

Supplemental Figure 1. Yeast two-hybrid assay showing the interaction between PKL and PIFs.

(A) Diagram of the domain structures of PKL and various PKL truncations (Jing et al., 2013). **(B)** Yeast two-hybrid analysis of AD-fused PIF1, 3, 4, or 5 and the indicated LexA-BD-tagged PKL fragments.

Supplemental Figure 2. Phenotypes of *epp1 pif3* and *epp1/Myc-PIF3* plants.

(A) Seedling greening phenotypes of *epp1*, *pif3*, and *epp1 pif3* mutants and the Col wild type. Six-day-old etiolated seedlings were exposed to white light ($60 \mu mol/m^2/s$) for 1 d, and greening rate was determined by counting the percentage of dark-green cotyledons from 50 to 80 seedlings. (B) The skotomorphogenic phenotype of wild-type and *epp1* plants and *epp1* plants transformed with *Pro35S:Myc-PIF3* grown in the dark for 5 d. Bar = 2 mm. (C) Hypocotyl length of the seedlings shown in (A). Data represent the mean ± SD of at least 20 seedlings. Asterisks indicate significant difference at P < 0.01 using Student's *t*-test.

Supplemental Figure 3. PIF3 and PKL bind to the promoters of cell elongation-related genes.

(A) Promoter diagrams of four cell elongation-related genes. Arrows indicate the translation start sites of the genes. Ovals indicate the G-box (CACGTG) motif and squares denote the core sequence of the BZR1-binding site (CGTG). The positions of these motifs are labeled. The approximate regions for ChIP-qPCR are lined below the motifs. (B) ChIP-qPCR assay showing relative enrichment of the promoter fragments of several cell elongation-related genes pulled down sequentially by PKL and MYC antibodies in *Pro35S:Myc-PIF3* transgenic plants. Seedlings were grown in the dark for 5 d. Data represent the mean ± SD of biological triplicates. Amplification of *ACT2* serves as a negative control.

Supplemental Figure 4. PIF3 interacts with BZR1.

(A) A yeast two-hybrid assay between PIF3 and BZR1. The full-length, N- or C-termini of PIF3 and BZR1 were fused to the AD domain or LexA BD domain, respectively. PIF3N, amino acid (aa) 1-285 ; PIF3C, aa 286-524, containing the bHLH domain; BZR1N, aa 1-109, containing the DNA binding domain; and BZR1C, aa 110-336. (B) Pull-down assay between recombinant His-BZR1 and GST-PIF3 or GST alone. IB, immunoblot; IP, immunoprecipitation. (C) BiFC assay showing that YFP^{N} -PIF3 and BZR1-YFP^C interact in the nucleus. Bar = 5 µm.

Supplemental Figure 5. Phenotype of *epp1/bzr1-1D* plants.

(A) Seedling morphology of *epp1*, *bzr1-1D*, and *epp1 bzr1-1D* mutants and the Col wild type. Plants were grown in MS medium containing 1 μ M PCZ in darkness for 5 d. Bar = 2 mm. (B) Hypocotyl length of seedlings as shown in (A). Data represent the mean ± SD of at least 20 seedlings. Asterisks indicate significant difference at P < 0.01 using Student's *t*-test.

with PKL antibody or IgG control, the genomic fragments of various target genes were amplified by PCR. *ACT2* serves as a negative control. Data represent the mean \pm SD of three biological replicates. Asterisks indicate significant difference from the wild type at P < 0.01 using Student's *t*-test.

Supplemental Figure 7. Interaction between PKL and DELLA proteins in yeast. Yeast two-hybrid assay between PKL and DELLAS. RGA, GAI, RGL1, RGL2 and RGL3 were fused with the activation domain, whereas different fragments of PKL were tagged with the LexA DNA-binding domain.

Supplemental Figure 8. Characterization of *Pro35S:GAI-GFP* transgenic plants.

(A) Short hypocotyl phenotype of *GAI* overexpression plants (*Pro35S:GAI-GFP*) grown in the dark for 5 d. Two representative lines are shown and line #5 was used for further analysis. Bar = 2 mm. (B) Immunoblot using GFP antibody showed the expression level of the GAI-GFP fusion protein in the transgenic lines. Immunoblot with tubulin antibody served as an equal loading control.

Supplemental Figure 9. Relative binding activity of PKL to the downstream genes.

A ChIP assay was performed as described in Figure 6C and 6D. After immunoprecipitation, the protein-DNA samples were equally divided. One set of samples was used for quantifying the amount of *IAA19* (A) and *PRE1* (B) promoter fragments by qPCR, and another one was immunoblotted with the PKL antibody. Relative binding activity is expressed as amount of DNA/ amount of PKL protein after ChIP. Data represent the mean \pm SD of three technical replicates.

Supplemental Table 1. List of primers used in this study.

Gene AGI code	Oligo name	Sequence (5'-3')	Purpose
PKL/EPP1	EPP1/2/3-F	CAATTGATGAGTAGTTTGGTGGAGAG	Cloning of PKL and its fragments
AT2G25170	EPP1-R	GGTACCTCGAGGCTAGCTCAATCAACGACCATGTTCTTTG	
	EPP1-D1-R	CTCGAGCTTTGATCCATACCTGATGATGTCA	
	EPP1-D2-F	CAATTGATGATCAGGTATGGATCAAAGGAGC	
	EPP1-D3-R	CTCGAGTCAATTTCTTTTATGGTCAACATCT	
	EPP1-D4-R	CTCGAGTCATTCACTAGATTTTGTAGGACGC	
	EPP1-D5-F	CAATTGATGCTTAAAGATGCTTCCGTGGAAA	
	EPP1-D6-F	CAATTGATGGTTGACCATAAAAGAAATCCCA	
	EPP1-D7-R	CTCGAGTCATCCACTTCTCAGTCCGGGGAATC	
	EPP1-Q-F	GAGCGAATTGATGGAAAGGT	qRT-PCR
	EPP1-Q-R	TTCCTAAGCCACCAGCTCTT	
	epp1-1-F	CACAGTGGGAGTGAGCTTTATTG	Genotyping of epp1-1
	epp1-1-R	TTCAGCAATGTTCTCCTCTCCCT	
PIF1	PIF1-F	GGTACCGAATTCATGCATCATTTTGTCCCTGAC	Cloning for yeast two-hybrid assays
AT2G20180	PIF1-R	GTCGACACCTGTTGTGTGGTTTCCGT	
	PIF1-Fc	GGTACCGAATTCATGCAAGCACGTGTATCAACAAC	
	PIF1-Rn	GTCGACTTTTGTTTCCTCGCTACGGGA	
PIF3	PIF3-F	GGTACCGAATTCATGCCTCTGTTTGAGCTTTTC	
AT1G09530	PIF3-R	CTCGAGCGACGATCCACAAAACTGATC	
PIF4	PIF4-F	GAATTCATGGAACACCAAGGTTGGAG	
AT2G43010	PIF4-R	GTCGACGTGGTCCAAACGAGAACCGTC	
PIF5	PIF5-F	GAATTCATGGAACAAGTGTTTGCTG	

AT3G59060	PIF5-R	CTCGAGGCCTATTTTACCCATATGAAG	
RGA	RGA-MfeI-F	CAATTGATGAAGAGAGAGATCATCACCAATTC	
AT2G01570	RGA-SalI-R	GTCGACGTACGCCGCCGTCGAGAGTTTC	
	RGA-BamHI-F	GGATCCATGAAGAGAGAGATCATCACCAATTC	Recombinant protein
	RGA-NotI-R	GCGGCCGCGTACGCCGCCGTCGAGAGTTTC	expression
GAI	GAI-EcoRI-F	GAATTCATGAAGAGAGATCATCATCATC	Cloning for yeast
AT1G14920	GAI-SalI-R	GTCGACATTGGTGGAGAGTTTCCAAG	two-hybrid assays
	GAI-BamHI-F	GGATCCATGAAGAGAGATCATCATCATC	Recombinant protein
	GAI-NotI-R	GCGGCCGCATTGGTGGAGAGTTTCCAAG	expression
BZR1	BZR1-F	GAATTCATGACTTCGGATGGAGCTACATCGAC	Cloning for yeast
AT1G75080	BZR1-R	GTCGACACCACGAGCCTTCCCATTTCCAAG	two-hybrid assays
	BZR1C-F	GGATCCGAATTCTCACAGAACCAGAGCCCTC	
	BZR1N-R	GCGGCCGCGTCGACTGAATATGGAGTTACTCGAG	
RGL1	RGL1-F	CAATTGATGAAGAGAGAGAGAACC	Cloning for yeast
AT1G66350	RGL1-R	GTCGACTTCCACACGATTGATTCGC	two-hybrid assays
RGL2	RGL2-F	CAATTGATGAAGAGAGAGATACGGAG	
AT3G03450	RGL2-R	GTCGACGGCGAGTTTCCACGCCGAGG	
RGL3	RGL3-F	CAATTGATGAAACGAAGCCATCAAG	
AT5G17490	RGL3-R	GTCGACCCGCCGCAACTCCGCCGCTAG	
GFP	GFP-F	TCTAGAGATCTGAATTCGGATCCCTCGAGATGGGTAAAGGA	pVIP-N-GFP
		GAACTTTTCACTGGGATG	construction
	GFP-R	AGGCCTACTAGTTTAGATAGATCTGTATAGTTCATCCATGCC	
IAA19	IAA19-Q-F	TTTCATCTGGTGGTGACGCT	RT-qPCR
AT3G15540	IAA19-Q-R	CATACCCTAACCCCACTTTCG	
DWF4	DWF4-Q-F	TCCCTAGTGGGTGGAAAGTGT	
AT3G50660	DWF4-Q-R	CGCTCCGTTGTTTGCTGTT	

PRE1	PRE1-Q-F	GTTCTGATAAGGCATCAGCCTCG	
AT5G39860	PRE1-Q-R	GTTCTGATAAGGCATCAGCCTCG	
AT5G45280	AT5G45280-Q-F	CTCAGCTTCAAACCGTTCAA	1
	AT5G45280-Q-R	AAAGAACCAATCTCCAACCG	
AT2G43050	AT2G43050-Q-F	GTTCGATCCCATCCACGACT	
	AT2G43050-Q-R	TTTCTTGAAGGCTCTGCTCACA	
UBQ1	UBQ-F	TTCCTTGATGATGCTTGCTC]
AT3G52590	UBQ-R	TTGACAGCTCTTGGGTGAAG	
IAA19	IAA19-I2-F	ATCTGTTCCCTTAACCACCTTGT	ChIP-qPCR
AT3G15540	IAA19-I2-R	AAACCAATCCAATATCGACACG	
PRE1	PRE1-CHIP-F	GAGGGATAATGAGGGATTTCG	
AT5G39860	PRE1-CHIP-R	CTATGTCACGTGTCACCACCATGTC	
TCH4	TCH4-CHIP-F	CGTGATTTCCAAAGCCAATA]
AT5G57560	TCH4-CHIP-R	GCGGTTCGTATAGAGGAAGG	
HFR1	HFR1-CHIP-F	GTCGCTCGCTAAGACACCAAC	
AT1G02340	HFR1-CHIP-R	ACGTGATGCCCTCGTGATGGAC	
PIF6	PIF6-CHIP-F	GTCTAATACACTGCATACGGGT]
AT3G62090	PIF6-CHIP-R	GATAGGACCTACAAGGTGTTTG	
AT4G02330	AT4G02330-CHIP-F	TTTGGGATCTAAGAATGAGACTACA	
	AT4G02330-CHIP-R	TTGATCCGATCCATAATTGTTT	
DWF4	DWF4-CHIP-F	GGGTTTGACTGTCCAGTTCGGTAAT	
AT3G50660	DWF4-CHIP-R	ACCCTTAGGATATGGGAAAAGGGTG	
AT5G45280	AT5G45280-CHIP-F	AACTTGATTCGGTGCATTTG	
	AT5G45280-CHIP-R	GTCCATATCAATTCGGCTCA	
ACT2	ACT2-CHIP-F	TCTGGATCTACTTTATTTGCTG	
AT3G18780	ACT2-CHIP-R	TACACAAACTTCATCTAACCTT	