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1 Basic vocabulary data

We recorded word forms and cognacy judgments across 207 meanings in 103

contemporary and ancient languages. Cognates are homologous words, related

by common ancestry. To be diagnosed as cognate the words must have similar

meaning and, most importantly, show systematic sound correspondences. For

example, the English word ‘five’ has cognates in German (fünf), Swedish (fem)

and Dutch (vijf), reflecting descent from proto-Germanic (*fimf). New cognate

forms can be gained in a language when the language begins to use a new word

for a given meaning. For example, at some point in the Indo-European lin-

eage leading to the Germanic languages, Proto-Indo-European *ast(h)-, mean-

ing ‘bone’, was replaced with Proto-Germanic *bainan. Here the Proto-Indo-

European form was lost, and a new form gained. The new form gave rise to

a set of cognate words for bone in descendant Germanic languages. Cognate

identification is non-trivial: other cognates of these words for ‘five’ include Irish

cuig, Italian cinque, Armenian hing and Polish piec. Known borrowings, such as

English mountain acquired from French montagne, were not coded as cognate.
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Contemporary language data were sourced from the Comparative Indo-

European Lexical Database (17 ) and other published sources (Table S1). We

excluded 11 speech varieties from ref. (17 ) identified by the authors of ref. (17 )

as duplicate dialects based on a less reliable source of cognacy judgments. We

excluded another 14 duplicate sources for regional dialects (‘doculects’), always

favouring the doculect that had the least missing data. Ancient languages were

sourced from ref. (16 ). These comprise the best attested ancient Indo-European

languages, representing all of the major sub-groups. Using this set also allows

us to avoid the charge of cherry-picking certain languages. Whilst our aim here

is not to provide a complete history of every Indo-European lineage, future work

could expand this set with additional ancient languages. For example, partial

data on Sogdian, an ancient Eastern Iranian language, may provide more insight

into the colonization of the Steppes. However, we note that Sogdian would sit

neatly within our current Iranian clade and so is unlikely to have any effect on

the inferred date or homeland of Proto-Indo-European.

Cognate data were coded as binary characters showing the presence or ab-

sence of a cognate set in a language. There were 5047 cognate sets in total,

with most meanings represented by several different cognate sets. All cognate

coding decisions were checked with published historical linguistic sources (Table

S1). The database contained 25908 cognate coded lexemes. Of these, 67% came

originally from ref. (17 ), 14% from ref. (16 ), and 19% were newly compiled

from published sources. Ref. (17 ) required considerable correction, and changes

were made to approximately 26% of coding decisions on individual lexemes. Ref.

(16 ) required corrections to only 0.5% of lexemes.

The full dataset is available online here: http://ielex.mpi.nl.

2 Location data

Cognate data were combined with information on the geographic distribution

of each language as recorded in the Ethnologue (31 ) based on digitized lan-

guage maps (available from Global Mapping International http://www.gmi.

org). This data allows us to assign each observed language an approximate

range, rather than conditioning on a single point location. We excluded post-

colonial ranges of languages. Some languages were nevertheless spoken in mul-

tiple unconnected ranges. It is not practical to assign tip locations to a number
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of unconnected ranges because the Gibbs operator (see below) will rarely jump

from one range to another. In order to overcome this problem, ranges that were

close (most often the case) were joined into a single contiguous range. Where

separate ranges were far apart or one population was much larger, the language

was assigned to the range with the larger population. The ranges for ancient

languages were based on the geographic distribution of source texts. Figure S4

shows the geographic range distribution for each of the 103 sampled languages,

with the ancient languages highlighted in red.

3 Bayesian Phylogenetic Inference of Language
Trees

Following previous computational approaches to the evolution of languages (1 –

3 ), we model language change as the gain and loss of cognates through time,

using Bayesian phylogenetic inference to infer the likely set of plausible lan-

guage trees, given our data and model. This model-based, Bayesian approach

offers a number of advantages over previous approaches (32, 33 ). First, any

attempt to infer language ancestry from comparative data requires implicit or

explicit simplifying assumptions about the processes of change involved and

optimality criteria for evaluating trees. Computational modelling makes the

optimality criteria and assumptions of the method explicit in the specification

of the structure of the model and prior beliefs. Second, there are a vast number

of possible language trees to evaluate - for the 103 languages in our dataset

there are more possible trees than there are atoms in the universe (34 ). There

is also stochastic uncertainty inherent in the system, such that the ‘best’ fitting

tree may not in fact be the ‘true’ tree. Bayesian inference of phylogeny provides

a principled framework with which we can efficiently explore the universe of

possible language trees and quantify uncertainty in the inferred relationships

and model parameters (35 ). This means conclusions incorporate uncertainty in

the tree and model parameters and are not contingent on a specific tree topol-

ogy. The method assumes a bifurcating tree (each lineage can only give rise

to two daughter lineages), however, since the intervals between lineage splits

can be arbitrarily small, we can effectively accommodate multifurcations (lin-

eages splitting into many descendent lineages in a short time period) if the data
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support this. Third, we can compare the fit of a range of models of language

lineage evolution and spatial diffusion, including different cognate replacement

models and relaxing the assumption of constant rates of change across the tree.

We can also use simulated data to evaluate the accuracy of our findings and

how robust results are to violations of model assumptions. We can therefore

be confident that, for example, the binary coding of the cognate data allows

accurate phylogenetic inference, and that inferences are not impaired by the

presence of realistic rates of borrowing between lineages (32, 36, 37 ). Finally,

we can explicitly test between competing origin hypotheses by quantifying their

relative support, given our data and model (1, 2, 32 ).

Given a binary matrix representing the presence (1) or absence (0) of each

cognate set in each language, we model the process of cognate gain and loss

using transition rates defined as the probability of a cognate appearing (0→ 1)

or disappearing (1→ 0) along each branch over a given amount of time. Starting

at the root of the tree, an ancestral Indo-European language comprising some

set of cognates thus evolves through descent with modification into the Indo-

European languages we observe today.

Let D = {D1, . . . , Dm} represent m columns of cognate presence/absence

data, with each column spanning n languages. Data element Dj,k (1 ≤ j ≤
m, 1 ≤ k ≤ n) indicates the presence or absence of cognate j in language k. The

distribution of interest is the distribution of language trees given the cognate

data, that is, P (T |D) where T is the tree. Using Bayes theorem, this can be

interpreted through

P (T |D) ∝ P (T )P (D|T ) (1)

where P (T ) is the prior on the tree, P (D|T ) the likelihood and P (T |D) the

posterior. Considering individual cognates,

P (D|T ) =

m∏
j=1

P (Dj |T )

The tree T has languages at its leaves. The branches of the tree are labeled

with time, which allows us to write the likelihood for the jth cognate P (Dj |T )
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as the probability of the tree marginalized over all the states of internal nodes,

P (Dj |T ) =∑
xn+1,...,x2n−1

P (x2n−1)

2n−2∏
k=n+1

P (xk|xπ(k), tk)

n∏
k=1

P (Dj,k|xπ(k), tk)

where x1, . . . , xn are the leaf nodes containing cognate data, and π(k) the index

of parent node of node xk, so xπ(k) is the parent node of node xk. By convention

x2n−1 is the root node. Further, tk is the length of the branch ending in node

xk. This looks like a formidable formula, but using the peeling algorithm (38 )

it can be calculated in linear time in the number of nodes, and quadratic in

the cognate state space, making the computation tractable in practice. This

allows us to calculate a likelihood for any tree, given a set of cognate data

and model of cognate replacement. We combine this with Bayesian inference

of phylogeny using Markov chain Monte Carlo methods as implemented in the

BEAST software package (20 ). This approach allows us to efficiently sample

trees and model parameters in proportion to their posterior probability, given

our data, model and prior beliefs.

Cognate Substitution Models

We evaluated a series of models of cognate evolution and report results for

the best fitting model, although the specific choice of model did not affect our

main findings.

To obtain transition probabilities P (xk|xπ(k), tk), that is the probability that

node xk is of a particular binary cognate value given the value of its parent in

the tree and the time elapsed tk, we considered three different models of cognate

substitution: reversible Continuous-time Markov chains (CTMC), covarion (39,

40 ) and Stochastic Dollo processes (19, 41 ).

The reversible continuous-time Markov chains are traditionally used for anal-

ysis of DNA data with many transition model structures existing, allowing un-

even transition rates to and from certain states (e.g. the HKY model (42 )).

Under this model the change from every state to every other state and back

is realizable in a finite amount of time. For a binary state-space (cognate ab-

sence or presence) the model can be parameterized with a single parameter γ,

which captures the relative proportion of forward changes to backward changes.

Equation (2) shows the infinitesimal time rate matrix of binary reversible CTMC

where entry (i, j) represents the rate at which character i changes to character
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j.
0 :
1 :

(
− γ
1 −

)
= Q (2)

The finite-time transition probabilities for this CTMC model satisfy the Chapman-

Kolmogorov equation

Ṗ (t) = ∆tP (t)Q with initial conditions P (0) = I,

where ∆t a small time step and I is the identity matrix. The solution is P (t) =

exp (tQ). So, we calculate the transition probability of going from character i to

character j over time span t as the exponent of t times Q, i.e. P (xk = i|xπ(k) =

j, t) = exp(tQ)i,j .

The covarion model extends the reversible Markov chain models to allow for

cognates to transition from actively changing to non-changeable states (39, 40 ),

consistent with linguists’ intuition that rates of change for certain meanings may

differ at some points on the tree. The covarion has two additional parameters

(δ and κ), which govern the transition between actively changing (variant) and

non-changeable states (invariant). The infinitesimal rate matrix for the binary

covarion model is summarised as

variant

{
0 :
1 :

invariant

{
0 :
1 :


− γ δ 0
1 − 0 δ
κδ 0 − 0
0 κδ 0 −

 (3)

The Stochastic Dollo process (19, 41 ) applies what may be a more natural

model of cognate evolution by postulating that a cognate can only arise once

(with Poisson rate λ). In essence, this restriction ensures that each cognate

is uniquely evolved and each cognate creation event generates a new cognate,

unrelated to any other pre-existing cognate. Under the stochastic Dollo model,

once in existence the cognate survives with a constant death rate µ. Upon

a death event occurring in any lineage the cognate cannot re-emerge in that

lineage via a backward mutation. That is, it forever remains in the absent

state. The infinitesimal rate matrix of this process is

0 :
1 :

(
0 0
µ −

)
(4)

The invariant cognates were intentionally excluded from our analyses. This

creates an ascertainment bias for the estimation of the parameters of the substi-

tution models. To account for this bias we employ a commonly used technique
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of ascertainment correction (recently described in (19 )). In essence, this cor-

rection re-scales the finite-time transition probabilities, to take into account the

fact that invariant sites have been removed and thus are unobservable. Gray et

al. (43 ) have recently shown that this approach produces consistent and unbi-

ased estimates of evolutionary rates, while still realizing the speed improvements

from reducing the number of sites through exclusion of invariant cognates.

Calibrating rates of change

Branch lengths, tk, are scaled in time units using an additional parameter

that governs the rate of evolution (44 ). The rate of cognate replacement per unit

time is calibrated by constraining lineage divergence times (at internal nodes)

and ancient language ages (at the tips) based on historical sources after ref.

(1, 16 ) as listed in Table S2. We used probability distributions rather than

point estimates for the age of each internal node and ancient language, in order

to account for uncertainty in the historical data. Tip ages were numerically

integrated via sampling as recently described by Shapiro et al. (45 ).

Since languages may not evolve at the same rate at every location through

time, we compare the fit of a strict clock model (which assumes a constant

rate of cognate replacement) to a relaxed clock model (46 ) that allows for rate

heterogeneity among lineages. To calculate the transition probability of going

to xk from the parent of xk in time t under an uncorrelated relaxed clock model,

P relaxed(xk|xπ(k), t). The relaxed clock accommodates rate heterogeneity among

branches with a rate distribution P (r). By relaxing the clock assumption in

this way, we can accommodate variation in rate of cognate replacement through

time, estimating the degree to which rates vary from the data itself. Figure S1

summarizes how inferred rates of cognate replacement vary across branches in

the tree.

MCMC Inference and Model Testing

We investigate the posterior distribution of each model using Markov Chain

Monte Carlo (MCMC) integration in BEAST (20 ). We use a flexible tree prior

based on a multiple change-point process implemented in the Bayesian skyline

plot (BSP) (47 ). The BSP-based prior is based on coalescent theory, which de-

scribes the times two branches in a tree are expected to join into a single branch.

This defines a distribution over the heights of the internal nodes in a tree that is

influenced by an unknown population function of the BSP. Since this function
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is very flexible and random, the BSP-based prior imparts little information on

the inferred tree, allowing variation in the rate of lineage formation through

time without the need to specify a parametric model. We use the Tracer tool

in BEAST to examine the convergence of MCMC runs and the TreeAnnotator

tool in BEAST to summarize trees in the form of maximum clade credibility

(MCC) trees.

To compare different models, we employed an importance sampling estima-

tor of the marginal likelihood that is frequently used to obtain (the natural

logarithm of) Bayes factors for Bayesian phylogenetic and coalescent model

comparison in an MCMC framework (48, 49 ). Model comparison results are

shown in Table S3.

The Stochastic Dollo substitution model showed the best fit to the data. This

fits with the notion that its assumption that cognates are gained once and then

differentially lost in descendant lineages is a more natural model of vocabulary

evolution. The better fit of this model suggests that processes that allow a

cognate to be gained multiple times on the tree (e.g. parallel semantic shift,

the borrowing of basic vocabulary terms or sound changes that independently

give rise to the same sound-meaning correspondence) are relatively rare in our

data. This result is also consistent with previous work showing that rates of

borrowing in basic vocabulary are much lower than in the wider vocabulary (50,

51 ).

The uncorrelated log-normal relaxed clock was the preferred clock model,

indicating that the rates of language change in our data vary across different

lineages. This finding is also consistent with previous studies showing variation

in rates across time in Indo-European (52 ) and other language families (2 ),

and between different subsets of language features (53, 54 ), presumably as an

outcome of different divergence processes, technological advances, and usage

patterns (2, 53 ). The results presented in the paper are based on this best-fitting

model although the specific choice of model did not affect our main findings.

Unlike previous studies, we did not assume a known outgroup. Instead this

was inferred from the data under the assumption of a relaxed lexical clock. Our

inferred outgroup (Anatolian) is consistent with the orthodox view in Indo-

European linguistics (55 ). Figure S1 shows high posterior support for all of

the established Indo-European sub-groups. Relationships between groups are
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also well-supported, with uncertainty around the positioning of only the basal

sub-groups - Tocharian, Albanian, Greek and Armenian. Some of these basal

relationships and the generally high clade posterior probabilities differ slightly

from (1 ). This likely reflects the improved model of cognate replacement, ex-

panded data set and the inclusion of geographic information.

4 Spatial Diffusion Models

We connect the cognate evolution model with stochastic processes of spatial

diffusion in a joint inference framework. To do this, we apply the same approach

as for cognate evolution to infer internal node locations from the language ranges

at the tips of the tree (see Figure S6). That is, we assume that languages disperse

as they evolve through time such that we can model their dispersal through

space along the branches of the language tree inferred together with cognate

data. Note that the tree is informed both by cognate data and geographical

data. For each of the extant languages in our sample, we know the ranges R

where they are spoken (see Figure S6). So, we extend Equation (1) by assuming

that, given the tree T , the cognates and ranges are independent via

P (T |D,R) ∝ P (T )P (D,R|T ) = P (T )P (D|T )P (R|T ). (5)

The terms P (T ) and P (D|T ) are obtained as before, such that we only need to

specify the probability of language ranges given a tree P (R|T ). To get a handle

on P (R|T ), we exploit data augmentation by introducing unknown locations

L = (l1, . . . , l2n−1) of the tree tips lk for k = 1, . . . , n, the internal nodes lk for

k = n+ 1, . . . , 2n− 2 and the root l2n−1 and consider

P (R|T ) =

∫
P (R|L)P (L|T )dL. (6)

We set P (R|L) equal to the indicator function that tip locations (l1, . . . , ln) all

fall within their respective ranges and decompose P (L|T ) as the product of the

transition probabilities over all internal nodes of dispersal to a node location

from its parent node location in the tree over a time specified by the length of

the branch. Taking the root node distribution into account gives us

P (L|T ) = P (l2n−1)

2n−2∏
k=1

P (lk|lπ(k), tk), (7)
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where lπ(k) is the location of the parent of lk in the tree, connected by branch

length tk. Interest often lies in the inference of the posterior P (l2n−1|D,R) that

arises during the data augmentation step in MCMC integration of P (T |D,R).

We pursued two alternative models to infer the root location, P (l2n−1|T ), a

phylogeographic relaxed random walk (RRW) model in continuous space (14 )

(Section 4.1) and a discretized landscape based geographical model (Section

4.2). Despite some novel extensions introduced here, the RRW model assumes

the same migration rates over land and over water. To verify that this assump-

tion does not affect the outcome of the analysis, we developed a set of models

that takes different migration rates for land and water into account. This was

achieved by discretizing space so that we can run diffusion simulations on a

relatively fine grid where the pixels represent either water or land. The differ-

ence between the RRW model and the landscape based model lies in the way

transition probabilities P (lk|lπ(k), tk) and the root prior distribution P (l2n−1)

are determined.

4.1 Relaxed Random Walk Geographical Model

We extend a Bayesian implementation of multivariate diffusion models recently

developed for phylogeographic analysis of viruses (14 ). Rather than using a

simple diffusion model, this approach takes advantage of the fact that we have

information about the ancestral relationships between sampled languages. We

consider spatial diffusion along the branches of an unknown yet estimable phy-

logeny as a generalized Brownian motion process, or ‘random walk’, in two-

dimensional space, and exploit data augmentation of the unobserved locations

(longitude and latitude) at the root and internal nodes of the tree. A random

walk, based on movement via successive steps, each in a random direction, is

routinely used to model the spread of organisms across a landscape (56 –58 ).

In the case of language, this does not mean that individual language migration

events occur ’randomly’, without social, cultural or ecological drivers. Rather,

for a given time interval, the geographic distribution of languages expanding

from some point of origin is assumed to be approximated by a Brownian ran-

dom walk some languages will have moved far, some will not have moved at

all, but most will have moved somewhere in between.

The Brownian random walk process we use here is governed by an infinites-
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imal precision matrix P that scales arbitrarily in units-time. The Bayesian

implementation specifies a Wishart prior on P and a bivariate normal prior on

the root location. The most restrictive assumption of such random walk mod-

els – a constant diffusion rate throughout the phylogeny – can be relaxed by

rescaling the precisions along each branch similar to relaxed clock models (14,

46 ). Here, we further advance these relaxed random walk (RRW) models by

accommodating arbitrarily shaped flat spatial prior distributions on the root,

internal and external node locations. We use these geographically informed pri-

ors to exclude root and internal node realizations from areas over water and to

accommodate a geographic distribution for the location of each sampled lan-

guage, rather than conditioning on point locations. For estimation via Markov

chain Monte Carlo under this improved framework, we modified the Gibbs sam-

plers (59 ) for the root and internal node locations to take into account the

geographical priors and also accommodate updates for the tip locations taking

into account the geographical priors. We compared the fit of different distribu-

tions (Cauchy, gamma and lognormal) that relax the homogeneous Brownian

random walk (BRW). A relaxed random walk provided a significantly better fit

to the language diffusion process with the lognormal-RRW yielding the best fit

for the data (See Table S4).

This approach means that rather than assuming a constant rate of diffusion,

we can infer how regular the language expansion process is by estimating the

degree of rate variation from the data. The best-fitting lognormal-RRW model

indicates the rate of expansion is low on average (mean = 480 meters per year)

but highly variable (coefficient of variation = 4.35) (Table S4). Crucially, despite

relaxing the assumption of a constant rate of diffusion in this way, our results

show that there is enough regularity in the expansion process to strongly support

an Anatolian, over a Steppe origin. Figure 2 summarizes how inferred rates of

geographic diffusion vary across branches in the tree.

4.2 Landscape Based Geographical Model

The RRW model does not distinguish between geographical features such as

land and water for its migration rates. In order to be able to model different

migration rates between such features, we introduce a feature-rich geographical

model where different locations can have different migration patterns. We model
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the process as inhomogeneous diffusion along the branches of a tree according

to a continuous time Markov chain (CTMC) model. As we describe below

in detail, this leads to an ordinary differential equation (ODE) which we can

solve numerically. However, there are various obstacles to making such models

computationally tractable. In particular computing the transition probabilities

for a large number of locations to another large number of locations over a large

number of time intervals requires a lot of memory.

Furthermore, calculating the root location can be done efficiently using the

peeling algorithm, but only up to state spaces of size about a thousand different

states. Therefore, we limit ourselves to approximately 600,000 locations and ag-

glomerate these locations into a 32 by 32 grid. The choice of the grid needs to

handle projection distortions due to the curvature of the earth. Instead of stor-

ing (or recalculating) transition probabilities for all time intervals determined

by the tree, we store the probabilities only for a limited number of times and

interpolate to get desired probabilities for a particular time of migration.

Below, we first describe details of the model and how it leads to an ODE.

Then, we define the neighborhood and work out parameterization followed by a

description of the details of the ODE solver and usage of the solution. Finally,

we describe implementation details of relaxation for the landscape based model.

Model Details

First, we describe the mathematical details for the landscape based model

before going into implementation details. The probability of the locations of

the nodes in the tree, given the tree, is given by Equation (7). We will use

P (L|T ) to determine the root locations given the locations of the tips in the

tree, that is, P (l2n−1|l1, . . . , ln, T ) where l1, . . . , ln are the tip locations and

the root location l2n−1. To obtain transition probabilities, P (lk|lπ(k), t), we

assume a fixed discretization of space with orthogonal geometry. We define a

neighborhood φ (i) for the set of locations i = 1 . . . N containing the locations

to the left, right, top and bottom of location i for all locations that do not lie

on the boundary. Hence, the cardinality of such neighborhood |φ (i) | is 4.

Let T (i) ∈ {1, . . . ,K} specify a geographical type of location i. Here we

differentiate between water and land location types, however, the approach we

have developed could in principle be extended to incorporate other geographic
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features such as mountains or deserts. Consider a K × K matrix R = {rk`},
where rk` is the infinitesimal transition rate (proportional to the finite-time

transition probability) for moving from location type k to type ` given that two

locations are adjacent. Then infinitesimal-time rate matrix Λ = {λij}, can be

defined as

λij = rT (i)T (j) for j ∈ φ (i)

λii = −
∑
j 6=i

λij ,

λij = 0 elsewhere

The finite-time transition probabilities for this CTMC model satisfy the Chapman-

Kolmogorov equation

Ṗ (t) = ∆tP (t)Λ with initial conditions P (0) = I, (8)

The solution of this ODE is

P (t) = exp (tΛ) . (9)

Computing the matrix exponential in (9) is best approached through numeric

approximation. For very small ∆t, a first-order Taylor expansion

exp (∆tΛ) ≈ I + ∆tΛ = P

furnishes approximate equality between a discrete time Markov chain (DTMC)

and CTMC representations. The corresponding DTMC unfolds as

pij = rT (i)T (j) ×∆t for j ∈ φ (i) ,

pii = 1−
∑
j 6=i

pij , (10)

pij = 0 elsewhere

where ∆t is a small time increment. This is known as the Euler method for

solving the ODE from Equation (8).

Neighborhood Definition and Parameterization

Now the ODE is derived we are ready to describe the method of discretization

and parameterization. With the Euler method it is computationally feasible
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to deal with up to 600,000 locations, which we will refer to as pixels in the

remainder, to calculate transition probabilities (that is pij in Equation (10)).

To determine the distribution over the root location, a variant of the peeling

algorithm can be used. The peeling algorithm will not be able to handle a state

space of 600,000 states but can fairly conveniently deal with state spaces of

around a thousand. Therefore, we aggregate individual segments into a 32 by

32 rectangular grid such that the blocks in the grid cover the whole area in the

discretized landscape.

One of the issues in discretizing space over the area covered by the Indo-

European languages is that the curvature of the earth has considerable influence

on the sizes of the grid if the grid is drawn in standard Mercator projection.

This influences the ODEs as detailed below. To minimize distortions of the

grid block sizes, we used a Mercator projection that first rotates the earth by

0.07π radians, since the languages are on an axis that is slightly slanted. Then,

an ‘equator’ is drawn through the center of the language ranges and then a

standard Mercator projection is applied. In other words, the earth is slightly

rotated, then turned and then a Mercator like projection applied. The resulting

grid covers an area that is 9655 km wide at the center of the longer axis and

4885 km high at the center of the smaller axis. Figure S7 shows the grid in

this projection. The top image shows the grid in the rotated and translated

Mercator projection, and the bottom image shows the grid drawn in a standard

Mercator projection, which shows significant distortions of the grid.

The language areas can cover a number of grid blocks, and for the case

of Russian a large number of grid blocks. So, to compensate for this fact we

average over the areas covered by the locations (similar to using ambiguities in

standard phylogenetic analysis). Let Lk denote the set of locations covered (or

partially covered) by language k and Pk(l) the amount of coverage for language

k. This amount of coverage is determined by calculating the area of land inside

a grid block covered by the language range. Equation (7) can be refined to take

tip location distributions into account like this,

P (L|T ) = P (l2n−1)

2n−2∏
k=n+1

P (lk|lπ(k), tk)

n∏
k=1

∑
l∈Lk

P (l|lπ(k), tk)Pk(l)

The transition probabilities over the aggregated locations P (lk|lπ(k), tk) are

determined by the ODE over the underlying map as follows; underneath the grid
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block lies a pixel map of 1104 by 560 pixels. Thus, a pixel covers on average 8.7

by 8.7 km. A pixel is either land or water. To determine P (lk|lπ(k), tk) a proba-

bility mass of 1 is distributed over all land pixels in a grid block. If there are no

such pixels because the grid block covers water only, we assume no migration

out of that grid block occurs and encode the distribution of P (lk|lπ(k), tk) as 1

when xπ(k) = xk and zero otherwise for all evolution times tk. If there is any

land in the grid block, we perform the Euler method to standard diffusion by

allowing a fraction of the probability mass to move for each time step. The move

is either to the left, right, above or below pixel and the rate is determined by the

contents of the pixels. To specify the model, we need to define the transition

probabilities of the DTMC of Equation (10). Define ρT (i),T (j) = rT (i)T (j)∆t.

We distinguish three parameters;

• ρl,l the proportion going from a land pixel to a land pixel,

• ρl,w the proportion going from a land pixel to a water pixel,

• ρw = ρw,l = ρw,w the proportion going out of a water to either land or

water pixel

We use these parameters to define four different models of geographic dif-

fusion. First, when all three proportions are equal, we obtain a discretized

approximation of the continuous space diffusion model - water and land are

indistinguishable. Since settlement on water is impractical, a more realistic pa-

rameterization is to set ρw to one, which implies that whenever one is in the

water, all of the probability mass moves out in the next time step. To allow suf-

ficient expedient movement over water, ρl,l and ρl,w should be relatively small.

Furthermore, the ratio ρl,w/ρl,l determines how slowly probability mass moves

into water; the lower the ratio the slower the movement - i.e. the less likely

is migration across water. In our computations, we set ρl,l to 1% for all mod-

els (including the diffusion model). We used the ratio ρl,w/ρl,l to define three

additional models representation varying probabilities of movement into water.

A ratio of 0.1 was used for the model labeled ‘10 times less likely to go into

water’. A ratio of 0.01 was used for ‘100 times less likely to go into water’.

Finally, we used a ratio of 1 to define a ’sailor’ model, in which movement from

land into water is as likely as from land to land. Results under each model are

summarized in Table 1.
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After a number of steps in the Euler method for grid block k, for each

of the grid blocks we record how much of the probability mass moved to the

pixels underlying that particular grid block and use this as an estimate for

P (lk|lπ(k), t) where we normalize t so that at the end of the ODE solver we

have t = 1. Since there are 1024 locations, for every time stamp we need to

record 1024x1024 probabilities. We record a total of 100 time stamps, taking

1024x1024x100x8 is approximately 0.8 GB. This explains why it is impractical

to use much finer grids; the memory requirement for storing the transition

probability distributions would exceed computer memory very quickly.

When we perform the calculations of Equation (7), and we need P (lk|lπ(k), tk)

for a branch time tk, first we need to determine time step ∆t in terms of years.

Instead of committing to a fixed value for ∆t and in order to remain flexible

with respect to the number of time steps, we normalize the duration of the

ODE solver to span one unit of time and determine a scale factor for the tree to

match. To this effect, a linear scaling is applied by multiplying tk by w, where

scale factor w is called wanderlust. Intuitively, the higher the wanderlust, the

more eager the migrant is to move.

ODE Result Storage

Here, we describe which solutions of the ODE solver to store and how to

use them. Since it would be impractical to store transition probabilities for all

time intervals, we only store them for a limited number of steps during the run

of the Euler algorithm. Then, to find a transition probability P (lk|lπ(k), tk) for

a branch time tk, if tk × w is stored, we can look up the transition probability,

but if tk×w is not stored, we interpolate linearly between stored values. Figure

S8 shows a typical set of transition probability tables, which shows that the

curves are rather smooth, so interpolation can be expected to lead to very small

approximation errors.

The number of the Euler method steps between storing samples was deter-

mined empirically as follows. First, an ODE solver for a grid block covering

Scotland was performed where 10,000 equally distant transition probabilities

were stored. The grid block was selected to generate a varied number of con-

ditions (sea boundary, land boundary, close to grid boundary) so that a large

variety of transition probability functions would be generated. Then, one by
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one samples were eliminated such that the maximum distortion due to linear

interpolation from its nearest remaining neighbors in the sample was minimized.

The process was repeated to leave 100 samples from the original 10,000. Fig-

ure S9 shows the sample number on the y-axis for the remaining 100 samples.

Also shown is the empirical derivative. Clearly, the derivative is smooth at the

first 50 samples but after that shows some discontinuities. From this empirical

derivative, we derived a smoothed derivative and by integration the smoothed

sample numbers (shown in green and yellow respectively in Figure S9). Inter-

estingly, the intervals are very closely spaced at the start and increase further

apart towards the end. This coincides with the intuition we get from consider-

ing Figure S8, where it is clear that most of the non-linear behavior is at the

start of the ODE solver. The further towards the end, the smoother the curves

become and the better linear approximation will become over larger intervals.

Figure S10 shows a typical example of a number of transition probabilities

with the sample numbers linearly displayed on the x-axis as opposed to Figure

S8 where sample numbers are shown proportional to number of steps on the

x-axis. The slight discontinuity at x=18 is caused by the step increase from 1 to

2. The evidently observable smoothness of the transition probability functions

justifies the linear interpolation.

The number of time steps of the ODE solver is determined empirically such

that all desired transition probabilities can be calculated from the stored tran-

sition probability matrices. For the ρl,l, ρl,w, ρw,l and ρw,w defined above, after

5 million time steps the average distance traveled was around 1300 km which

suffices for this purpose. Since ODE solver runs are very time intensive, an im-

plementation was developed to run on a graphics processing unit (GPU) using

the CUDA library. Software was developed on a Linux system using an Intel i7

920 CPU and two GTX 295 NVidia cards containing two GPUs each. Utilizing

a GPU gave an 8 fold increase in speed over a CPU. By utilizing two computers

both with 4 GPUs, a total speed up over a CPU of about 56 was achieved. ODE

solver run time for the high ρl,l case was well over a day, and for the low ρl,l

case three days. The same calculations would take almost half a year on a CPU.

Figure S11 gives an impression of how the difference in land and water rate

affects the boundary of the migration region; light blue means high concentra-

tion of probability mass, dark blue low probability mass and fuzzy background
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color even less probability mass. The sharp boundary between foreground and

background shows the boundary at low threshold level. The ODE solver starts

at a grid block covering Scotland and flows out very fast over water. However,

on land the flow has a lower speed but a much higher density.

The root distribution P (l2n−1) is determined for each grid block by calcu-

lating the land area covered by the grid block. This is done by counting the

number of land pixels in the grid block. So, our prior on the root is uniformly

spread over the land pixels and the prior on the root originating in water is zero.

Relaxation of the landscape-based diffusion rates

Like the RRW analysis, the landscape-based analysis relaxed the diffusion

rate from branch to branch. To calculate the transition probability of going to

grid xi from the parent of xi in time t, that is P relaxed(xi|xπ(i), t) the relaxed

clock averages the rate with a rate distribution P (r), calculated as∫
r

P (xi|xπ(i), tr)P (r)dr (11)

For the branch rate distribution, we use a distribution with mean of 1 as for the

RRW model. To apply relaxed diffusion to the landscape based model, straight-

forward component-wise linear approximation as suggested by Drummond et

al.(46 ) can be used. So, instead of the Equation (11), P relaxed(xi|xπ(i), t) is

approximated by
∑m
k=1

1
mP (xi|xπ(i), tρ(k)) where the rate distribution P (r) is

split in m equal probability intervals with means ρ(k). Since we have to interpo-

late between sample points to obtain P (xi|xπ(i), tρ(k)), an equally convenient

approximation is
∑
τ∈T P (xi|xπ(i), τ)P (τ)P relaxed(τ/t|σ) where T is the set of

sample times and P (τ) the probability the rate comes from interval τ to the

next sample time. P relaxed(τ/t|σ) is the probability according to the log-normal

distribution of being in the interval τ/t and the next value of τ .

We followed the continuous model in using a log-normal distribution for

relaxing rates of diffusion along branches. The log normal distribution requires

the standard deviation σ to be specified. Furthermore, we need to specify the

wanderlust parameter w. We found suitable values by performing a grid search

over both σ and w under the assumption of preferring a smaller wanderlust

over a higher by putting a 1/w prior on the wanderlust and likewise for σ. This

gives an optimal posterior for σ = 2 which coincides with the σ = 2.2 found for

the continuous model. The optimal value for w thus found was 0.0002. Root
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densities were calculated by averaging over the root densities for the posterior

sample of trees obtained by running an MCMC chain without geographic data

as described by Pagel et al. (60 ).

5 Phylogeographic Hypothesis Testing

Data were fitted to the language evolution and spatial diffusion models using

BEAST (14, 19, 20 ). BEAST XML files for the various analyses are available

as supporting on-line material. The output from these analyses is a posterior

distribution of trees with geographic locations at the root and internal nodes

drawn in proportion to their posterior probability. This full probabilistic ap-

proach accounts for uncertainty in the phylogeny, age constraints, models of

cognate replacement and spatial diffusion process.

Our phylogeographic model allows us to infer the location of ancestral lan-

gauge divergence events corresponding to the root and internal nodes of the

Indo-European family tree. Since we model internal node locations as points in

space, our posterior estimate for the location of divergence events can be inter-

preted as a composite of the range over which the ancestral language was spoken

and stochastic uncertainty inherent in the model. The relative importance of

each does not impact our ability to test whether one hypothesized origin range

is more likely than another. Nevertheless, the picture of language expansion

that emerges must be interpreted with the caveat that we can only trace the

expansion of language divergence events (not the rapid expansion of a single

language), and only between those languages that are in our sample. Nodes

associated with branches not represented in our sample will not be captured.

For example, our ”Celtic” group contains only Insular Celtic languages and

so cannot tell us about the timing or location of separation from Continental

Celtic. With further methodological development, it may also be possible to in-

corporate indirect evidence about the range of a language prior to attestation,

but this inevitably requires assumptions about how to map putative ancestral

ranges onto the tree. In this sense, our approach is conservative, relying as

it does on the location in time and space of well-attested modern and ancient

languages. We note that our full analysis can be viewed as an extension of the

contemporary language analysis, with the addition of information about lineage

locations at ancestral nodes (in the form of the ancient languages). The fact
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that both analyses support an Anatolian origin suggests that additional internal

node information is unlikely to affect our conclusions.

We use these spatiotemporal reconstructions of the evolution of languages to

test two theories of Indo-European origin: the ‘Kurgan Steppe’ and the ‘Ana-

tolian Farming’ hypotheses. We formalize the alternative spatial hypotheses in

the form of three areas (Figure 1). One area represents the Anatolian hypothesis

covering the earliest Anatolian Neolithic sites (11 ). We represent the Kurgan

Steppe hypothesis by two areas in the Pontic Steppe, an initial proposed origin

(5 ) and a later refined (7 ) area.

The areas of the hypotheses are approximately 92, 000 km2 for the Anatolian

hypothesis, 421, 000 km2 for the narrow Steppe hypothesis, and 1, 760, 000 km2

for the wider Steppe hypothesis. So, these areas show a bias toward the Steppe

hypothesis; the area covered by the narrow Steppe hypothesis is more than four

times larger than that of the Anatolian hypothesis. Likewise, the area covered

by the wider Steppe hypothesis is more then 19 times larger than that of the

Anatolian hypothesis.

We evaluate the support for these different hypotheses using Bayes factors

calculated as
Posterior(H1)/Prior(H1)

Posterior(H2)/Prior(H2)

where the prior represents the probability that the origin will fall within a hy-

pothesised area before observing the data. For the RRW model, these prior

probabilities are obtained by a Monte Carlo simulation procedure that draws

from the diffuse multivariate prior on the root (with zero means and covari-

ance, and precisions of 0.001 for root latitude and longitude) and summarizes

the frequency at which these draws are in the areas representing the different

hypotheses. For the landscape based geographical model, which has a uniform

prior over all pixels, these priors are calculated as the ratio of pixels within the

hypothesis areas over the total number of pixels.

Kernel Density Estimation Method for Visualization

We followed Snyder (61 ) in using bivariate kernel density estimation to plot

the highest posterior density contours in Figure 2 of the main text. Our density

estimator used bivariate normal kernels with a diagonal bandwidth. We selected

each dimension’s bandwidth based on Silverman’s “rule-of-thumb” plug-in value
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(62 ) truncated to a maximum value of 0.5. This truncation controls for poten-

tial over-smoothing that may occur since the spacing between kernel locations

is adjusted to match the range of each posterior sample. The dots shown in

Figure 1b in the main text and Figure S5 are sampled from the land area in

a grid location with probability proportional to the root distribution over grid

locations.

6 Constrained Analysis

Bayesian inference is ideal for incorporating prior knowledge into the analy-

sis. Phonological and morphological innovations provide an alternative source

of comparative data to the lexical cognate data we analyze here. We repeated

our analysis, constraining the tree topology to a topology based on phonological

and morphological data (Figure S12) (16 ). The phonological and morpholog-

ical dataset comprised 24 Indo-European languages, including the 20 ancient

languages in our dataset. Table S5 shows how languages in the phonological

and morphological dataset were mapped to our larger dataset to produce a set

of topological constraints on the tree topology. Each clade was required to be

monophyletic and the relationship between clades was used to constrain the

internal nodes in the tree relating these clades. After adding the constraints

and running the analysis under the RRW model we obtained a Bayes factor of

215.68 and 226.87 in favor of the Anatolian hypothesis when compared to the

earlier Steppe and later refined Steppe hypothesis respectively. These results

are comparable to the other less constrained models.
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7 Supplementary Figures

Figure S 1: Maximum clade credibility tree depicting the variation
in rates of cognate replacement along branches for the 103 Indo-
European languages in our sample. Maximum clade credibility tree for the
103 Indo-European languages in our sample. Branches are colored to indicate
the main sub-families following the scheme used in Figure 2. The thickness of the
branches reflects the relative rate of cognate replacement along branches; these
rates vary on average within 47% of the mean rate. Actual values are recorded in
Supplementary Data File “1219669IndoEuropean 2MCCtrees annotated.tre”.
The gray density represents the marginal posterior probability estimate for the
root age. Blue bars represent the 95% HPD intervals for the node ages. All
major nodes were supported by a posterior probability > 0.95 except those
indicated with a ‘*’.
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Figure S2: Maximum clade credibility tree depicting the variation in
rates of spatial diffusion along branches for the 103 Indo-European
languages in our sample. Maximum clade credibility tree for the 103 Indo-
European languages in our sample. Branches are colored to indicate the main
sub-families following the scheme used in Figure 2. The thickness of the branches
reflects the relative rate of spatial diffusion along branches; these rates vary on
average within 435% of the mean rate (mean rate=0.48 km/yr, 95%HPDs=0.42-
0.55). Actual values are recorded in Supplementary Data File “1219669IndoEu-
ropean 2MCCtrees annotated.tre”. The gray density represents the marginal
posterior probability estimate for the root age. Blue bars represent the 95%
HPD intervals for the node ages. All major nodes were supported by a poste-
rior probability > 0.95 except those indicated with a ‘*’.

25



Figure S3: Inferred location of the most recent common ancestor of
the Romance group of languages (excluding Latin). Contours represent the
95% (largest), 75% and 50% HPD regions, based on kernel density estimates.
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Figure S5: Inferred geographic origin of the Indo-European language
family under four landscape based models. Sampled locations are plotted
in translucent red such that darker areas correspond to increased probability
mass. Diffusion model at top left, 10 times less likely into water top right, 100
times less likely into water model bottom left, and the sailor model bottom
right. The green star represents the centroid location of the languages.
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Figure S7: 32x32 grid locations. In rotated Mercator projection (top) and drawn
on a standard Mercator projection (bottom).
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Figure S 8: Typical set of transition probability curves. X-axis shows time
from t = 0 up to t = 1 and Y-axis shows transition probabilities and their
interpolations. Inset shows same but with transition from source location to
itself (blue line, starting at 1 when t=0) as well.

Figure S9: Sample step numbers; Blue line is empirically determined from 10.000
samples with equal intervals by minimizing distortion. X-axis the number of the
sample step, Y-axis the size of the step.
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Figure S10: Typical ODE solver based transition probabilities with X-axis the
sample numbers and Y-axis the transition probability.

Figure S11: Three stages in an ODE solver run starting in the grid block covering
the north of Scotland in standard Mercator projection.
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Figure S12: Tree diagram showing the topology used in our ‘constrained’ anal-
ysis to restrict the pattern of Indo-European diversification to that advocated
in Ringe et al. (16 ) using data that included weighted phonological and mor-
phological language characteristics.
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8 Supplementary Tables

Table S 1: Cognate source by language. Numbers in square
brackets are reference numbers of sources listed at the and of this
table, and numbers in brackets are the number of cognates obtained
from the source indicated by the reference number.

Language (iso code) Lexeme source (count) Cognate judgement source (count)
Afghan (prs) [1] (217), [2] (1) [1] (159), [3] (17), [4] (5), [5] (4), [6]

(1), [7] (1), [8] (1)
Albanian C [1] (191), [3] (1), [7] (1),

[9] (1)
[1] (141), [3] (15), [7] (4), [10] (3), [6]
(2), [5] (2), [2] (1), [11] (1)

Albanian G (aln) [1] (210), [2] (1), [7] (1),
[11] (1), [3] (1), [12] (1)

[1] (171), [3] (16), [7] (5), [10] (2), [8]
(2), [11] (2), [6] (1), [2] (1), [5] (1)

Albanian K [1] (202), [7] (3) [1] (147), [3] (18), [7] (6), [10] (3), [6]
(2), [2] (1), [11] (1), [5] (1)

Albanian Top [1] (202), [13] (1), [11]
(1)

[1] (171), [3] (14), [7] (4), [10] (3), [6]
(2), [2] (1), [11] (1), [13] (1)

Ancient Greek (grc) [14] (374), [15] (137), [6]
(19), [11] (8), [7] (3), [16]
(2), [9] (2), [17] (2), [18]
(1)

[3] (90), [11] (74), [5] (44), [6] (20),
[7] (12), [17] (7), [8] (5), [1] (3), [9]
(2), [13] (2), [19] (2), [20] (2), [14] (1),
[18] (1), [21] (1), [4] (1)

Armenian List [1] (193), [19] (3), [9] (2),
[22] (1), [7] (1), [23] (1),
[4] (1), [17] (1)

[1] (127), [5] (19), [19] (10), [3] (10),
[7] (2), [11] (2), [23] (1), [4] (1), [17]
(1)

Armenian Mod (hye) [24] (218), [1] (216), [19]
(13), [7] (6), [11] (3), [20]
(2), [6] (1), [8] (1)

[1] (126), [5] (41), [19] (18), [3] (12),
[7] (7), [11] (6), [25] (4), [6] (2), [8]
(2), [9] (1), [4] (1)

Assamese (asm) [26] (209), [27] (125),
[28] (8), [29] (5)

[3] (106), [5] (50), [29] (27), [11] (16),
[1] (2), [8] (1), [26] (1), [17] (1)

Avestan (ave) [20] (202), [11] (1) [5] (89), [20] (35), [11] (11), [4] (1)
Baluchi (bgp) [1] (209), [3] (1), [11] (1) [1] (126), [3] (13), [4] (4), [5] (4), [11]

(3), [8] (1)
Bengali (ben) [1] (220), [30] (40), [29]

(6)
[1] (142), [3] (32), [29] (15), [5] (7),
[11] (4), [6] (1), [26] (1)

Bihari (mai) [31] (204), [32] (118),
[33] (19), [34] (9), [29]
(1), [27] (1)

[3] (124), [5] (65), [29] (19), [11] (12),
[17] (1)
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34



Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Breton List [1] (255), [3] (2), [11] (2) [1] (174), [11] (21), [3] (17), [23] (7),

[7] (5), [5] (2)
Breton ST (bre) [1] (215), [35] (178), [36]

(38), [11] (5), [7] (1), [3]
(1)

[1] (176), [11] (19), [3] (15), [23] (6),
[7] (2), [5] (1)

Breton SE [1] (204), [3] (1) [1] (167), [11] (12), [3] (11), [23] (5),
[7] (3), [5] (1)

Bulgarian (bul) [1] (199), [37] (194) [1] (159), [3] (13), [11] (9), [37] (5),
[25] (4), [38] (4), [8] (1), [5] (1)

Byelorussian (bel) [1] (208), [3] (2), [29] (1),
[38] (1)

[1] (164), [3] (13), [11] (12), [38] (6),
[7] (2), [8] (1), [5] (1)

Catalan (cat) [1] (269), [39] (181), [40]
(77), [23] (1)

[1] (161), [3] (39), [11] (17), [25] (15),
[40] (14), [7] (2), [41] (2), [5] (2), [42]
(1), [13] (1)

Classical Armenian (xcl) [20] (238) [5] (139), [20] (41), [19] (1)
Cornish (cor) [43] (220), [44] (162),

[45] (86), [46] (57), [47]
(14), [23] (3), [11] (1)

[3] (112), [5] (54), [11] (46), [23] (17),
[7] (10), [1] (5), [17] (4), [8] (2), [9] (1)

Czech (ces) [1] (218), [37] (208), [11]
(6), [38] (2), [29] (1)

[1] (184), [3] (21), [37] (14), [11] (10),
[38] (5), [25] (1), [7] (1), [8] (1)

Czech E (ces) [1] (211), [3] (1), [11] (1) [1] (176), [3] (19), [11] (5), [38] (4),
[5] (3), [7] (2), [8] (1)

Danish (dan) [48] (205), [1] (201), [11]
(4)

[1] (177), [11] (14), [3] (10), [7] (2),
[42] (1), [5] (1)

Digor Ossetic (oss) [49] (201) [5] (176), [4] (2)
Dutch List (nld) [50] (230), [1] (225), [11]

(6), [5] (1)
[1] (178), [11] (22), [3] (16), [7] (3),
[51] (2), [52] (2), [5] (2), [29] (1), [42]
(1)

English (eng) [53] (203), [1] (200), [11]
(6)

[1] (152), [11] (24), [3] (12), [8] (3),
[7] (2), [5] (2), [54] (2)

Faroese (fao) [1] (224), [55] (2) [1] (175), [3] (21), [11] (16), [7] (5),
[8] (1), [42] (1)

Flemish (vls) [1] (216), [3] (1) [1] (177), [3] (18), [11] (14), [7] (3),
[42] (2), [51] (1), [8] (1), [4] (1), [5]
(1), [52] (1)

French (fra) [56] (212), [1] (201), [11]
(10), [57] (1)

[1] (166), [11] (25), [3] (18), [41] (5),
[7] (1), [5] (1)

Continued on next page
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Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Frisian (frs) [1] (216), [58] (152), [55]

(34), [42] (2), [7] (1)
[1] (150), [3] (22), [11] (11), [55] (4),
[7] (3), [42] (2), [25] (1), [29] (1), [8]
(1)

Friulian (fur) [59] (228) [5] (193), [11] (2), [1] (1), [54] (1)
German (deu) [60] (216), [1] (208), [11]

(7), [3] (3), [61] (1)
[1] (171), [11] (25), [3] (11), [7] (8),
[42] (1), [23] (1), [5] (1)

Gothic (got) [20] (186), [62] (33), [63]
(13), [64] (10), [7] (4),
[11] (3), [1] (2), [65] (2),
[22] (1), [9] (1), [52] (1)

[3] (84), [11] (57), [5] (40), [7] (8), [20]
(4), [8] (3), [17] (3), [66] (1), [38] (1),
[9] (1), [42] (1)

Greek Ml [1] (199), [6] (1) [1] (165), [3] (16), [11] (12), [6] (3),
[7] (3)

Greek Mod (ell) [1] (217), [67] (209), [11]
(4), [6] (2), [17] (1)

[1] (159), [3] (21), [11] (17), [5] (7),
[25] (5), [7] (5), [6] (4), [8] (1), [9] (1)

Gujarati (guj) [1] (213), [68] (11), [3]
(2), [29] (2)

[1] (143), [3] (28), [29] (13), [5] (5),
[11] (3), [25] (1), [7] (1)

Hindi (hin) [1] (222), [30] (79), [29]
(3), [69] (2), [3] (1), [17]
(1)

[1] (166), [3] (27), [29] (13), [5] (7),
[11] (6), [30] (3), [40] (2), [25] (1), [7]
(1), [17] (1)

Hittite (hit) [20] (188), [2] (16), [70]
(11), [66] (5), [9] (3), [11]
(2), [17] (2), [7] (1)

[2] (25), [3] (22), [66] (18), [11] (14),
[20] (13), [17] (9), [8] (5), [9] (4), [5]
(2), [7] (1), [18] (1), [23] (1), [13] (1),
[19] (1)

Icelandic ST (isl) [1] (205) [1] (166), [11] (18), [3] (14), [7] (3),
[5] (2), [8] (1), [42] (1)

Irish A [1] (215), [23] (3), [11]
(3), [3] (1), [6] (1)

[1] (148), [11] (26), [3] (19), [23] (5),
[5] (2)

Iron Ossetic (oss) [49] (200) [5] (188), [4] (2)
Italian (ita) [71] (228), [1] (220), [11]

(11)
[1] (165), [11] (37), [3] (20), [5] (6),
[41] (3), [7] (1)

Kashmiri (kas) [1] (240), [29] (4), [3] (2),
[18] (1)

[1] (120), [3] (32), [29] (12), [5] (9),
[11] (3), [6] (1)

Kurdish (kmr) [72] (136) [3] (40), [5] (34), [11] (7), [8] (2), [10]
(1)

Ladin (lld) [1] (221), [54] (1), [7] (1) [1] (154), [3] (35), [11] (12), [5] (12),
[41] (3), [6] (1)
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Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Lahnda (pnb) [1] (199), [29] (3) [1] (155), [3] (16), [29] (9), [5] (5), [11]

(2), [7] (1)
Latin [20] (207), [73] (199),

[74] (196), [75] (94), [13]
(18), [11] (10), [17] (3),
[7] (1)

[11] (84), [3] (73), [5] (41), [17] (8),
[13] (5), [20] (5), [8] (4), [1] (3), [7]
(3), [41] (2), [9] (2), [2] (1), [18] (1),
[66] (1), [76] (1), [54] (1), [75] (1)

Latvian (lav) [20] (231), [1] (215), [11]
(6), [77] (2), [3] (2), [7]
(1), [38] (1), [17] (1)

[1] (122), [11] (122), [3] (112), [5]
(40), [7] (19), [8] (5), [38] (5), [66] (3),
[20] (3), [29] (2), [17] (2), [51] (1)

Lithuanian ST (lit) [1] (218), [78] (79), [11]
(8), [17] (4), [3] (1), [23]
(1), [13] (1)

[1] (165), [11] (16), [3] (11), [7] (10),
[17] (5), [20] (5), [38] (2), [2] (1), [66]
(1), [8] (1), [13] (1), [5] (1)

Lusatian L (dsb) [1] (192) [1] (172), [3] (12), [11] (3), [7] (1), [8]
(1), [38] (1)

Lusatian U (hsb) [1] (192) [1] (176), [3] (12), [11] (2), [38] (2),
[7] (1), [8] (1)

Luvian [20] (107), [11] (1) [20] (36), [5] (1)
Luxembourgish (ltz) [3] (95), [5] (59), [11] (43), [7] (3), [42]

(2), [8] (1), [38] (1), [23] (1), [52] (1)
Lycian [20] (40) [20] (18)
Macedonian (mkd) [1] (233), [21] (66) [1] (167), [3] (26), [21] (14), [11] (10),

[38] (8), [7] (1), [8] (1), [5] (1)
Marathi (mar) [79] (239), [1] (220), [29]

(2), [3] (1)
[1] (138), [5] (45), [3] (20), [29] (11),
[25] (9), [7] (2), [11] (2), [6] (1)

Marwari (rwr) [80] (128), [81] (69), [82]
(51), [83] (38), [84] (2)

[3] (97), [5] (56), [11] (8), [29] (6), [1]
(1), [17] (1)

Nepali (nep) [1] (257), [85] (16), [29]
(13), [3] (1), [5] (1)

[1] (167), [3] (38), [29] (35), [5] (8),
[25] (4), [6] (1), [7] (1), [11] (1), [4]
(1)

Old Church Slavonic
(chu)

[20] (222), [21] (185),
[86] (7), [87] (2), [11] (2),
[1] (1), [7] (1), [88] (1)

[3] (96), [11] (68), [5] (54), [7] (6), [38]
(6), [8] (4), [17] (3), [1] (1), [51] (1),
[18] (1), [9] (1)

Old English (ang) [20] (242), [11] (3), [89]
(1), [23] (1), [13] (1)

[3] (98), [11] (75), [5] (52), [7] (5), [8]
(4), [1] (1), [51] (1), [52] (1), [13] (1),
[54] (1), [20] (1)

Old High German (goh) [20] (255) [5] (217), [20] (15)
Old Irish (sga) [20] (241) [5] (153), [20] (14), [11] (2)
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Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Old Norse (non) [22] (252), [20] (243),

[11] (3), [1] (1), [7] (1)
[3] (116), [11] (86), [5] (55), [7] (9),
[20] (7), [17] (3), [8] (2), [1] (1), [51]
(1), [42] (1), [52] (1), [13] (1)

Old Persian [20] (81), [11] (1) [20] (32), [5] (13), [11] (3), [4] (1)
Old Prussian (prg) [20] (158), [90] (27), [7]

(1), [38] (1), [91] (1), [11]
(1), [9] (1), [17] (1)

[3] (45), [5] (34), [11] (30), [7] (18),
[17] (4), [20] (4), [38] (3), [9] (3), [2]
(1)

Oriya (ori) [26] (221), [92] (201),
[29] (3), [93] (2)

[3] (113), [5] (68), [29] (37), [11] (15),
[1] (2), [6] (1), [26] (1), [17] (1)

Oscan [20] (53) [20] (28)
Persian (pes) [1] (202), [30] (54), [17]

(4), [11] (2), [7] (1), [13]
(1)

[1] (152), [3] (17), [5] (10), [4] (5), [11]
(4), [8] (2), [40] (2), [17] (2), [29] (1),
[7] (1), [13] (1)

Polish (pol) [94] (211), [1] (200), [11]
(6), [17] (1)

[1] (174), [11] (13), [25] (12), [3] (12),
[38] (4), [7] (1), [8] (1), [5] (1), [17] (1)

Portuguese ST (por) [1] (242), [95] (223) [1] (177), [3] (38), [25] (17), [11] (13),
[41] (3), [7] (2), [5] (1)

Provencal (prv) [1] (251), [40] (35), [2]
(1), [41] (1), [11] (1), [3]
(1)

[1] (171), [3] (38), [11] (22), [40] (8),
[5] (7), [41] (5), [7] (1)

Riksmal (nob) [1] (200) [1] (172), [3] (12), [11] (12), [42] (1),
[7] (1)

Romani (rmy) [1] (182), [29] (5) [1] (80), [3] (27), [29] (11), [5] (5), [11]
(4), [7] (2), [8] (1)

Romanian List (ron) [1] (229), [96] (125), [11]
(14), [76] (2), [2] (1)

[1] (148), [11] (40), [3] (23), [25] (5),
[76] (4), [5] (3), [41] (2), [13] (2)

Romansh (roh) [40] (219) [5] (197), [60] (1), [1] (1)
Russian (rus) [5] (210), [1] (201), [97]

(200), [11] (9), [38] (1),
[17] (1)

[1] (166), [11] (16), [3] (12), [38] (6),
[7] (3), [8] (1), [5] (1)

Sardinian C (sro) [1] (199) [1] (152), [3] (22), [11] (11), [41] (3),
[7] (1), [13] (1), [5] (1)

Sardinian L [1] (200) [1] (156), [3] (17), [11] (15), [41] (3),
[5] (2), [7] (1), [13] (1)

Sardinian N [1] (198) [1] (143), [3] (25), [11] (11), [41] (3),
[7] (1), [13] (1)
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Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Scots Gaelic (gla) [98] (231), [36] (75), [11]

(2)
[3] (79), [5] (52), [11] (49), [23] (11),
[7] (4), [8] (2), [99] (1), [36] (1), [4] (1)

Serbocroatian (bos) [1] (200), [11] (4) [1] (167), [3] (15), [11] (12), [38] (4),
[7] (3), [8] (1), [5] (1)

Sindhi (snd) [100] (160), [101] (49),
[34] (48), [29] (8), [7] (1)

[3] (90), [5] (52), [29] (19), [11] (12),
[1] (2), [17] (2), [6] (1), [7] (1)

Singhalese (sin) [1] (216), [102] (21), [29]
(8)

[1] (81), [3] (15), [29] (12), [25] (3),
[5] (2), [11] (1)

Slovak (slk) [1] (222) [1] (183), [3] (20), [11] (10), [38] (4),
[5] (2), [7] (1), [8] (1)

Slovenian (slv) [1] (203) [1] (160), [3] (13), [11] (2), [7] (1), [8]
(1), [38] (1)

Spanish (spa) [103] (219), [1] (215),
[11] (7), [23] (1), [13] (1)

[1] (165), [3] (31), [11] (25), [103]
(12), [41] (3), [7] (2)

Swedish (swe) [1] (237), [104] (160),
[11] (5), [55] (4), [3] (2)

[1] (178), [3] (28), [11] (25), [55] (3),
[5] (3), [25] (1), [7] (1), [42] (1)

Swedish Up [1] (225), [29] (2) [1] (178), [3] (22), [11] (17), [5] (3),
[7] (2), [8] (1), [42] (1)

Swedish Vl [1] (216), [7] (1) [1] (169), [3] (21), [11] (18), [5] (3)
Tadzik (tgk) [1] (248), [30] (78), [3]

(1), [4] (1)
[1] (173), [3] (19), [5] (13), [4] (4), [30]
(3), [11] (2), [25] (1), [8] (1)

Tocharian A (xto) [20] (174), [105] (10),
[11] (3), [9] (2), [4] (1),
[17] (1)

[3] (51), [105] (28), [11] (19), [5] (18),
[17] (9), [20] (6), [8] (3), [2] (2), [9]
(2), [13] (2), [99] (1), [66] (1), [106]
(1), [23] (1), [4] (1)

Tocharian B (txb) [20] (208), [105] (7), [11]
(1), [23] (1), [4] (1), [13]
(1), [17] (1)

[3] (55), [105] (31), [5] (21), [11] (18),
[20] (10), [17] (9), [8] (4), [2] (2), [9]
(2), [23] (2), [13] (2), [99] (1), [66] (1),
[106] (1), [4] (1)

Ukrainian (ukr) [1] (260), [3] (1), [21] (1),
[38] (1)

[1] (175), [3] (30), [38] (9), [11] (8),
[5] (3), [7] (2), [107] (1), [8] (1)

Umbrian [20] (65) [20] (37), [13] (1)
Urdu (urd) [108] (213), [1] (6), [92]

(1)
[3] (113), [5] (72), [11] (16), [29] (9),
[7] (1)

Continued on next page
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Table S1 continued – Cognate source by language.
Language [iso code] Lexeme source [count] Cognate judgement source [count]
Vedic Sanskrit (san) [20] (229), [109] (40),

[110] (24), [11] (17),
[111] (8), [7] (5), [29] (5),
[17] (4), [9] (3), [1] (1),
[112] (1)

[11] (84), [3] (69), [5] (27), [29] (11),
[8] (10), [7] (9), [20] (6), [9] (5), [17]
(5), [66] (3), [105] (3), [112] (3), [4]
(3), [1] (1), [51] (1), [18] (1), [13] (1)

Vlach (rup) [1] (186) [1] (125), [3] (17), [11] (11), [41] (3),
[5] (2), [76] (1), [13] (1)

Wakhi (wbl) [1] (221), [4] (2), [3] (1) [1] (110), [3] (26), [4] (5), [11] (2), [23]
(1), [5] (1)

Walloon (wln) [1] (212), [11] (1) [1] (160), [3] (20), [11] (12), [41] (3),
[5] (2), [7] (1)

Waziri (pst) [1] (222) [1] (156), [3] (12), [5] (7), [4] (3), [6]
(1), [8] (1), [105] (1), [11] (1)

Welsh C [1] (204), [23] (1), [11]
(1)

[1] (166), [11] (14), [3] (8), [23] (7),
[7] (1), [9] (1), [5] (1)

Welsh N (cym) [1] (219), [36] (28), [11]
(6), [23] (2), [6] (1), [7]
(1), [17] (1), [113] (1),
[20] (1)

[1] (169), [11] (22), [3] (9), [23] (7),
[7] (3), [20] (3), [25] (1), [5] (1), [17]
(1)

References
[1] J. Dyen, Isidore Kruskal, P. Black, Transactions of the American Philosophical Society 82 (1992).

[2] D. M. Weeks, Hittite vocabulary: An Anatolian appenix to Buck’s “Dictionary of selected synonyms in
the prinicipal Indo-European languages”, Ph.D. thesis, University of California, Los Angeles (1985).

[3] J. Ludewig. University of Freiburg.

[4] J. Cheung, Etymological Dictionary of the Iranian Verb (Leiden: Brill, 2007).

[5] M. Dunn Max Planck Institute for Psycholinguistics.

[6] R. Beekes, Etymological Dictionary of Ancient Greek (Leiden: Brill, 2010).

[7] A. Walde, Vergleichendes Woerterbuch der Indogermanischen Sprachen (de Gruyter, 1930).

[8] J. Mallory, D. Adams, The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European
World (Oxford, 2006).

[9] J. Pokorny, Indogermanisches etymologisches Wörterbuch (Tuebingen: Francke, 1994).

[10] V. Orel, Albanian Etymological Dictionary (Leiden: Brill, 1998).

[11] C. D. Buck, A dictionary of selected synonyms in the principal Indo-European languages (Chicago: Uni-
versity of Chicago Press, 1949).

40



[12] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Albanian_Swadesh_list.

[13] M. d. Vaan, Etymological Dictionary of Latin and the other Italic Languages (Leiden: Brill, 2008).

[14] M. Woodhouse, English-Greek Dictionary - A Vocabulary of the Attic Language (London: George Rout-
ledge and Sons, 1910).

[15] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Ancient_Greek_Swadesh_
list.

[16] D. J. Mastronarde, Ancient greek tutorials http://socrates.berkeley.edu/˜ancgreek/
ancient_greek_start.html (1999–2005).

[17] Wiktionary .

[18] R. Beekes, Comparative Indo-European Linguistics: An Introduction (Amsterdam: John Benjamins,
1995).

[19] H. Martirosyan, Etymological Dictionary of the Armenian Inherited Lexicon (Brill, 2010).

[20] D. Ringe, T. Warnow, A. Taylor, Transactions of the Philological Society 100, 59 (2002).

[21] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_
Slavic_languages.

[22] K. Bergsland, H. Vogt, Current Anthropology 3, 115 (1962).

[23] R. Matasovic, Etymological Dictionary of Proto-Celtic (Leiden: Brill, 2009).

[24] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Armenian_Swadesh_list.

[25] K. Bellamy-Dworak. Max Planck Institute for Psycholinguistics.

[26] D. P. Pattanayak, A Controlled Historical Reconstruction of Oriya, Assamese, Bengali and Hindi (The
Hague: Mouton and Co, 1966).

[27] G. Grierson, Linguistic Survey of India. Vol. V. Indo-Aryan Family. Eastern Group, pt.1. Specimen of the
Bengali and Assamese Languages (Delhi: Motilal Banarsidass, 1903 [1968]).

[28] X. Community, Assamese dictionary http://www.xobdo.net/dic/index.php.

[29] R. L. Turner, A Comparative and Etymological Dictionary of the Nepali (London: Kegan Paul, Trench,
Trubner and Co, 1931).

[30] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Indo-Iranian_Swadesh_
lists_(extended).

[31] R. Trail, Patterns in Clause, Sentence and Discourse in Selected Languages of India and Nepal (SIL,
1973).

[32] A. Davis, Basic Colloquial Maithili. A Maithili-Nepali-English Vocabulary with Some Structural Notes
(Delhi: Motilal, 1984).

[33] G. Grierson, Linguistic Survey of India. Vol. V. Indo-Aryan Family. Eastern Group, pt.2. Specimen of the
Bihari and Oriya Languages (Delhi: Motilal Banarsidass, 1903 [1968]).

[34] C. G., D. Jain, The Indo-Aryan Languages (London: Routledge, 2003).

41

http://en.wiktionary.org/wiki/Appendix:Albanian_Swadesh_list
http://en.wiktionary.org/wiki/Appendix:Ancient_Greek_Swadesh_list
http://en.wiktionary.org/wiki/Appendix:Ancient_Greek_Swadesh_list
http://socrates.berkeley.edu/~ancgreek/ancient_greek_start.html
http://socrates.berkeley.edu/~ancgreek/ancient_greek_start.html
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Slavic_languages
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Slavic_languages
http://en.wiktionary.org/wiki/Appendix:Armenian_Swadesh_list
http://www.xobdo.net/dic/index.php
http://en.wiktionary.org/wiki/Appendix:Indo-Iranian_Swadesh_lists_(extended)
http://en.wiktionary.org/wiki/Appendix:Indo-Iranian_Swadesh_lists_(extended)


[35] R. Delaporte, Elementary Breton-English and English-Breton Dictionary, Second Edition (Lesneven:
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[58] J. Zantema, Frysk Wurdboek, frysk-nederlânsk (Leeuwarden/Ljouwert: A.J. Osinga Uitgeverij, 1984).

[59] Wiktionary, http://en.wiktionary.org/wiki/Appendix:Friulian_Swadesh_list.

42

http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Celtic_languages
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Celtic_languages
http://en.wikipedia.org/wiki/Swadesh_list_of_Slavic_languages
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_further_Romance_languages
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_further_Romance_languages
http://en.wiktionary.org/wiki/Appendix:Celtic_Swadesh_lists
http://www.freelang.net/online/cornish.php?lg=gb
http://ordnet.dk/ddo/
http://dictionary.oed.com/
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Germanic_languages
http://en.wiktionary.org/wiki/Appendix:Swadesh_lists_for_Germanic_languages
http://www.cnrtl.fr/etymologie/
http://en.wiktionary.org/wiki/Appendix:Friulian_Swadesh_list


[60] H. Cox, W. Martin, W. Pijnenburg, P. van Sterkenburg, G. Tops, Groot woordenboek Duits-Nederlands
(Utrecht/Antwerpen: Van Dale Lexicografie, 1983).

[61] L. GmbH, Online german dictionary http://dict.leo.org/.
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Table S2: Age Calibration Information. Prior distributions for the ages
of ancient languages. We incorporate prior knowledge on both the age of the
ancient languages (tips) and the age of common ancestors of language groups
(internal nodes) based on historical sources to calibrate the time-scale of our
language trees. The first three entries list the prior distributions used as cali-
brations for the tips, and the remainder for internal nodes.

Language Calibration Historical Information

Hittite Normally distributed with
mean 3450.0 and 125.0
standard deviation

Oldest Hittite text of King Anittas from
the 18th century BCE. Latest texts
from the 14th-13th centuries BCE.

Luvian Normally distributed with
mean 3350.0 and 75.0
standard deviation

Cuneiform Luvian texts 16th to 13th
century BCE.

Lycian Normally distributed with
mean 2400.0 and 50.0
standard deviation

Lycian inscriptions from 500BCE to
300BCE

Vedic Sanskrit Normally distributed with
mean 3000.0 and 100.0
standard deviation

Vedic period 1200BCE to 800BCE.

Avestan Normally distributed with
mean 2500.0 and 50.0
standard deviation

‘Younger’ Avestan attested around
500BCE

Old Persian Normally distributed with
mean 2450.0 and 75.0
standard deviation

Cuneiform inscriptions of the
Achaemenid era (600BCE-300BCE)

Ancient Greek Normally distributed with
mean 2400.0 and 50.0
standard deviation

Classical Attic

Umbrian Normally distributed with
mean 2200.0 and 100.0
standard deviation

Umbrian inscriptions 300BCE to
100BCE

Oscan Normally distributed with
mean 2200.0 and 100.0
standard deviation

Oscan inscriptions 300BCE to 100BCE

Latin Normally distributed with
mean 2050.0 and 75.0
standard deviation

Classical Latin

Gothic Normally distributed with
mean 1650.0 and 25.0
standard deviation

Visigothic source texts

Old High German Normally distributed with
mean 1050.0 and 50.0
standard deviation

9th century East Franconian source
texts

Continued on next page
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Table S2 continued – Age Calibration Information.
Language Calibration Historical Information
Old English Normally distributed with

mean 1000.0 and 50.0
standard deviation

Late West Saxon Old English

Old Norse Normally distributed with
mean 775.0 and 40.0 stan-
dard deviation

Old Icelandic source texts

Classical Armenian Normally distributed with
mean 1450.0 and 75.0
standard deviation

Classical Armenian source texts from
the 5th to 7th century

Old Irish Normally distributed with
mean 1250.0 and 75.0
standard deviation

Old Irish source texts

Tocharian A Normally distributed with
mean 1375.0 and 75.0
standard deviation

Earliest texts from later half of 1st mil-
lennia CE. No texts after 750CE by
which time Tocharians are thought to
have been assimilated with Turkish in-
vaders.

Tocharian B Normally distributed with
mean 1350.0 and 75.0
standard deviation

Earliest texts from later half of 1st mil-
lennia CE. No texts after 750CE by
which time Tocharians are thought to
have been assimilated with Turkish in-
vaders.

Old Church Slavonic Normally distributed with
mean 1000.0 and 50.0
standard deviation

Source texts from 10th and 11th cen-
tury CE

Old Prussian Normally distributed with
mean 500.0 and 50.0 stan-
dard deviation

15th and 16th century Old Prussian
source texts

Lithuanian/Latvian Normally distributed with
mean 1350.0 and 25.0
standard deviation

Historical sources indicate differentia-
tion of Lithuanian and Latvian (Lat-
galian) in the 7th century as Proto-
Latvian and Proto-Lithuanian tribes
emerged,

Balto-Slavic Normally distributed with
mean 3100.0 and 600.0
standard deviation (trun-
cated from 2000 to 3400)

Distinct Slavic culture and language
known to pre-date 100CE on the basis
of Tacitus’s ”Germany”. Archaeologi-
cal evidence suggests the split may have
occurred as early as 1,400BCE.

Northwest Germanic Normally distributed with
mean 1875.0 and 67.0
standard deviation

Earliest attested North Germanic in-
scriptions date from 3rd century CE.

Continued on next page
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Table S2 continued – Age Calibration Information.
Language Calibration Historical Information
Indo-Iranian Truncated between 3000.0

and 10000.0
Rgveda, an identifiably Indic collection
of sacred texts, is thought to date from
between 1450-1000BCE. The Avesta,
a similar Iranian collection of sacred
texts, has been recorded in oral tradi-
tion since before 800BCE.

Iranian Log normally distributed
with mean 400.0 and 0.8
standard deviation with
offset of 2600.0

By 500BCE Old Persian was distinct
from the Eastern Iranian dialects.

Tocharic Log normally distributed
with mean 200.0 and 0.9
standard deviation with
offset of 1650.0

Tocharian languages are thought to
have diverged shortly after the fall of
Bactria (135BCE) and no later than
100 years before the first known inscrip-
tions of Tocharian B.

West Germanic Normally distributed with
mean 1550.0 and 25.0
standard deviation

Anglo-saxons began to settle Britain
from around 400CE.

French/Iberian Normally distributed with
mean 1400.0 and 100.0
standard deviation

Beginning of repetition of Latin liturgi-
cal formulas without comprehension in
sixth to eighth centuries CE. Strasburg
Oaths, 842CE.

Indic Log normally distributed
with mean 1000.0 and 1.0
standard deviation with
offset of 2150.0

Singhalese records dating from as early
as 2nd century BCE indicate that Indic
languages had begun to diverge by this
time.

Celtic Log normally distributed
with mean 2000.0 and 0.6
standard deviation with
offset of 1200.0

Archaic Irish inscriptions date back to
the 5th century CE - divergence must
have occurred well before this time.

Latin/Romance Normally distributed with
mean 2000.0 and 135.0
standard deviation

Last Roman troops withdrawn to south
of Danube, 270CE. Dacia conquered by
Rome, 112CE.

Slavic Log normally distributed
with mean 300.0 and 0.6
standard deviation with
offset of 1200.0

Old Church Slavonic and East Slavic
texts date to beginning of 9th century
and indicate significant divergence by
this time. The split must have occurred
after the Balto-Slavic divergence.

Brythonic Normally distributed with
mean 1550.0 and 25.0
standard deviation

Migrants from Britain colonize Brit-
tany in 5th century CE.

Continued on next page
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Table S2 continued – Age Calibration Information.
Language Calibration Historical Information
Greek split before 1,500BC Earliest form of an ancient Greek di-

alect is Mycenaean, attested in Linear
B texts dating from 15th century BCE.
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Table S3: Log probability of the CTMC, covarion and stochastic Dollo sub-
stitution models with and without relaxed clock. Logarithm of Bayes factors
comparing the models pair-wise.

ln(P (model|data)) CTMC Covarion S.Dollo
relaxed strict relaxed strict relaxed strict

CTMC relaxed clock -53017 ± 0.9 0 -147 415 263 646 462
CTMC strict clock -53355 ± 0.2 147 0 562 410 793 608
Covarion relaxed clock -52061 ± 0.2 -415 -562 0 -152 231 46
Covarion strict clock -52411 ± 0.2 -263 -410 152 0 383 198
S.Dollo relaxed clock -51530 ± 0.5 -646 -793 -231 -383 0 -184
S.Dollo strict clock -51954 ± 0.2 -462 -608 -46 -198 184 0

Table S 4: BRW and RRW model comparison Numbers in brackets are 95%
HPD intervals.

Brownian RW Cauchy-RRW
Log Posterior -52566.52 -52293.97
Marginal LnL -51207.26 -50958.20
Hyperparameters NA ν/2 = 0.5
Coefficient of variation NA 1.38 (1.21,1.55)
Dispersal rate (km/year) 0.60 (0.52,0.69) 0.48 (0.42,0.55)

gamma-RRW lognormal-RRW
Log Posterior -52355.45 -52240.96
Marginal LnL -51032.26 -50939.34
Hyperparameters ν/2 = 0.75(0.45, 1.08) σ = 2.43(1.92, 2.90)
Coefficient of variation 1.14 (0.89,1.43) 4.35 (2.33,6.51)
Dispersal rate (km/year) 0.49 (0.43,0.56) 0.48 (0.42,0.55)
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Table S5: Correspondence between languages in the Ringe et al.(16 ) data set
and the major sub-groups in our language data. These correspondences were
used to produce the constraints illustrated in Figure S12.

Constraint name Ringe Language Language set
Anatolian Hittite, Lycian, Luvian Hittite, Lycian, Luvian
Tocharian Tocharian A, Tochar-

ian B
Tocharian A, Tocharian B

OscanUmbrian Oscan, Umbrian Oscan, Umbrian
Romance Latin Provencal, French, Walloon, Sardinian

N, Sardinian L, Sardinian C, Span-
ish, Portuguese ST, Catalan, Roma-
nian List, Vlach, Italian, Ladin, Friu-
lian, Romansh, Latin

Celtic Old Irish, Welsh Irish A, Old Irish, Welsh N, Welsh C,
Breton List, Breton SE, Breton ST,
Cornish, Scots Gaelic

Albanian Albanian Albanian Top, Albanian G, Albanian
K, Albanian C

EastGermanic Gothic Gothic
NorthGermanic Old Norse Swedish Up, Swedish VL, Swedish List,

Danish, Riksmal, Icelandic ST, Faroese,
Old Norse

WestGermanic Old English, Old High
German

Old English, English ST, German ST,
Dutch List, Flemish, Frisian, Luxem-
bourgish, Old High German

Greek Greek Greek ML, Greek Mod, Ancient Greek
Armenian Armenian Armenian Mod, Armenian List, Classi-

cal Armenian
LithuanianLatvian Lithuanian, Latvian Lithuanian ST, Latvian
OldPrussian Old Prussian Old Prussian
Slavic Old Church Slavonic Slovenian, Lusatian L, Lusatian U,

Czech, Slovak, Czech E, Ukrainian,
Byelorussian, Polish, Russian, Mace-
donian, Bulgarian, Serbocroatian, Old
Church Slavonic

Indic Vedic Romani, Singhalese, Kashmiri,
Marathi, Gujarati, Lahnda, Hindi,
Bengali, Nepali List, Assamese, Bihari,
Marwari, Oriya, Sindhi, Urdu, Vedic
Sanskrit

Irianian Avestan, Old Persian Afghan, Waziri, Persian List, Tadzik,
Baluchi, Wakhi, Avestan, Digor Os-
setic, Iron Ossetic, Kurdish, Old Per-
sian
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