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Abstract. This document is part of the supplementary material for the paper

A General Method for Assessing Brain-Computer Interface Performance and its

Limitations .

In Section S1 we present a general random-walk simulation method for estimating

the success rate P0 that we might expect by chance in a brain-computer interface

control task, i.e. on the assumption that the user had no voluntary control over

the system. The user’s actual success rate can then be assessed relative to P0 to

produce an estimate of information gain. Python code for performing random-walk

simulations, and for computing information gain rates, is also provided on the web at

http://schalklab.org/downloads .

In Section S2, we give a numerical example of the computation of our performance

metric RIGB , along with details of the method we use to compute standard error bars

and other confidence intervals on it.

In Section S3 we present an analysis indicating that the session-to-session variation

in BCI performance exhibited by our two above-chance subjects is likely the result

of fluctuations in the EEG signals themselves, rather than inherent properties of the

measurement method.

In Section S4, we discuss our performance assessment approach based on

information gain: in Section S4.1 we contrast it with approaches based on Fitts’ Law; in

Section S4.2, we explore the relation of our performance metric RIGB to two measures

of information transfer rate (ITR) that are popular in BCI studies, namely Wolpaw’s

ITR and channel capacity (a.k.a. Nykopp’s ITR).
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S1. Estimating chance performance under the null-hypothesis of no

voluntary BCI control

To make a fair assessment of a BCI user’s success rate P in performing a task, we must

take into account the success rate P0 that we might expect by chance, i.e. under the null

hypothesis that the user has no control over the BCI system. In Section 2.7 of the main

paper, we defined one approach by which it is possible to relate the two probabilities,

but we did not yet address the question of how P0 was to be estimated.

In some laboratory BCI experiments, trials can be designed according to very tight

constraints: experimenters can ensure that trial outcomes are divided exhaustively into a

finite number of non-overlapping targets; they can ensure that each target is encountered

with equal probability; and they can minimize any factors that make some targets easier

to hit than others. If all these criteria are satisfied, then it is easy to write down P0

directly: if there are N discrete equiprobable outcomes, then P0 = 1/N .

In the more general case, including many realistic use-cases for BCI technology, it

is not so easy to specify P0 in this way. Even in a simple game, such as the one used in

the current study, it is not clear a priori how successful players might have been if they

had simply moved the cursor back and forth at random, or provided some other kind of

uncontrolled input. (Analogously, some early console computer games could be played

successfully to some extent by random “button mashing”.)

One way to account for this button-mashing problem is to perform random re-

simulation of the task during data analysis. The goal is to quantify the performance

that would be expected from an input signal whose statistical properties match those

of real intentional control signals as far as possible, while lacking any actual intentional

control. An example of this, already introduced in Section 2.3 of the main paper, is

the Random Baseline condition: we re-ran our original online BCI system, driving it

using real pre-recorded brain signals so that the statistics of the input signal would be

identical to those used in the real games. Since our game was a deterministic system, we

had to introduce a manipulation that took away meaningful control from the signal. In

the current study, our solution was to use a time delay. Other studies have replayed the

signals backwards, as in our study of a BCI-driven Breakout game [1], or have simply

replayed the signals through a non-deterministic system, such as the physical pinball

machine of Tangermann et al. [2].

The disadvantage of such online-replay methods is that they rely on running a fully-

functioning implementation of the online system. An online BCI system typically must

perform a large number of tasks that are not directly related to the evaluation of control

signals and success rates (for example, interfacing with hardware, presenting visual and

auditory stimuli, processing EEG). Therefore, the analysis cannot be performed quickly,

cannot be replicated offline, and cannot be repeated an arbitrarily large number of times

to increase the precision of the estimate of P0. It is also no trivial task to engineer an
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online BCI system to be fully deterministic, to support a reliable replay analysis. An

alternative approach is to break the game into discrete trials and re-simulate each trial

repeatedly. Some studies that have adopted this approach randomize the input signal’s

phase spectrum on each re-simulation (see for example [3]). However, we wished to

develop a general re-usable method applicable to a wide variety of control scenarios—

one which could easily simulate some of the more common game mechanics, such as

the fact that the cursor would stop when it hit the edges of the screen. Therefore,

our solution was to re-simulate each trial repeatedly using a random-walk method. We

describe the approach in the rest of this section. Although the current study only used

one-dimensional control, we describe the general multi-dimensional case. As described,

the approach is suitable for any control task in which targets must be hit and/or avoided,

the cursor is prevented from moving through certain barriers, and the trials are defined

such that targets’ behavior is not dependent on the cursor’s behavior within a given

trial. The random-walk approach would also allow further game mechanics and physical

constraints to be simulated relatively easily.

We define the scope of a simulation to be the set of trials over which a single

estimate of P0 must be computed—for our current study, the scope comprised all 3

measurement/adjustment phases performed by the same person in the same session in

the same controller condition. Each trial is simulated S times, and the success rates for

all trials within the same scope are averaged to arrive at an estimate of P0. We used

S = 1000 and the number of trials within one scope was between 45 and 129. Hence

each of our P0 estimates was based on 45,000–129,000 simulations.

The information and assumptions required to simulate each trial are as follows:

(i) The game is assumed to consist of a cursor (under the player’s control), targets

(which the cursor must either hit or avoid) and barriers (which may limit the

cursor’s movement).

(ii) The game is broken down into trials. Each trial is a short episode whose outcome

can be either successful or unsuccessful. Each trial will be re-simulated S times in

isolation from other trials.

(iii) The cursor’s size Wc and position Xc at the beginning of every simulation of trial i

match the size and position at the start of trial i of the actual game. The cursor

size is assumed to be constant throughout the trial.

(iv) The timeline of each trial is considered as a series of discrete time steps. Like many

computer games and computerized tasks, our game was already implemented as a

series of discrete steps, so we used its intrinsic step duration of 31.25 ms (8 digitizer

samples).

(v) For each trial, barriers are defined through which the cursor cannot pass. Whenever

a step would cause the cursor to overlap with a barrier, the step is truncated such

that the cursor just touches the barrier. In our game, the only barriers were the

edges of the screen.
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(vi) For each trial, one or more target regions are specified. Each target has a fixed

center position Xt and fixed width Wt in each spatial dimension.

(vii) Each target may have a positive or negative valence. Hitting any target causes the

trial to end immediately—hitting a positive target means the trial ends successfully,

and hitting a negative target means it ends unsuccessfully.

(viii) For each target j, a critical time window is specified: the minimum step number

T
(j)
min and maximum step number T (j)

max on which it can be hit.

(ix) A trial expires without a hit if the number of steps taken exceeds the maximum

T (j)
max across all targets j. An expired trial is considered successful if there were

no positive targets (i.e. the only aim was to survive, avoiding negative targets), or

unsuccessful if the trial contained one or more positive targets.

(x) At any time step, the overlap between the cursor and the target can be computed

as
min

(

Xt +
Wt

2
, Xc +

Wc

2

)

−max
(

Xt −
Wt

2
, Xc −

Wc

2

)

min (Wt,Wc)
.

For each target, a critical overlap value from 0 to 1 is specified, to define what

constitutes a hit. In the fueling and adjustment phases of our game (see Section 2.4

of the main paper), our positive targets (the raindrops that the player had to collect)

had a critical overlap value of 1: that is, a hit was only registered if the overlap

was ≥ 1, indicating that the cursor completely swallowed the target or vice versa.

In the flying phase, our negative targets (the rockets that the player had to avoid)

had a critical overlap value of 0: that is, a hit was registered as soon as the overlap

was ≥ 0, indicating that the edge of the cursor had touched the edge of the target.‡

Each simulation of each trial is conducted as a Rayleigh flight, i.e. a random

walk whose step sizes are normally distributed (except where steps are truncated to

prevent the cursor passing through a barrier). For each time step, a random step

vector is drawn from a normal distribution with mean 0 and covariance matrix Σ. The

covariance Σ is estimated from the real data, by taking the sample covariance of all the

non-truncated steps in a given scope. Thus, the variance of the distribution of step sizes

(and, for multiple spatial dimensions, the correlation between components of the step

along different dimensions) is matched to the distribution observed in the original game.

We also match the path’s smoothness , as characterized by its autocorrelation at an offset

of 1 step.§ To match this, for each spatial dimension k we estimate rk, the correlation

coefficient between all consecutive pairs of non-truncated steps in the original scope. We

‡ For > 1 spatial dimensions, our default implementation of this collision-detection algorithm assumes

that the critical overlap value must be equalled or exceeded in all spatial dimensions simultaneously for

a hit to be registered—strictly, this is realistic only for rectangular-edged cursors and targets oriented

parallel to the frame of reference, but it may be a close enough approximation for many purposes.
§ Note that the choice of trajectory parameters (covariance and smoothness) might reasonably be

expanded in future to encompass more sophisticated simulated models of BCI users—see [4, 5] for an

approach to such models.
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then apply a digital causal filter to the time-series of random step sizes, with numerator

coefficient b0 =
√

1− r2k and denominator coefficients a0 = 1 and a1 = −rk. The

estimation and filtering procedures are repeated separately for each spatial dimension.

The filtering operation does not affect the variance or the spatial covariance of the step

sizes. Therefore, the result is a time series of random step vectors whose covariance

and unit-offset autocorrelations are matched to the original measurements made in the

current scope. Finally, this series is numerically integrated into a cursor trajectory,

starting at the initial cursor position for the trial in question. During integration, if a

step would cause the cursor to have > 0 overlap with a barrier in all dimensions, the

step is truncated such that the overlap is exactly 0 in each dimension. The trajectory is

then checked against the target positions to determine whether the simulated trial has

ended successfully or unsuccessfully according to rules (vii) and (ix).‖ An example of the

random walk trajectories is given in Figure S1. Assuming equal numbers of simulations

per trial, the proportion of successful simulations within one scope (for example, the

overall proportion of pink to gray traces in Figure S1) is taken as an estimate of P0 for

that scope.

At http://schalklab.org/downloads we provide Python code for performing

random walks of the kind we have described in this section.

‖ Note that, although rule (vi) stipulates that targets remain fixed throughout a trial, a target moving

along a deterministic path can easily be simulated as multiple targets with different positions and

consecutive critical time windows.
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Figure S1. This figure shows the same example performance measurement sequence

as Figure 1 of the main paper. The thick blue line indicates the center position of

the cursor at each time step. The vertical gray lines indicate the times at which trials

end. The small rectangular patches indicate the spatial extent of the targets and the

temporal window during which the cursor had to catch them. Light green patches

indicate targets that were hit, whereas dark red patches indicate targets that were

missed. Thinner gray and pink lines indicate the first 50 random-walk simulations for

each trial: gray lines indicate misses during simulation, and pink lines indicate hits

during simulation.
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S2. Error bars and confidence intervals on RIGB

Having observed PM successes out of M trials, a popular approach to statistical

inference on this outcome is to use the Jeffreys interval [6]. The Jeffreys interval is

computed by taking quantiles of a beta distribution with shape parameters PM + 1
2

and (1 − P )M + 1
2
, with special handling when the observed proportion of successes

is 0 or 1. For example, if I(a, b) denotes the cumulative distribution function for the

beta distribution with shape parameters a and b, then the limits of a two-tailed 95%

confidence interval are given by

P [0.025] =







0, if P = 0;

I−1
0.025

(

PM + 1
2
, (1− P )M + 1

2

)

otherwise, and

P [0.975] =







1, if P = 1;

I−1
0.975

(

PM + 1
2
, (1− P )M + 1

2

)

otherwise.

Since our measure RIGB is a monotonically increasing function of P for a fixed

success-by-chance probability P0, one could then simply substitute the limit values P [0.025]

and P [0.975] for P in our formula for RIGB. Note, however, that this approach disregards

uncertainty in the estimation of P0 itself. Strictly, the predictive distribution of P0 is

also a beta distribution, with shape parameters P0SM + 1
2
and (1− P0)SM + 1

2
, where

S is the number of random-walk simulations performed per trial. The joint distribution

of P and P0 is a product of the two beta distributions, and a confidence interval for

a function of both P and P0 may be estimated by sampling—for example, by dense

two-dimensional grid sampling, or by a Markov-chain Monte Carlo method such as the

Metropolis-Hastings algorithm [7].

We compared confidence interval boundaries computed according to the fixed-P0

assumption with those computed by 1000× 1000 grid sampling and by the Metropolis-

Hastings method using 5000 iterations, for various values of N , P and P0. We found

that, as long as the number of random-walk simulations exceeds around 200 per trial,

the assumption of fixed P0 changes the confidence interval boundaries only very slightly

(typically by less than 1% of the interval width) relative to the values found by the

sampling approaches.

Therefore, we adopt the approach of simply plugging in the Jeffreys interval limits

for P into our formula for RIGB on the assumption that our estimate of P0 is correct.

A standard error bar can be computed this way, using P [0.159] and P [0.841] to achieve the

same coverage that one would expect from the mean ± one standard error in an estimate

of a normally-distributed variable.

Numerical example: suppose a BCI user were to perform 60 trials, each lasting

1 sec on average, and succeeds on 45 of them, so that we have P = 0.75, M = 60 and

t̄ = 1 sec. Then suppose that, from our random-walk simulations, we estimate P0 = 0.3

as the probability of success by chance. Our estimate of the rate of information gain

is RIGB = 0.620 bits per second. Finally, suppose we want to compute an error bar

whose coverage would be equivalent to the mean ±1 standard deviation of a normally-
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distributed variable, i.e. a confidence interval that covers quantiles 0.159 to 0.841 of

the predictive distribution. The confidence interval on P is [0.690, 0.801] and hence the

interval on RIGB is [0.466, 0.775].
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S3. Variation in BCI performance from session to session

In Section 3.1 and Figure 2 of the main paper, we report session-by-session performance

measurements of four subjects in four different controller conditions. Two of the

subjects, B and C, performed better than change with the BCI Controller, but their

performance (particularly that of Subject B) was highly variable from session to session

when contrasted with performance in the other controller conditions. The within-session

variability (among the three repetitions of the performance measurement procedure

performed on each session) was small relative to the between-session variability, and

we interpreted this to mean that the between-session variability was not due to any

intrinsic property of our performance measurement system, but rather due to day-to-

day variability in the signal-to-noise ration of the EEG signals themselves.

The data from each session’s calibration trials support this interpretation. As

an illustration, see Figure S2, where SCD values (signed coefficient of determination,

otherwise known as signed r2) are plotted on the scalp to indicate how well bandpower

features distinguish left-hand from right-hand calibration trials performed by Subject B.

The scalp maps show SCD for bandpower features at a range of frequencies (from left to

right), for four consecutive sessions (top to bottom). Note that the features are highly

variable from session to session not only regarding the magnitude of the SCD (which

indicates the degree of separability of the two classes) but also with regard to which

frequency band is most influential, and even which hemisphere. Note in particular

that session 4 (third row) was a bad day for this subject’s EEG signals: the MREd

during online BCI performance was no better than the Random Baseline, and this is

corroborated by the particularly low SCD values during the calibration phase.

This interpretation is further corroborated if we summarize each calibration session

with a single r2 value, by summing of r2 across channels C3, C4, CP3, CP4, P3, and P4

and across frequencies from 9 Hz to 24 Hz. If we then compute the Spearman correlation,

across all of the sessions performed by subjects B & C, between these summary r2 values

and mean MREd values, we find a significant correlation (ρ = 0.52, p = 0.0216, N = 19).

Note that the r2 values themselves should be expected to be noisy, since they are

each based on only 40 trials per session, and that the calibration trials were performed

separately from the actual performance measurement sequences. Nonetheless, the day-

to-day variations in the signal-to-noise ratio of the subjects’ sensory-motor rhythms

clearly predict variations in MREd to a significant extent.
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Figure S2. This figure shows example scalp maps from Subject B, illustrating session-

to-session variability in BCI signal quality. Signed coefficients of determination (SCDs,

or signed r
2 values) are plotted on the scalp for bandpower features computed after

surface-Laplacian spatial filtering. The SCD values indicate the signal-to-noise ratio in

the discrimination of left-hand from right-hand imagined movement trials during the

calibration trials at the beginning of each session. Each column corresponds to a 3-Hz

frequency in the range from 9 Hz to 24 Hz. Each row corresponds to a session, from

number 2 to number 7. The corresponding mean of the adaptive performance measure

MREd is also given for each session (these values correspond to the first four points on

the blue solid line in the second panel of Figure 2 of the main paper).
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S4. Discussion of performance measurement approaches

In the Introduction of the main paper, we described one of our challenges, Challenge II,

as the need to develop a general performance metric that could allow comparison of

performance between different task contexts.

Since our approach to this challenge, an analysis based on information gain, is

applicable to a wide variety of tasks and contexts, it is worth discussing its properties

in more detail relative to those of related approaches.

In Section S4.1, we contrast our approach with a popular approach based on Fitts’

Law. In Section S4.2, we explore the relation of our metric RIGB to two measures of

information transfer rate (ITR) that are also frequently used in BCI studies, namely

Wolpaw’s ITR and channel capacity (a.k.a. Nykopp’s ITR).

S4.1. Information gain vs. Fitts’ Law

One very influential approach to measuring control performance is an analysis based

on Fitts’ Law. Based on the work of Fitts [8], this law states that the average time

taken to complete a movement, t̄, is proportional to the index of difficulty of the

movement IDF , measured in bits. Thus, if t̄ = a + b IDF , experiments are designed

to require movements of different lengths to allow estimation of a and b. An index of

performance IPF , in bits per unit time, is then calculated—usually as 1/b—to compare

performance across studies, conditions, subjects and interfaces. IDF is usually defined

according to the Shannon formulation due to MacKenzie [9]: IDF = log2 (1 + D/W ),

where D is the length of the required movement, and W is either the width of the target

or some multiple of the standard deviation of terminal positions (measured in either case

in the direction of movement). Thus, 1/W reflects either the required or the achieved

precision of successful movements.

Fitts’ Law analyses (FLA) have been used extensively in human-computer

interaction research, since the linear relation has been found to hold very reliably and

with strikingly little residual error under many conditions. The approach is part of

the ISO standard for evaluating the performance of pointing devices [10]. In the BCI

literature, Felton et al. [11] reported that Fitts’ Law held for selected abled-bodied and

disabled subjects, and selected difficulty levels, in the control of one-dimensional velocity

of a cursor by modulation of EEG sensory-motor rhythm power. A trial was labeled

successful if the subject caused the cursor to dwell within a target zone of widthW for at

least 500 ms, and unsuccessful if the subject did not achieve this before 15 seconds had

elapsed. Simeral et al. [12] used a modification of the ISO task in combination with FLA

when assessing the performance of a tetraplegic person using the BrainGate 2 system to

steer a cursor in two dimensions and “click” on targets. Movement and “clicking” were

achieved by modulating the spike rates of neurons in motor-cortex, as measured using

an implanted microelectrode array. The authors observed significant linear correlations

between trial duration and IDF in most sessions. Gilja et al. [13] used FLA to analyze

the performance of rhesus monkeys who used the firing rate of neurons in motor-cortex
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to steer a cursor in a two-dimensional center-out 8-target task and acquire them within

4 s by dwelling for 500 ms.

We have chosen to develop alternative methods of performance assessment for BCI,

because of the following three limitations of FLA:

i). Assumption of negligible rates of failure Generally, FLA assumes that the task can

be performed with a negligible rate of failure. Although methods have been proposed for

making approximate corrections to IDF based on empirical error rates [14], the analysis

typically begins by excluding unsuccessful trials. This had a large impact on the study

by Felton et al., even in their very simple task. Subjects were selected according to their

performance: only those who achieved ≥ 90% success rates were included in the analysis.

Of the 12 disabled subjects, 7 were removed because they failed to reach this criterion.

The able-bodied subjects were recruited based on previous high BCI performance, and

had to pass this criterion level again for inclusion in the results. Even then, trials at

the highest IDF had to be excluded due to large error rates. All this data selection

was presumably necessary to make Fitts’ Law fit—this does not necessarily invalidate

the results, but it clearly indicates that they only capture a fraction of the information

we would like to know about performance. The two invasive studies benefitted from

better signal-to-noise ratios, and also longer time periods during which the subjects

could be trained and the task difficulties adjusted. Gilja et al. [13] were able to adjust

the difficulty of their task such that both their monkeys achieved success rates of > 90%,

and Simeral et al. [12] observed an average success rate of 91% with their implanted

human subject.

In the Introduction of our main paper, we described Challenge I as the need for

methods that capture a wide range of performance levels on the same scale. We decided

that the assumption of negligible rates of failure made FLA unsuitable for addressing

this challenge, since BCI data in general contain a large proportion of errors, and these

contain information we would like to use.

ii). Suitability for a limited range of tasks The second limitation is that the near-

perfect-performance assumption of FLA means that it is only suitable for situations

in which the subject can increase or reduce the speed of movement at will, and can

thereby trade off speed for accuracy. It works well for motor pointing tasks and for

tunnel navigation tasks (such as sub-menu selection with a mouse) because it is generally

possible for subjects to achieve near-perfect performance in these tasks by slowing down.

However, it remains to be seen whether this property holds for BCI systems, even for the

subset of trials that are performed correctly. In Felton’s study this is unclear because,

apart from the fixed timeout at 15 seconds, there was no action or contingency analogous

to a mouse-click that brought the trial to an unequivocal end, whether successful or

unsuccessful. Instead, the longer the trial continued, the more opportunities there were

for the cursor to dwell on the target for the required time, whether as a result of control

or of chance. Hence, such a design automatically introduces a positive effect of target
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difficulty on the duration of correct trials, even if the subject has insufficient control

over speed to trade it for accuracy. Simeral et al. also seem to express doubt that their

subject had this type of control over the BrainGate, reporting an increased error rate

for smaller as compared with larger targets.

In the Introduction of the main paper, we described Challege II as the need for

a general performance metric that can be used to compare performance fairly across

a wide range of tasks. We decided that FLA was unsuitable to address this challenge

due to its applicability only to tasks in which speed can be traded for accuracy. It

also excludes tasks like the current study’s fixed-paced raindrop-catching task in which,

even if the subject is able to perform some kind of beneficial speed-accuracy tradeoff,

the effects are not manifested in differences in measured trial duration.

iii). Lack of invariance to nuisance parameters The third limitation is that it is difficult

to compare control performance across studies using the FLA bit rate if there is any

variation in “nuisance” task parameters, i.e. in parameters other than the two (target

width and distance) that are reflected in IDF . An obvious example of such a parameter

in Felton’s design is the required dwell-time, which was set to 500 msec. It is easy to see

that manipulations of dwell-time might affect the difficulty of the task (albeit perhaps

in non-trivial ways). Yet, this important change in actual difficulty will not be captured

by the difficulty index IDF on which bit rate estimates are based, since IDF depends

only on distance moved and target size. Thus, it is unclear whether performance of, say,

0.4 bits/sec measured with a required dwell-time of 500 msec represents better or worse

BCI control than 0.3 bits/sec when the required dwell-time is 1 sec. Generally, when

we consider the wide range of tasks for which neuroprosthetic devices might be used,

we imagine that there will be many such nuisance parameters. Though it is possible to

reduce this problem by standardizing each single-purpose task (as in the ISO standard

for pointing devices, for example), this does not help us to compare control performance

across tasks. Even for individual tasks, it is likely that many researchers will find their

own good reasons for making study-specific departures from the standards, as Simeral

et al. did in modifying the ISO standard.

This third limitation was also a factor in rejecting FLA for Challenge II: inability

to account for nuisance parameters further limits the scope for comparing experiments,

whereas we would like to design an index of difficulty that already accounts for a wide

range of possible task parameters.

These issues highlight an urgent need for alternative methods of performance

assessment—a need which Simeral et al. also highlight in their paper.

Our approach to task difficulty was complementary to that of FLA. Like FLA,

we aimed to equalize the success rate P regardless of users’ ability, but to do so we

adapted our task difficulty using a staircase procedure that, unlike the FLA approach,

ensures performance is below ceiling. We then based our performance measurement on

the empirical success rate relative to the performance P0 of a chance model such as
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the random-walk simulation model introduced in Section 2.8 of the main paper and

explained in greater detail in Section S1. Our simulation method for estimating P0

aimed to incorporate as many as possible of the experimental conditions and constraints

experienced by the user, so that the outcome reflected a large number of parameters

that would be nuisance parameters in FLA. The difficulty of a particular trial, or set

of trials, is indicated by the resulting P0 estimate, and can be expressed in bits as an

index of difficulty IDB = −log2 P0.

We also required an index of performance, in bits per unit time. Important

considerations for different ways to calculate bit rate are discussed in the next section.

S4.2. Information gain vs. channel capacity

In Section 2.7 of the main paper we introduced an index of performance for assessing

observed success rate P , relative to estimated chance performance P0, over the course

of a number of discrete trials of average duration t̄. The formula is reproduced here in

equation (1) for convenience:

RIGB = sign(P − P0) ×
[

P log2
P

P0

+ (1− P ) log2
1− P

1− P0

]

/ t̄ . (1)

Our term RIGB stands for the rate of information gain between two Bernouilli

distributions. The term in square brackets is the information gain term, computed

as the Kullback-Leibler divergence of the Bernoulli distribution {P0, 1 − P0} reflecting

chance performance, from the Bernoulli distribution {P, 1−P} reflecting the empirically-

observed performance.

This information-gain term is also a simple generalization of the well-known formula

for information transfer proposed by Wolpaw et al. [15]. Wolpaw’s criterion has been

used in many studies to evaluate the performance of BCI systems that produce one of a

fixed number N of discrete outputs (target classes or symbols). Wolpaw et al. originally

defined the information transfer measure B, in bits per trial, as in equation (2) below,

but it is easy to substitute P0 = 1/N and show their measure’s equivalence to our

information gain term (3):

B = log2 N + P log2 P + (1− P ) log2
1− P

N − 1
(2)

= P log2
P

P0

+ (1− P ) log2
1− P

1− P0

where P0 =
1

N
. (3)

This formula has attracted some criticism, which we will discuss below.

Nonetheless, it has proven very popular in the BCI literature since it provides a simple

way of comparing performance across studies. Its appeal lies in the fact that it takes

account of two factors (number of target classes, and rate of target selection) that vary

widely between studies and hence make their results incomparable based on P alone.

Wolpaw et al. acknowledged that equation (2) rested on certain assumptions. Other

authors—for example, Schlögl et al. [16]—correctly point out that the assumptions often

do not hold in many BCI tasks. The assumptions are: (i) that trial outcomes are divided
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exhaustively into a finite number N of discrete non-overlapping targets; (ii) that the user

attempts each of the N targets with equal frequency; (iii) that the user’s hit rate is equal

regardless of which target is attempted; and (iv) that misses, when they occur, hit each

of the unwanted targets with equal probability. While it is technically correct to point

out that these assumptions often fail, it is misleading to argue that this is a weakness

in all such cases. It is true that, if the assumptions are broken, equation (2) no longer

exactly returns the BCI system’s channel capacity (a measure that is sometimes called

the “Nykopp information-transfer rate” due to its adoption in the context of BCI in the

Masters thesis of Nykopp [17]). However, this is not necessarily a problem: for example,

we will argue below that when assumption (iv) is violated, equation (2) remains a valid

evaluation criterion and is in fact more relevant than channel capacity in such cases.

For the purposes of the current study, the main advantage of reformulating the

Wolpaw et al. criterion in the form of RIGB is that it frees us from assumption (i) since

it can naturally be applied to tasks in which the targets are not exhaustively binned

into N discrete categories. Instead, its interpretation as information gain between

two Bernoulli distributions of hits and misses means that we require only a rule for

distinguishing successful trials from failures and a suitable null-hypothesis model that

provides an estimate of the chance level success rate P0.

The details of the procedure for estimating P0 are crucial, because they allow

us to address assumptions (ii) and (iii)—the assumptions that all targets are equal

regarding, respectively, the prior probability that the user will aim for them and the

user’s ability to hit them once they have decided where to aim. As Thomas et al.

[18] point out, equation (2) is an unsuitable measure of performance when data-sets

are unbalanced—i.e. when one target class is presented more frequently than others,

in violation of assumption (ii). It will also be an unfair measure of performance when

assumption (iii) is broken. In either case, we can see the problem as originating from a

mismatch between the circumstances under which we measure P and the assumptions

under which we obtain P0. It is easy to see that equation (2)’s built-in assumption

P0 = 1/N is not valid for unbalanced data-sets. This problem is automatically addressed

by our re-simulation method for estimating P0, which we described in Section 2.8 of

the main paper, and in more detail in Section S1 above. In the current study, any

given performance-measurement phase contained a mixture of trials of different difficulty

levels, not only because we intentionally varied our task-difficulty variable d, but also due

to other factors—for example, the fact that we prevented the cursor from overshooting

the edges of the screen, thereby possibly making targets at the edges easier to hit than

targets in the middle. The original data-set may contain an unequal mixture of target

locations (which can be seen as a violation of assumption ii) and different difficulty

levels (a violation of assumption iii). However, in all cases the starting conditions of

each original trial are replicated in each simulated session: thus the distribution of

different target locations and difficulty levels is the same when we estimate P0 as it was

when we estimated P .
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Assumption (iv), the assumption that errors are evenly spread, merits special

attention because an understanding of its role is pivotal to the question of what we

actually want to measure when we evaluate BCI performance. Instead of a prerequisite

for validity of Wolpaw’s performance comparison measure, assumption (iv) should be

regarded as an assertion that the distribution of errors is irrelevant when making

performance comparisons. To make the rationale for this intuitive in non-mathematical

terms, we will use an analogy with target-shooting.

Consider a shooter whose arrows or bullets all land within an inch of each other, but

are consistently several inches too low on the target. Such consistent, narrow grouping

indicates high information transfer—we would say that the entropy of the distribution

of shots is very low. The shooter might reasonably infer from this that the elements of the

process that are hardest to perfect—stance, breath control, concentration, action, etc.—

are all very good. Something is still wrong, but the shooter can take advantage of the

information content of the misses by adjusting the sights (or simply by aiming slightly

higher) to bring the group into the center of the target. The greater the information

content of the misses, the more precisely such compensatory adjustments can be made—

they would not be possible at all if the misses had zero information content (i.e. they

were evenly spread in all directions from the center). Therefore, in a practice session,

our shooter can be fairly happy with this outcome, and proceed to make the necessary

adjustment. By contrast, in a competition, there is no reward for good grouping per se:

a miss is just counted as a miss, even if it is bunched together with the other misses.

This is because competition organizers assume that competitors have already had their

chance to make all the necessary adjustments and re-calibrations.

In an analogous way, Wolpaw et al. can be seen as implicitly applying

competition-shooting criteria rather than practice-shooting criteria to BCI performance

measurement. The assumption is not that we would like to, but cannot, incorporate

the unaccounted-for information in the pattern of misses into our performance measure.

Rather, by adopting the criterion of Wolpaw et al., we assume that the BCI engineers

have already had their chance and will have made their best efforts, before the stage at

which it is appropriate to apply the evaluation criterion, to exploit whatever information

is in the misses and to turn them into hits. Such efforts might include adjustments in

the way that symbols are encoded by the human interface or decoded by the computer,

for example. In real BCI systems, any such manipulation is likely to have an effect on

the user, potentially altering the statistics of that user’s brain signals in ways that are

not trivially predictable. Therefore, it makes sense that the success or failure of these

adjustments should be measured as part of the performance metric of the finalized BCI

system. By the same token, channel capacity can be seen as a less-relevant BCI measure:

it adopts a practice-shooting approach, and predicts the information throughput that

might have been obtained if the encoding and decoding had been optimally restructured.

In doing so, it ignores the question of whether re-coding is in fact practically possible,

as well as the fact that any such re-coding would affect the user’s behavior and brain
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signals in unpredictable ways.¶

The competition-shooting interpretation implicit in Wolpaw’s formula becomes

more evident when we rewrite it as equation (3): by applying this measure, we are

effectively reducing performance to the simplest and most relevant measure (a Bernoulli

distribution of hit and miss probabilities), deliberately disregarding the information

content of the misses before computing a measure of information gain relative to the

chance model. However, note that equations (2) and (3) still apply competition-shooting

criteria incompletely. To avoid applying practice-shooting criteria inadvertently, an

additional caveat is required when using them, because the minimum value of B does not

occur when P = 0, but rather when P = P0. Therefore, worse-than-chance performance

can appear to have a higher B value than chance performance. This contradicts our

intuitive interpretation of competition-shooting criteria, where we assert that hitting is

always better than missing. The effect is most obvious when P0 = 0.5: then B is a

symmetric function about P = 0.5, such that highly-consistent wrong performance (say,

P = 0.01) yields the same B value as equally consistent good performance (P = 0.99).

Since a Bernoulli distribution is completely characterized by just a single parameter P ,

we can implement a simple fix: we monitor whether P < P0 and adjust the information

gain term accordingly when this is the case.+ Specifically, we negate RIGB in this case—

hence the sign(P − P0) term in equation (1). This is because, in applying competition-

shooting criteria, we are evaluating the BCI from the point of view of a subsequent

processing stage that assumes errors have already been corrected as far as possible—in

other words, one which trusts the direction of the BCI’s output. So, when P < P0 we

ensure the performance measure is less than 0, to reflect the fact that the BCI’s output

would be consistently misleading and therefore worse than random.

In a fairly frequently-cited conference paper, Kronegg et al. [20] recommend that

equation (2) not be used, based on their claim that it underestimates bit-rates with

increasing severity as N increases. Our decision to reject this recommendation can now

be understood by considering two factors. The first factor is the fact that Kronegg

et al. chose channel capacity, which embodies practice-shooting standards, as the gold

standard “bit rate”. Equation (2) can indeed fail to approximate channel capacity, but

we have argued above that its departure from channel capacity is a desirable feature,

because the implicit competition-shooting approach of the former makes itmore relevant

¶ In Nykopp’s approach [17], potential re-coding is accounted for by the maximization of bit-rate over

all possible input alphabets. This is appropriate when two computer systems communicate over a noisy

channel: then, the sender is free to compress and re-code the input into an arbitrarily different alphabet

without changing the properties of the channel itself. However, as we illustrated in Hill et al. [19], re-

coding in a human-computer interface can have profound effects on the signal-to-noise ratio of the brain

signals that are relevant to BCI. Since the BCI system’s transmission channel must thus be expected

to depend on the encoding in non-obvious ways, optimization over alphabets is not appropriate during

data evaluation.
+ However, note that it is less clear how to choose the best rule for avoiding this pitfall if we were to want

to compute an information gain term for non-Bernoulli measures of success, such as an ordinal-valued

game score or duration.
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for BCI. The second factor is that, even in practice-shooting terms, the model from

which Kronegg et al. computed gold-standard channel capacity values was inappropriate

for BCI. It assumed that the feature distributions associated with the N classes were

arranged ordinally along a single axis: thus, the overlap between class 3 and class 1

was smaller than the overlap between class 2 and class 1, and so on up to class N

which overlapped with class 1 least of all. This created an extremely and atypically

rich structure of information in the misses: in real BCI systems based on multivariate

feature distributions, we cannot assume that the confusability of each pair of classes

can be ordered in this highly structured way. Thus, even if we were to accept practice-

shooting criteria, the gold standard of Kronegg et al. could be expected to overestimate

information transfer with increasing severity as N increases, relative to a BCI system

based on realistic assumptions.
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