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ABSTRACT Mathematical treatments are presented that
enable us to compute the amount of genetic variability main-
tained in a finite population, assuming that mutations occur in
stepwise fashion and that both selectively neutral and slightly
deleterious alleles are involved. Two numerical examples show
that, if very slightly deleterious mutations are prevalent, the
amount of genetic variability increases much more slowly as
the population number increases than is the case when all the
mutations are strictly neutral.

To analyze theoretically the genetic variability within popu-
lations, as detected by electrophoretic methods, Ohta and Ki-
mura (1) proposed a model of stepwise production of neutral
alleles. Since then, a number of papers have been published
treating the model in various mathematical and statistical
contexts (2-12). Of particular importance are papers by Moran
(9, 10), who worked out the variance of homozygosity (in-
volving the fourth moment). In addition, the distribution of
allelic frequency at equilibrium was derived by Kimura and
Ohta (13), assuming linear regression of the frequencies of al-
leles at the adjacent states. Although this is an approximation,
subsequent computer simulations have shown that it must be
very close to the true distribution, particularly if 4NeV does not
exceed unity (Ne = effective population size, v = mutation
rate). In addition, the time-dependent behavior of the second
moments was thoroughly worked out recently by one of us
(14).

In the present paper, we intend to report our analysis of the
step-mutation model, assuming the occurrence of both neutral
and slightly deleterious alleles. Such a treatment should be
desirable to understand the nature of protein polymorphisms,
particularly in view of Ohta's thesis (15-17) that very slightly
deleterious mutations as well as neutral ones are playing an
important role in the maintenance of genetic variability at the
molecular level.

MATHEMATICAL MODEL
Let us assume that all allelic states are expressed by integers,
and that each state may be occupied by both neutral and
slightly deleterious alleles. We denote by Ai the neutral allele
at the ith state. (i = ..., -1, 0, 1, 2, ...), and, similarly, by Bi the
deleterious allele at state i. We also assume that if an allele
changes state by mutation it moves either one step in the posi-
tive direction or one step in the negative direction in the allele
space. In addition we assume that mutation occurs between the
neutral and deleterious alleles. Fig. 1 illustrates the scheme of
mutation and the parameters involved in mutational changes
between and among neutral and deleterious alleles.

Note that there are six parameters specifying mutation rates
in various directions. To facilitate identification, we put sub-
script 0 for mutational changes toward neutral alleles and
subscript 1 for those toward deleterious alleles. For example,
neutral allele Ai changes to deleterious alleles Bi-,, Bi, and
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FIG. 1. Scheme of mutation in the model of stepwise production
of neutral and deleterious alleles. Parameters that specify the rates
of mutations are given together with arrows indicating the directions
of mutation.

Bi+ 1, respectively, at the rates w1/2, u1, and w1/2. Similarly,
Bi changes to Ai-1, Ai, and As+ I at the rates wo/2, uo, and
w0/2. Mutation rates to and from Ai and Ai-1 are both vo/2,
while those involved between Bi and Bi-, are both vI/2.
We consider a random mating population of effective size

Ne, and let xi be the frequency of allele Ai, and similarly let ys
be that of allele Bi. Then, we define the following quan-
tities:

X=EIZE XiJ, [1]

Y=E |yt =1 -X, [2]

Xk = E f| xixi+ k , [3]

Yk = E j YiYi+k , [4]

and

Zk = E {, XiYi+k}, [5]

in which E stands for the operator for taking expectations. Note
that k takes on integer values and that, because of space ho-
mogeneity, we have Xk = X-k, Yk = Y-k, and Zk = Z-k SO
that

Zk = E {, YiXi+k}-

Let s be the selection coefficient against the slightly deleterious
alleles. Then the changes of allelic frequencies due to selection
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in one generation are

Axj = sYxj/(1 - SY) --sYxi, [6]

Ayj = -s(l - Y)yj/(l --- sY) - -s(I - Y)yj = -sXyj, [6a]
in which

Y yi X jxi, andX = 1 - Y.

Taking into account the changes due to mutation, selection,
and random sampling of gametes, we obtain the following set
of equations (7-10) in which AX Ak Yk, and A&k respec-
tively, denote the changes per generation of X(, Xk, Yk, and Zk,
and parameters with capital letters denote 2Ne times the cor-
responding quantities represented by lower case letters, i.e.,
V0 = 2Nevo, VI = 2Nevi, U0 = 2Neuo, U1 = 2Neul, W0
2Newo, WI = 2Newl, and S = 2Nes.

2NeAX- = -(Ul + Wl)X + (U0 + wo)Ti + SX-Y

in which

a,=2VOcosO0-2(Ul + Vo+ WI) +'2SYi - 1,

a,3 = 2WO cosO0+ 2Uo,
b2=2V1 cosO0-2(Uo + VI + Wo)-2SX - 1,
b0=2WIcos0+ 2U1, c1 =WICoOS + U1

C2 = WO COS 0 + UO,

C3= (V0 + V1) Cos 0
- (UO + U1 + V0 + V1 + W0 + W1) + S(Y- - X- 1.

Then, noting that cl = b3/2, C2 = as3/2 and c.3 = (a, + b2)/2
we obtain

[7]

2NeAXk = VO(Xk-..I + Xk+1)
-(2Ui + 2Vo + 2W1 - 2SY + 1)Xk

+ Wo(Zk-1 + Zk+1) + 2UOZk + Xbo0,k [8]

2NeA&Yk = Vl(Yk-l + Yk+i1)
-(2Uo + 2V1 + 2W0 + 2SX- + 1)Yk

+ Wl(ZklI + Zk+I) + 2U1Zk + Y50,k [9]

2NeAZk WI(Xk-I + Xk+1) + U1Xk
2

+ -O(Yk-I + Yk+i1) + UOYk + -(V0 + V1)2 2
X (Zk- + Zk+I) - [UO + U1 + VO + VI + WO

+WI+ S( -Y) +lI Zk. [10]

In the above equations, 50,k stands for Kronecker's delta such
that 60,k = 1 for k =-0 and 50,k = 0 otherwise (k ;P 0). These
equations involve approximations in treating selection. Namely,
we substitute X(Y for E(XY), in which X = lix and Y = y.
Also, such terms as Ef(2;iXiXi+k)Yj and Ej(~2iyjyi+k)Xj are
approximated, respectively, by Ej2;iXiXi+ki1Y (= Xky) and
E$j2Y~Yijik1X (= YkX). Therefore, extensive Monte Carlo ex-
periments were performed to check the validity of the solutions
that we obtained by solving Eqs. 7-10, assuming the equilib-
rium condition under which AX = AXk = Ayk = A&k = 0. The
analytical solutions at equilibrium for Xk, Yk, and Zk can be
obtained as follows.

Let

Xk = Sa(0)coskodo[1

Yk = Sb(0)coskodo [12]

Zk=fc(0)cosk~d0 [13]

and noting, for example, Xkl + Xk+1 = 1/ f~a(0).2 cos 0
Cos kOdO, we have, at equilibrium, the following equation;

ra, 0 asi a(O) f

10b2b3 b(0) - [14]
IC1 C2 C3 c(0)

and

a()-a3(Xb3 - Ya3) - X-(a, + b2)b2a()= (a, + b2)(a lb2 - asb:3)

b(0) - b3(Tia3 - x-b3) - Ti(al + b2)al)(aI + b2)(a lb2 - a3b3)

c(0) = AbAb + Ya ja3
(a, + b2)(alb2 - a3b3)'

[15]

[16]

[17]

in which

x= 1 -T?-=fIS - (U + Wo+ U1 + W1)
_-

+ A/Dl/(2S) [18]

and
DS+ 2S(Uo + Wo- Ul-Wi)

+ (Uo + Wo + U1 + W1)2;(S p& 0).
The average homozygosity at equilibrium can then be ob-

tained' by

Ho = E (X, + yi)2j = X0 + yo + 2Z0

[19]- S a(0) + b(0) + 2c(0)1d0.
We should remark here that although formulae 11, 12, and

13 represent uniquely determined, non-negative solutions of
the system of Eqs. 7-10, the approximations involving the se-
lection terms (6, 6a) cause the sum Of Xk + Yk + 2Zk over k to
reduce not exactly to unity. This difficulty can be removed by
normalizing them to make the sum equal to unity. However,
the deviation from unity is quite small (up to a few percent)
even for a large value of 5, and it can be neglected without se-
rious error. The numerical values used in Fig. 2 and Table 1 (see
below) are normalized, though difference due to the normali-
zation is not large enough to be visible in the figure.

NUMERICAL EXAMPLES
Using the above results, we investigated two numerical exam-
ples that may be of interest in understanding the relationship
between the population size and the level of heterozygosity.
Example 1: In this example, -we assume that mutation rates

toward very slightly deleterious alleles are 100 times higher than
those toward the neutral alleles so that ul/uo = vi/vo = wi/wo
- 100. We also assume that mutations causing change in allelic
states ("charge states") occur one-fourth as frequently as those
causing no change in state so that w, = ul/4, wo = u0/4. We
shall denote the total mutation rate by AT, which is assumed
to be equal for neutral and deleterious alleles so that AT = U
+ vo + w1 = uo~+ v1 + wo. Then mutation rates in all di-
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FIG. 2. Relationship between ne (the effective number of alleles,
or the reciprocal of the average homozygosity) andNea (product of
the effective population size and "apparent mutation rate"). For
details see text.

rections are expressed in terms of the total mutation rate, such
as ul = (8O/101)MAT, VI = (100/101)MT, W1 = (2O/101)IAT, etc.
Finally, we assume that the selective disadvantage of slightly
deleterious alleles is 10 times as large as the total mutation rate
so that s = 10AT. To facilitate our illustration for the relation-
ship between the observed variability and the estimated
mutation rate, let us define the apparent mutation rate by

Ma = X(Vo + WI) + Y(v1 + too). [20]
This represents the mutation rate that may be estimated by
sampling alleles from the population and investigating the rate
at which allelic states (charge states) change by mutation. We
may take this as the "observed" mutation rate. Note that the
total mutation rate AT includes mutation rates (uI and uo) that
cannot be detected by merely investigating the change of allelic
states. To represent the level of genetic variability, we shall use

the effective number of alleles ne, which is the reciprocal of the
average homozygosity (ne = 1/Ho). In Fig. 2, the effective
number of alleles is plotted against MaNe (the apparent mutation
rate multiplied by the effective population size) using a solid
line. In the same figure, values of N/8Newa + 1 are plotted by
a broken line. This line represents the level of genetic variability
that can be attained if all the mutations are selectively neu-

tral.
Example 2: In this example, we assume that selectively

neutral alleles can arise by mutation only from very slightly
deleterious alleles; none of the neutral alleles can be derived
directly from adjacent neutral alleles through a single muta-
tional step so that vo = 0. Other specifications of conditions
among mutation parameters are wo = v,/100, w1 = ui/4,
wo = Uo/4, and AT = WI + U1 = V1 + Uo + Wo. As before, we
assume s = 1OMT for very slightly deleterious alleles. The ef-
fective number of alleles is plotted against Nega in Fig. 2 using
a broken line, and this may be compared with the corre-

sponding solid line for the previous example.

SIMULATION STUDIES
To check the validity of the formulae derived in the present
report, we have performed Monte Carlo experiments (using the

Table 1. Comparison between experimentally observed results
and theoretical predictions

k = 0 k =1 k = 2

Xk 0.5143 0.0301 0.0082 (observed)
0.5462 0.0283 0.0064 (predicted)

Yk 0.0347 0.0118 0.0034 (observed)
0.0288 0.0111 0.0030 (predicted)

Zk 0.0862 0.0311 0.0054 (observed)
0.0866 0.0318 0.0048 (predicted)

The observed results are taken from one of the Monte Carlo ex-
periments simulating the mutation scheme like that ofExample 2 in
Numerical Examples. Parameter values used for this simulation are
Ne = 100, Nes = 4, NeAT = 1, vo = 0, wo = vl/10, w1 = uI/2, wo =
u0/2.5, and AT = W1 + U1 = V1 + UO + WO = 0.01.

computer TOSBAC 3400) simulating a random mating popu-
lation of fixed size. In these simulations, in which parameter
values were varied greatly, we observed satisfactory agreement
between the theoretical predictions and the experimental
outcomes. One such example is presented in Table 1. In this
experiment (simulating the step mutation model with infinite
allelic states), the mutation scheme is like that of Example 2
discussed above; strictly neutral alleles can arise only from
slightly deleterious alleles, i.e., vo = 0. The experiment consists
of a single run extending to 20,000 generations, and the data
were collected from the last 10,000 generations at intervals of
every 10 generations. In this experiment, very close agreement
was obtained with respect to X; observed X = 0.76760, pre-
dicted X = 0.76942.

In our simulation studies, we assumed a small population
number; Ne = 100. This is based on the consideration that the
quantities of our interest such as Xk, Yk, and Zk all depend on
the product of Ne and other parameters. In other words, they
depend on NeVo, NeVl, NeUo, ---, Nes but not on Ne or other
mutation and selection parameters separately. This means that,
to the extent that the diffusion approximation is valid, the level
of heterozygosity He = 1 - /l/ne, for example, is not affected
by the population size as long as values of NeVo etc. remain the
same.

DISCUSSION
In the present treatment,-we attempted an extension of the
stepwise mutation model of Ohta and Kimura (1), by incor-
porating the idea that very slightly deleterious mutations, as well
as strictly neutral ones, are playing an important role in mo-
lecular evolution and polymorphism. According to Ohta
(15-17), the majority of the "neutral" alleles may be very
slightly deleterious, although selection coefficients against them
are not excessively large as compared with mutation rates. Such
alleles will behave practically as neutral in relatively small
populations as in many mammals; the neutral mutation-ran-
dom drift hypothesis in its simplest form can be used to describe
molecular polymorphism in such populations. On the other
hand, mutation-selection balance will prevail in very large
populations such as those of the neotropical fruit flies studied
by Ayala et al. (18) and Escherichia coli studied by Milkman
(19); in such large populations, negative selection becomes ef-
fective due to large NeS values, and this prevents the amount
of geneticvariability reaching a high level as expected from the
strict neutral theory. This is an extended form of the original
neutral theory as proposed by one of us (20, 21). Considering
the fundamental nature of mutations, this idea of Ohta is suf-
ficiently realistic, and its population genetical consequence
should be seriously explored.
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In two numerical examples (Examples 1 and 2), we assumed
that very slightly deleterious mutations occur 100 times as
frequently as the strictly neutral mutations and that their se-
lective disadvantage is only 10 times as large as the total
mutation rates. As shown in Fig. 2, the amount of genetic
variability in terms of the effective number of alleles ne
( reciprocal of the average homozygosity expected under
random mating) increases much more slowly as the population
number increases in these two examples, compared with ne
= V/8Neiua + 1 , the value expected if all the mutations are
strictly neutral.

Recently, Mukai and Cockerham (22) obtained an estimate
of the average mutation rate for electrophoretically detectable
alleles (excluding null mutations); a = 1.81 X 10-6 per locus per
generation for Drosophila melanogaster. Similar estimates of
electromorph mutation rate (per locus per generation) have
been obtained by Nei (23) for man (2.4 X 10-6) and the Japa-
nese macaque (2.3 X 10-6). Thus, an appropriate value for tia
in Fig. 2 may be Iua = 2 X 10-6. This means that the heterozy-
gosity stays at a fairly realistic level as long as the effective
population number Ne does not exceed 5 X 106 in Example 1
and 2 X 107 in Example 2 in Fig. 2.
The observation that species with apparently very large

population size such as D. willistoni still have the average
heterozygosity of around 20% (nfe = 1.25) has been used re-
peatedly to criticize the validity of the neutral theory since the
paper of Ayala et al. (18). These authors claim that in D. wil-
listoni the number of breeding flies per generation is at least
10C (with geographic distribution encompassing several million
square kilometers) and even if the mutation rate for neutral
alleles is as low as v = 10-7, 4Nev becomes 400. Thus, if the
effective number of alleles is predicted by using Kimura and
Crow's (24) formula ne = 4Nev + 1, it becomes about 400 times
larger than the observed value. Discrepancy between theoret-
ical prediction and actual observation still remains if we use
Ohta and Kimura's (1) formula ne = V/8Np + 1, which gives
about 28 as the predicted value.

It is clear that the discrepancy is further reduced by using
the present model, which can accommodate very slightly del-
eterious mutations in addition to neutral mutations. In Example
1 illustrated in Fig. 2, selective disadvantage of these mutations
is assumed to be 10 times as large as the total mutation rate, and
this amounts to roughly 35 times the apparent mutation rate,
so that s - 7 X 10-5. In a small population whose effective
population number is a few thousand or less, all the mutant
alleles would behave as if they were selectively neutral. In a
much larger population with Ne 3 X 106, although we have
Neita - 6 so that V8Neiua + 1 = 7, the effective number of
alleles predicted by this rmodel is still ne '-. 1.7. Example 2 il-
lustrated in Fig. 2 is more remarkable in that the level of het-
erozygosity is much less sensitive to the increase of the total
population number. For Ne = 4 X 106, the effective number
of alleles predicted is ne * 1.28.

However, if the effective population number is really as large
as 109 or 1010, even in the present model it is difficult to keep
the heterozygosity at a realistic level unless we assume that the
fraction of truly neutral mutations is extremely small. Then,
if the truly neutral mutation rate is extremely low for such a
large population, the rate of evolution in terms of mutant sub-
stitutions becomes extremely low, and this seems to give diffi-
culty to the neutral theory, although no data are available on
this point for D. willistoni and E. col. There is a possibility,
however, that the effective population numbers (not the sheer
number of individuals) in these species are not as large as 109.
We would like to point out that if local extinction of colonies

and supplanting by adjacent ones occur frequently, we can
show that the effective population number of a species becomes
much smaller (sometimes two orders of magnitude less) than
the total number of the breeding individuals in one generation
(detailed treatments of this subject will be published elsewhere).
It is indeed likely that local extinction of colonies occurs fre-
quently in Drosophila and E. colt. Also, Nei et al. (25) have
emphasized the importance of the bottleneck effect in reducing
the heterozygosity. An additional consideration that may be
pertinent in the present context is lower physiological homeo-
stasis of these organisms as compared with mammals. The
fraction of neutral (not harmful) alleles among newly arisen
mutations may be smaller for organisms with lower physio-
logical homeostasis and therefore the role of slightly deleterious
mutations will become more prominent in them.
The present model may be made more realistic by letting the

selection coefficients of very slightly deleterious alleles follow
a certain frequency distribution rather than assigning them only
one value (s). Recently, Li (ref. 26; personal communication),
using Wright's (27) distribution formula for multiple alleles,
made excellent theoretical studies on the amount of genetic
variability, assuming the K allele model incorporating two or
three classes of mutations with different fitness (including the
neutral class). We should emphasize that although natural se-
lection is considered, our point of view is fundamentally dif-
ferent from that of the "selectionist" who resorts to "balancing
selection" to explain the maintenance of molecular polymor-
phisms. It is hoped that we are on the right track to elucidate
the mechanism by which genetic variability is maintained at
the molecular level.
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