Supplemental Data

Supplemental Figure 1: IL-15 regulates the expansion of Eomesodermin⁺ $\alpha\beta$ T cells.

Thymocytes from WT, *itk*^{-/-}, *il15*^{-/-}, and *itk*^{-/-}*il15*^{-/-} mice were stained with CD1d-tetramer and antibodies to CD4, CD8, TCR δ , TCR β , HSA (CD24), CD44, and Eomesodermin. Dot-plots show Eomes versus CD44 staining, and graphs show compilations of the percentages and absolute numbers of Eomes⁺ cells.

(A) Total thymic cellularity. Significant differences were seen between WT and *itk*^{-/-} mice (p < 0.005) and between *il15*^{-/-} and *itk*^{-/-}*il15*^{-/-} mice (p < 0.05).

(B) Gated on CD8SP TCR β^{high} HSA^{low} thymocytes.

(C) Gated on CD4SP TCR δ^{neg} TCR β^{high} HSA^{low} CD1d-tetramer^{neg} thymocytes.

n = 6-7 mice per group. Results are from three independent experiments. Statistical analysis performed using a one-way ANOVA. *p < 0.05 **p < 0.05 ***p < 0.0005 ****p < 0.0001

Supplemental Figure 2: *itk*^{-/-} Eomesodermin⁺ $\alpha\beta$ T cells develop independently of MAIT cells.

Thymocytes from WT, *itk*^{-/-}, *MR1*^{-/-}, and *itk*^{-/-}*MR1*^{-/-} mice were stained with CD1d-tetramer and antibodies to CD4, CD8, TCR δ , TCR β , HSA, CD44, and Eomesodermin. Dot-plots show Eomes versus CD44 staining, and graphs show compilations of the percentages and absolute numbers of Eomes⁺ cells.

(A) Total thymic cellularity. Significant differences were seen between *itk*^{-/-} and *MR1*^{-/-} mice (p < 0.05) and between *MR1*^{-/-} and *itk*^{-/-}*MR1*^{-/-} mice (p < 0.05).

(B) Gated on CD8SP TCR β^{high} HSA^{low} thymocytes.

(C) Gated on CD4SP TCR δ^{neg} TCR β^{high} HSA^{low} CD1d-tetramer^{neg} thymocytes.

n = 5-8 mice per group. Results are representative of three independent experiments. Statistical analysis performed using a one-way ANOVA. **p < 0.005 ****p < 0.0001

Supplemental Figure 3: $\alpha\beta$ NKT cells promote the development of Eomesodermin⁺ T cells.

Thymocytes from WT, *itk*^{-/-}, *cd1d*^{-/-}, and *itk*^{-/-}*cd1d*^{-/-} mice were stained with CD1d-tetramer and antibodies against CD4, CD8, TCR δ , TCR β , HSA, IL-4R α (CD124), and Eomesodermin.

(A-B) Graphs show a compilation of four independent experiments indicating the percentage (A) and the number (B) of CD4 SP thymocytes. n = 7-9 mice per group.

(C) Histograms of IL-4R α (CD124) expression on mature CD8 SP thymocytes (CD8 SP TCR β^{high} HSA^{low}). Graphs represent one experiment with 2-3 mice per group.

(D) Histograms of IL-4R α (CD124) expression on mature CD4 SP thymocytes (CD4 SP TCR δ^{neg} TCR β^{high} HSA^{low} CD1d-tetramer^{neg}). Graphs represent one experiment with 2-3 mice per group.

(E-F) Graphs show a compilation of four independent experiments indicating the percentage (E) and the number (F) of CD4SP TCR δ^{pos} TCR β^{neg} PLZF⁺ ($\gamma\delta$ NKT) thymocytes. *n* = 7-9 mice per group.

Statistical analysis performed using a one-way ANOVA. *p < 0.05 **p < 0.005 ***p < 0.0005 ****p < 0.0001

Supplemental Figure 4: Eomesodermin⁺ T cells develop independently of $\gamma\delta$ T cells.

(A-B) Thymocytes from WT, *itk*^{-/-}, *tcrd*^{-/-}, and *itk*^{-/-}*tcrd*^{-/-} mice were stained with CD1d-tetramer and antibodies to CD4 and CD8. Graphs show compilations of the percentages (A) and absolute numbers (B) of $\alpha\beta$ iNKT cells that are gated on CD4 SP CD1d-tetramer⁺ thymoyctes.

n = 4-7 mice per group. Results are representative of two independent experiments. Statistical analysis was performed using a one-way ANOVA. *p < 0.05, ****p < 0.0001

(C-F) Thymocytes from SLP-76(Y145F) and SLP-76(Y145F)*tcrd*^{-/-} mice were stained with a cell viability dye, CD1d-tetramer, and antibodies to CD4, CD8, TCR β , and Eomesodermin. n = 5 mice per group. Results are representative of two independent experiments. Statistical significance was analyzed in GraphPad Prism using a student's t test.

Dot-plots show (C) Eomes versus CD8 staining or (D) Eomes versus CD4, and graphs show compilations of the percentages and absolute numbers of Eomes⁺ cells.

(C) Gated on CD8SP TCR β^{high} thymocytes.

(D) Gated on CD4SP TCR β^{high} CD1d-tetramer^{neg} thymocytes.

(E) Graphs show the frequency (right) and number (left) of $\alpha\beta$ iNKT cells (Gated on live thymocytes that are TCR β^{high} and CD1d-tetramer^{pos}).

(F) Graphs show the frequency (right) and number (left) of total CD4⁺ PLZF⁺ thymocytes (Gated on live PLZF⁺ thymocytes).