low
(3). This means that, for maintaining the native structure of a
protein, an indispensable role is played by interfragment in-
teractions, most of which are long range. (ii) Denaturational
transitions in globular proteins take place in a more-or-less
all-or-none manner. Even when the existence of intermediate
states is discussed, the transition is certainly not of such a diffuse
type as observed in the helix-coil transition of homopolypep-
tides. If the long-range interactions could be neglected and only
the short-range interactions were assumed to be operative, then
a protein could be regarded essentially as a one-dimensional
system. Transitions in any one-dimensional systems are inevi-
tably of a diffuse type (4). Therefore, the more-or-less all-or-
none character of denaturational transitions in globular proteins
means that the long-range interactions play an essential role in
the transitions (5).

Because both the short-range and long-range interactions
have been shown to be important, it is necessary to understand
the respective roles of these two types of interactions in protein
folding. A powerful method is to study this problem in terms
of a simplified theoretical model introduced by focusing only
on this point. For this purpose we incorporate short-range as
well as long-range interactions into the lattice model of protein
that we previously studied (6). We will describe in the present
paper results obtained in the two-dimensional square lattice.
A "two-dimensional protein" is admittedly a very idealized
model. However, the results obtained in this paper regarding
the respective roles of the short-range and long-range interac-
tions are expected to hold in real three-dimensional proteins.

LATTICE PROTEIN
We first consider the two-dimensional square lattice in a
computer. A "protein molecule" is a self-avoiding chain poly-
mer consisting of N units connected linearly by bonds whose
length is the same as the lattice constant of the square lattice.
Units are located on lattice points in the square lattice. The
protein molecule assumes a variety of conformations depending
on a bond angle at each unit. Two types of forces are assumed
to be operative in this molecule, the long-range and short-range
interactions.
The long-range interactions are assumed to work in such a

way that the energy of the system decreases by e when one of
preassigned pairs of units occupies the nearest-neighbor lattice
points. The assignment of pairs of interactable units defines the
specificity of the long-range interactions. We consider a
"polymer chain" consisting of 49 units linked linearly. In the
previous paper (6) we assumed three different specificities,
strong limit specificity A, intermediate specificity B, and weak
limit specificity (i.e., no specificity) C. In specificity A, only 36
pairs of units, occurring in the nearest-neighbor lattice points
in the conformation in Fig. 1, are assigned. These 36 pairs are
indicated by black squares in Fig. 2. (For example, unit 1 has
three units, 4, 6, and 8, as its nearest neighbor in Fig. 1.
Therefore, pairs 1-4, 1-6, and 1-8 are assigned to be interactable
in specificity A and are so indicated in Fig. 2 by black squares.)
Therefore, the conformation in Fig. 1 has the long-range in-
teraction energy of -36E. However, any other conformations,
grossly different from the one in Fig. 1, have the long-range
interaction energy much closer to zero, even when such con-
formations are compactly packed. This is because a pair as-
signed in specificity A occupies nearest-neighbor lattice points
in such conformations only with very low probabilities. The
conformation shown in Fig. 1 has an extraordinarily low in-
teraction energy. Therefore, for specificity A the "polymer
chain" is expected to have the conformation in Fig. 1 as its
native structure at low temperatures. In specificity C, all 552
pairs of units that can geometrically occupy the nearest-
neighbor lattice points are assigned. In this case all conforma-
tions compactly folded into a 7 X 7 square have the same lowest
energy, -36e. Therefore, no particular conformation will be
chosen as a native structure. In specificity B, randomly selected
148 pairs, as well as 36 pairs that are assigned in specificity A,
are assigned. These 148 pairs are indicated by shaded squares
in Fig. 2. As a result 184 pairs are assigned. (For example, unit
1 is assumed to be interactable with units 4, 6, 8, 14, 22, and 28.)
This is exactly one-third of the 552 pairs assigned in specificity
C. Therefore, most of the conformations compactly folded into
a 7 X 7 square are expected to have the interaction energy of
about -12E (i.e., 1/3 of -36f). However, the conformation in Fig.
1 still has an extraordinarily low interaction energy of -36e
because all pairs assigned in specificity A are retained in
specificity B. Therefore, the conformation in Fig. 1 is also
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FIG. 1. Native conformation of a "protein" in the two-dimen-
sional square lattice.

expected to be the native structure at low temperatures for
specificity B.

In the previous paper conformational changes of this lattice
protein were studied by the Monte Carlo method of Metropolis
et al. (7). Only the long-range interactions with the above three
different specificities were assumed to be operative. For
specificity A, reversible all-or-none type transition between the
native and denatured state was observed. For specificity C,
compact (or globular) but not specific conformations are stable
at low temperatures. The globule-coil transition is reversible
but of the diffuse type, as in the helix-coil transition. Therefore,
the specificity of the long-range interactions is essential for the
all-or-none character of the transition. For specificity B, re-
garded to be the most realistic of the three, the conformation
of Fig. 1 is stable at low temperatures and a transition into the

denatured conformation occurs quickly, suggesting an all-
or-none type transition. However, the transition was not re-
versible within the time range of the computer experiment.
Therefore, in the present paper we take specificity B as the
long-range interactions, and we will study effects of inclusion
of the short-range interactions as described below.

As the short-range interactions, we consider such an energy
term that is a function of a "bond angle" at each unit. A bond
angle at the ith unit is defined as the angle between two bond
vectors, one pointing from (i - I)th unit to the ith unit, and the
other from the ith unit to the (i + 1)th unit. The bond angle at
each unit can assume three different values, 900, 1800, and
2700. As the short-range interactions, we assume a certain value
of the "bond energy" for each of these three values of each bond
angle. In this paper we assume that, when a bond angle at ith
unit takes the same value as in the conformation in Fig. 1, the
bond energy of the ith unit is lower by E' than two other possible
cases of the value of the angle (i = 2,3,---,48). This is a good
model of the short-range interactions in real proteins in the sense
that they determine conformational propensity of individual
units or residues. However, the assumption of the short-range
interactions, whose energy is the lowest at the native confor-
mations, is an idealization. The short-range interactions in real
proteins, though known to be important, are not perfectly
consistent with native conformations because otherwise it would
be possible to predict native conformations from a knowledge
of short-range interactions only.
The Monte Carlo method of Metropolis et al. (7) is again used

in this paper. Computer experiments have been performed by
taking four different ratios of the values of e and ', i.e., (,E')
= (0.75to,0.25co), (0.5EO,0.5fo), (0.25eO,0.75eo), and (0,EO). Here,
Eo is the unit of interaction energy, which will be used to define
the dimensionless temperature T* = kT/co, where k is the
Boltzmann constant. The case of (c,E') = (EoO) is the same as the
case of specificity B studied in the previous paper (6). By
comparing the results obtained for these cases, we can infer
relative roles of the short-range and long-range interactions in
protein folding and unfolding.

}1 RESULTS
In each case of the ratio of e and E', computer experiments of
conformational changes were carried out at a series of values

10_
\of temperature T* mainly in order to determine the transition

0-
E

i temperature Tm. At each temperature two different initial
conformations were chosen, the native conformation of Fig. 1

Ad d g \ and a conformation in which 49 units are on a straight line. The
latter was chosen as an example of a denatured conformation.

20 -J] Once the transition temperature Tm is determined, very long
cJ - L1 fin \computer experiments were carried out at T* = Tm. Detailed
3 Ej analysis of the results will be published elsewhere. In this paper

only a few records of experiments are shown which are relevant
30 _ = 'J y ,\7for the discussion of respective roles of the long- and short-rangeE. ~~~~~~~~~~~~~~interactions.
|'2t 0 f X a \Figs.3-6 show records of computer experiments for the four

cases of (CC'). The trial number on the abscissa can be regarded
approximately proportional to physical time (6). The ordinate

40 indicates the degree of the order of the system, represented by
the interaction energy counted in the unit of(-Co).The broken

± ELa' lines indicate the expected count m of the short-range inter-
En L3 ' action energies at the high temperature limit. At any finite

-9 Li temperatures average values of the count of the short-range
1 10) 20 30 40 49 interaction energies are higher than these values. We may re-

FIG. 2. Specification of interactable pairs in specificity A (black gard only the ranges of the energy count m between the broken
squares) and in specificity B (black and shaded squares). Both ab- lines and the upper limit values as physically meaningful.
scissa and ordinate indicate residue number. At low temperature T* = 0.3, folding into the native con-
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FIG. 3. Records of conformational changes in the case of ((,E') = (0.75e0,0.25E0). The ordinate is the conformational energy counted in the unit
of (-Eo). The broken line at m = 0.25 X 47 X (1/3) indicates the average short-range interaction energies at the high temperature limit, where
each of 47 bond angles assumes three possible values equally probable, one of which has an energy of e' = -0.25eo. Only the range between the
broken line and the upper limit may be regardectas physically meaningful. (a) T* = 0.3, starting from a denatured conformation. (b and c) T*
= 0.675, starting from the native and a denatured conformation, respectively.

formation is not observed within 1.5 X 105 trials in Fig. 3a. The
lattice polymer is trapped in a local minimum with aboutm =

25 and cannot get out of it. In Fig. 4a, folding into the native
conformation is observed at about the 0.6 X 105th trial. In Fig.
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Sa folding into the native conformation occurs quickly within
0.2 X 105 trials. It becomes very quick in Fig. 6a,

At temperatures close to the transition temperatures Tm, both
folding and unfolding transitions are observed in Fig. 3b and

Trial number X 1O-s
FIG. 4. Same as in Fig. 3, but for (es') = (O.5&.,0.5Eo). (a) T* = 0.3 and (b) T* = 0.6, both starting from a denatured conformation.
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Trial number X 10-5
FIG. 5. Same as in Fig. 3, but for (E,') = (0.25E0, 0.75E0). (a) T* = 0.3 and (b) T* = 0.525, both starting from a denatured conformation.

c. However, the transitions are very rare, which indicates the
strong all-or-none character of the transition. The transitions
occur more frequently in Fig. 4b. In Fig. 5b, the transitions
become so frequent that populations at intermediate states are
as significant as those of the completely folded and unfolded
conformations. In Fig. 6 b and c, where there are no long-range
interactions except for the self-avoidance of the chain, the lattice
protein is fluctuating around the average value of about m
= 34, i.e., there is only one peak of population centering at m
= 34. This indicates that the folding and unfolding transitions
are of the diffuse type, as in the helix-coil transitions.
The most striking fact shown in Figs. 3-6 is that folding into

the native conformation is possible while the folding could not
be observed when only the long-range interactions with spec-
ificity B were assumed. The effect of the short-range interac-
tions, to accelerate the folding process, is obvious. By comparing
Figs. 3-6 it is clearly seen that the folding is more accelerated
as the contribution from the short-range interactions is more
weighted.
The short-range interactions have another effect, that of

making the transition diffuse. This effect is clearly seen by
comparing Fig. 3 b and c, Fig. 4 b, Fig. 5 b, and Fig. 6 b and

c. In the extreme case of the short-range interactions only, the
transition is no longer of the type of the denaturational transi-
tions in globular proteins. It is concluded that the specific
long-range interactions are essential for causing the transition
to be of the all-or-none type or, in other words, for rendering
the native conformation highly cooperatively stabilized.

DISCUSSION
The observed acceleration of the folding and unfolding tran-
sitions by the short-range interactions may be explained by two
different mechanisms. As the all-or-none character of the
transition becomes less pronounced as the short-range inter-
actions are more weighted, the free energy of activation for the
folding and unfolding transitions becomes lower, i.e., the
probability of the least probable state between folded and un-
folded states becomes high. This renders the transition kineti-
cally faster.

Another possible mechanism is the following. The short-range
interactions promote short-range conformational order, i.e.,
short segments of the chain have higher probabilities of as-
suming the same local conformations as in the native confor-
mation. These local "correct" conformations, though unstable
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FIG. 6. Same as in Fig. 3, but for (eE') = (O,eo). (a) T* = 0.3, starting from a denatured conformation. (b and c) T* = 0.7, starting from a
native and the denatured conformation, respectively.

Proc. Nati. Acad. Sci. USA 75 (1978)

| .5



Chemistry: G5 and Taketomi

by themselves, may serve as structural units for making larger
structures. Folding of these local structural units into the native
conformation should be much faster than the case in which
there are no significant local structures and all units in the chain
tend to behave individually. Both of these two mechanisms may
be necessary to explain the observed acceleration.

These two mechanisms of the acceleration of the folding and
unfolding transitions do not depend much on details of long-
and short-range interactions, but depend essentially only on the
ranges of interactions, i.e., some are long and the others are
short. Therefore, these two mechanisms are expected to exist
also in real globular proteins. The design and analysis of an
experiment to measure these two mechanisms more quantita-
tively and to see how these two are combined is a problem raised
here for future studies.
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