		*	20	*	40	*	60	*	80		
FAE1-E1 FAE1-E2 FAE1-E3 CAD90159 AF490461 AF490460 ACB55612 AF274750 NP_195178	 MTSVNVKL MTSVNVKL MTSINVKL MTSINVKL MTSINVKL MTSINVKL MTSVNVKL MTSVNVKL	LYHYVI TN LYHYVI TN LYHYVI TN LYHYVI TN LYHYVI TN LYHYVI TN LYHYVI TN LYHYVI TN LYRYVL TN	LFNLCFFPLTAT LFNLCFFPLTAT LFNLCFFPLTAT LFNLCFFPLTAT LFNLCFFPLTAT LFNLCFFPLTAT LFNLCFFPLTAT FFNLCFFPLTAT	VAGKASR VAGKASR VAGKASR VAGKAYR VAGKAYR VAGKAYR VAGKAYR LAGKASR	RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTIDDLHHLY RLTINDLHN-F	SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI SYLQHNLITI	A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG A PLFAFTVFG TLLFAFTVFG	SVLYIVTRPK SVLYIVTRPK SVLYIVTRPK SVLYIATRPK SVLYIATRPK SVLYIATRPK SVLYIATRPK SVLYIATRPK LVLYIVTRPN	PVYLVE PVYLVE PVYLVE PVYLVE PVYLVE PVYLVE PVYLVE PVYLVE PVYLVE	8 8 8 8 8 8 8 8 8 8 8 8 8 8	222222222
FAE1-E1 FAE1-E3 FAE1-E3 CAD90159 AF490461 AF490460 ACB55612 AF274750 NP_195178	 * YSCYLPPT YSCYLPPT YSCYLPPT YSCYLPPT YSCYLPPT YSCYLPPT YSCYLPPT YSCYLPPP	1 HCRSSISK HCRSSISK HCRSSISK HCRSSISK HCRSSISK HCRSSISK HCRSSISK HCRSSISK HCRSSISK H <mark>LKVSV</mark> SK	00 * VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQVRKAI VMDIFYQTRKAI	ES-RNGT PS-RNGT PS-RNGT ES-RNGT PS-RNGT PS-RNGT ES-RNGT ES-RNGT TSSRNVA	120 CDDSSWLEFI CDDSSWLEFL CDDSSWLDFI CDDSSWLDFI CDDSSWLDFI CDDSSWLDFI CDDSSWLDFI CDDSSWLDFI CDDSSWLDFI	* 1 RKIQERSGLGD RKIQERSGLGD RKIQERSGLGD RKIQERSGLGD RKIQERSGLGD RKIQERSGLGD RKIQERSGLGD	40 ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ ETHGPEGLLQ	* 1 VPPLKTFAAA VPPLKTFAAA VPPRKTFAAA VPPRKTFAAA VPPRKTFAAA VPPRKTFAAA VPPRKTFAAA	60 REETEQ : REETEQ : REETEQ : REETEQ : REETEQ : REETEQ : REETEQ : REETEQ :	: 16 : 16 : 16 : 16 : 16 : 16 : 16	3333333333333
FAE1-E1 FAE1-E3 CAD90159 AF490461 AF490460 ACB55612 AF274750 NP_195178	 * VIIGALEN VIIGALEN VIIGALEN VIIGALEN VIIGALEN VIIGALEN VIIGALEN	180 LF KNTKVN LF KNTKVN LF KNTNVN LF KNTNVN LF KNTNVN LF KNTNVN LF KNTNVN LF KNTNVN	* PKEIGILVVNSS PKEIGILVVNSS PKDIGILVVNSS PKDIGILVVNSS PKDIGILVVNSS PKDIGILVVNSS PKDIGILVVNSS PKDIGILVVNSS	20 MENPTPS MENPTPS MENPTPS MENPTPS MENPTPS MENPTPS MENPTPS	DO SLSAMVVNTFK SLSAMVVNTFK SLSAMVVNTFK SLSAMVVNTFK SLSAMVVNTFK SLSAMVVNTFK SLSAMVVNTFK	220 LRSNVRSFNLG LRSNVRSFNLG LRSNVRSFNLG LRSNVRSFNLG LRSNVRSFNLG LRSNVRSFNLG LRSNTRSFNLG	* GMGCSAGVIA GMGCSAGVIA GMGCSAGVIA GMGCSAGVIA GMGCSAGVIA GMGCSAGVIA GMGCSAGVIA	240 IDLAKDLHV IDLAKDLHV IDLAKDLHV IDLAKDLHV IDLAKDLHV IDLAKDLHV IDLAKDLHV	HKNTYA HKNTYA HKNTYA HKNTYA HKNTYA HKNTYA HKNTYA HKNTYA	24 24 24 24 24 24 24 24 24 24 24	55555555
FAE1-E1 FAE1-E2 FAE1-E3 CAD90159 AF490460 AF490460 ACE55612 AF274750 NP_195178	 * LVVSTENI LVVSTENI LVVSTENI LVVSTENI LVVSTENI LVVSTENI LVVSTENI LVVSTENI	260 Fyniyage Fyniyage Fyniyage Fyniyage Fyniyage Fyniyage Fyniyage Fyniyage Fyniyage	NKSMMVSNCLFR NRSMMVSNCLFR NRSMMVSNCLFR NRSMMVSNCLFR NRSMMVSNCLFR NRSMMVSNCLFR NRSMMVSNCLFR	280 VGGAAII VGGAAII VGGAAII VGGAAII VGGAAII VGGAAII VGGAAII VGGAAII	* LLSNK PRDRRR; LLSNK PRDRRR; LLSNK PGDRRR; LLSNK PGDRRR; LLSNK PRDRRR; LLSNK PGDRRR; LLSNK PGDRRR;	300 SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT SKYE LVHTVRT	* HTGADDKSFR HTGADDKSFR HTGADDKSFR HTGADDKSFR HTGADDKSFR HTGADDKSFR HTGADDKSFR	320 CVQQCDDESG CVQQCDDESG CVQQCDDENG CVQQCDDENG CVQQCDDENG CVQQCDDENG CVQQCDDENG CVQQCDDENG CVQQEDDESG	KTGVSL KTGVSL KTGVSL KTGVSL KTGVSL KTGVSL KIGVSL KIGVCL	: 32 : 32 : 32 : 32 : 32 : 32 : 32 : 32	77777777
FAE1-E1 FAE1-E2 FAE1-E3 CAD90159 AF490461 AF490460 ACB55612 AF274750 NP_195178	 * SKDITDVA SKDITDVA SKDITDVA SKDITDVA SKDITDVA SKDITDVA SKDITDVA SKDITDVA	340 GRTVKKNI GRTVKKNI GRTVKKNI GRTVKKNI GRTVKKNI GRTVKKNI GRTVKKNI G <mark>TTL</mark> TKNI	* ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE ATLGPLILPLSE	360 KLLFFVT KLLFFVT KLLFFVT KLLFFVT KLLFFVT KLLFFVT KLLFFVT	* TETAKKLFKDK TETAKKLFKDK TETAKKLFKDK TEMGKKLFKDK TEMGKKLFKDK TEMGKKLFKDK TEMGKKLFKDK TEMGKKLFKDK	380 KHYYVPDFKL KHYYVPDFKL KHYVVPDFKL KHYVVPDFKL KHYVVPDFKL KHYVVPDFKL KHYVVPDFKL	AIDHFCIHAG AIDHFCIHAG AIDHFCIHAG AIDHFCIHAG AIDHFCIHAG AIDHFCIHAG AIDHFCIHAG AVDHFCIHAG	400 GRAVIDVLEK GRAVIDVLEK GRAVIDVLEK GRAVIDVLEK GRAVIDVLEK GRAVIDVLEK GRAVIDVLEK	* NLALAP : NLALAP : NLALAP : NLALAP : NLGLAP : NLGLAP : NLGLAP : NLGLAP : NLGLAP :	: 40 : 40 : 40 : 40 : 40 : 40 : 40 : 40	19 19 19 19 19

		420	*	440	*	460	*	480	*		
FAE1-E1	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VAL SNVKAS	STNSPWEHCI	IDRY PV <mark>Q</mark> ID	:	491
FAE1-E2	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VAL SNVKAS	STNSPWEHCI	IDRYPVQID	:	491
FAE1-E3	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VAL SNVKAS	STNSPWEHCI	IDRYPV <mark>Q</mark> ID	:	491
CAD90159	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VALNNVKAS	STNSPWEHCI	IDRYPV <mark>K</mark> ID	:	491
AF490461	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VAL <mark>N</mark> NVKAS	STNSPWEHCI	IDRY PV <mark>K</mark> ID	:	491
AF490460	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VALNNVKAS	STNSPWEHCI	IDRY PV <mark>K</mark> ID	:	491
ACB55612	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VAL <mark>N</mark> NVKAS	STNSPWEHCI	IDRY PV <mark>K</mark> ID	:	491
AF274750	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NKVWQIAI	LGSGFKCNSAVW	VALNNVKAS	STNSPWEHCI	IDRY PV <mark>K</mark> ID	:	491
NP 195178	:	IDVEASRSTLHRFGNTSS	SSIWYELAY	YIEAKGRMKKG	NK <mark>A</mark> WQIAI	LGSGFKCNSAVW	val <mark>r</mark> nvkas	S <mark>ANSPWQ</mark> HCI	IDRYPV <mark>K</mark> ID	:	491
		500									
FAE1-E1	:	SDSAKSETRVONGRS :	506								
FAE1-E2	:	SDSAKSETRVONGRS :	506								
FAE1-E3	:	SDSAKSETRVONGRS :	506								
CAD90159	:	SDSGKSETRVQNGRS :	506								
AF490461	:	SDSGKSETRVONGRS :	506								
AF490460	:	SDSGKSETRAONGRS :	506								
ACB55612	:	SDSGKSETRVQNGRS :	506								
AF274750	:	SDSGKSETRVQNGRS :	506								
NP 195178	:	SDLSKSKTHVQNGRS :	506								

Supplemental Figure 1. Alignment of amino acid sequences encoded by the *FAE1* alleles E^1 , E^2 and E^3 of yellow mustard, CAD90159 of *B. juncea*, AF490461 of *B. rapa*, AF490460 of *B.oleracea*, ACB55612 and AF274750 of *B. napus* and NP_195178 of *Arabidopsis*.

The amino acid sequence alignment was carried out using the ClustalW program (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Conserved cysteine and histidine residues are indicated by a diamond and a triangle, respectively.

Supplemental Figure 2. Schematic diagram showing the position of each primer used for cloning of the *FAE1* alleles E^1 , E^2 , E^3 and e.

(A) Primers used for cloning the *FAE1* allele E^1 . (B) Primers used for cloning the *FAE1* allele E^2 and E^3 . C. Primers used for cloning the *FAE1* allele *e*. Arrows indicated the direction of the primers. The number under each arrow indicates its nucleotide position. The "A" of translation start codon ATG represents the first nucleotide.

Supplemental Figure 3. Expression pattern of the *FAE1* alleles E^1 , E^2 and E^3 .

(A) The *FAE1* alleles E^1 , E^2 and E^3 were expressed in 14-35d old embryos, but not in the vegetative tissues of leaf, stem, bud and flower as revealed by RT-PCR. The *FAE1* allele *e* was not expressed in the embryo or vegetative tissues. Actin (FG576123) was used as an internal control. (**B-E**) GUS activity was not detected in leaf (**B**), stem (**C**), bud (**D**) or flower (**E**) of transgenic *Arabidopsis* plants containing the construct pBI101 Pro^{E1} -GUS with the promoter of the *FAE1* allele E^1 .

TATTACGATATATGTTATATCGTATATTCTATGCACTCGATAATATTAACTTTCCTATT GTTTAGCTAGAGATAAGTATAGTTTCCTATTTATCGACAGAAAGGTTTATACTAAAC CGTCATAGAACTTGTATATAATGCAAAGTTAGCATAACTTAATAAACAAGTCAGTTT GATATCTTATTCTACA<mark>TGGTATCAGAGCTGA</mark>GATCTCTTTGATTCTCTTGCTTAAAAT

PBS AAGTTCTGAAGTTAAGAACACCCCGAGAAGAGTACGAGAGATGTATCGTCTCTC CATCCCCGTACATCTTGTATGGTTCCGATAATCCCGGAGCCATGATTACTCCAGTC ATGTTGAACGGAGAGAACTACAATCAATGGGCTAACGAGATGCTTAATGCGCTTCA AGCCAAGCGCAAGGTCTGCTTCATCAACGAAACTTTGAAGAAACCTGCAACAGAC GATCCAGACTATGATAATTGGGTAGCAGTGAATTCTATGATTATCGGTTGGATACG AGCATCTATTGATCCAAAGATAAAGGCGTCTGTGACGTTTGTAAGCGAGGCGAGTT TGTTGTGGACGGATTTGAAGCAGCGGTTCTCGGTTGGGAACAAAGTTCGTATTCAT CAAATCAAAGCACAGCTGGCAGCCTGTCGACAGGAAGGTCAAAGTGTGCTTGAAT ACTATGGqAAAGTTGTGCACTCATTGGGAAGAACTCGACGTCTATCGACCTCTGCC GGTCCACCAGTTCATAaTGGGTCTTGATGACTCACGGTTTGGGAGTCTTTGTACGT CTCTAATCGGCATGGATCCCCTGCCATCGATCGGAGAAGTCTACTCCAAGGTAGTT CAAGAAGAACAAAGGTTGAGTACcTTCACGAAACAGAGAACAGCAGCAAGAGGTG ATAGGTTTCGTTGCTCGCAGTGACAATCAAAATCAAGAAACATCAATTCTCCGAAAC AGAGATCGTGTGACAATTTGTTCACACTGTGGACGTCGAGGTCATGATAAGAAGGA TTGCTGGCAGATCATTGGCTTTCCGGAGGGGGGGAATGAACGTACGGACCGTGGC GGTTCTGTTCGTGGCAGAGGTCGCGGTGGACGCAACACAGGCACAGTTGGACGC GGCAGAGGCCAAGTAGCAGCAGCACGCCACCAGCTCCAACCTTTCTGCCTTTC CAGATTTTACACCGGACCAGTGGAAGGTTCTGACTCAACTGATACAAGAGAAATCA GGTTCAGACAAGCTATCTGGTAAGGACAAATATGGCGACGTTATTTTCGATACTGG GGCTTCTCACCACATGACCGGGAAGCTTTCTCTTTTGAAAAATCTTGTCTCCATACC ACCTTGTTCGGTGGGTTTCGCAGATGGGAGTCGAACATTTGCCTTGAGTATGGGC GATCTTCCACTGTCAGGAAGAGTGTCGTTAACTAATGTTCTATATGTGCCATCCTTG TTTACTGATGCTGTTTGTATTTTACAGGACCGTTTCTCGAGGACTCTGATTGGAACC GGTGAAGAGCGTGGTGGGGTTTACTACTAACAGATGTGGCTACAGCAAAGATAC ACACAGTTGACGCATCTTCTGACCAATCACTGTGGCATCAGCGTTTAGGGCATCCT AGTTTTTCTGTGCTTTCGTCTTTACCTTTGAGTTTTTCTATCAATAAAAGCTCGCGTT CTTGTGACGTATGTTTTCGAGCTAAACAAACTCGTGAGATTTTTCCAGACAGTATTA

ATAAATCAGATGATTGTTTTTCTCTAATTCATGTCGATGTCTGGGGTCCATACCGTG TACCTTCTTCTTGCGGTGCAGTATATTTTCTCACGATTGTAGATGATTACTCCAGAT CAGTTTGGACTTACCTAATGTTGGAGAAATCAGAAGTTAARACCATTCTTAAAAACT TCATTGCATACGCAGAAAAACAGTTTGGCAAAGAAGTTAAGATGGTCCGAAGCGAC AATGGCACAGAggcATTTATGTGtTCTCTCTCAGTATTTTCGTGAAATCGGTGTCATT CAtTCAGACCTCATGTGTTGGCACTCCGCAGCAGAATGGTCGTGTCGAGCGCcAAG CACAGGCATATTCTTAACGTGGCACGTgGCGTTACTGTTTCAGGCAAGCTTACCGA TAAGCTTTTGGGGTGAAGCTATTTTAACAGCAGCGTATCTTATAAATCGGACACCTA CATCACTTCACAACGGTCGTTCACCCTATGAAGTTCTTCACGGGTTCTAAACCAGA TTACACACAGCTACGTGTCTTTGGgTTCGGCTTGCTATACTCATCGAGTCACAAGAA GCAAAGACAAGTTTGGTGAGAGAAGTCGCCTTTGTGTGTTTGTGGATATCCTTTT GGGAAAAAGGGATAaCAAAGTTTATGATATGGAACGAGGGGAGTTCATTACTTCTC GTGATGTTGTGTTTCGAGAGGATGgTGTTTCCATATGCTACAAAATCTGTACCGGCT ACCACAACAATCCCGGTGGTAGCAAGCGATGqATGAGGACTqGGAGTTTTACTGTT CCTCCAGTTCTGGTGGACTTGATCGATAGGGGGGGGCTTGGCTGGTGTTACCCCTA CAACTGATTCACCCGTTAACACAGCCAGTGGCAGTGAGAATTTATCACCTTTAGCC GACGAGAGTGATGATATTGATGAAGAAGTYACAACAGGAGCAGCTGATTTAACAGA TGATACGAGTGGTTCAGAAACAGTAAACGAAGCTCTTGGTCGTGGTAGAAGACAC GCGGTTCCCTCTGTTAAGCTCAAGGACTATGTCACCTACAATGCAGAAGCACACGC CTTAAGTACCCACCACGCTCACACCATCTCTGTTCCTCAGTCCTCGTCTTCGGTCC AAGGTAACACACTCTACCCTTTGACAAAATTCGTGTGTGACTCTAATTTTTCTCCAC AGCAGCAAGCTTTCTTAGCTGCAATTACAGCCGGCGTTGAACCCAAGCATTTTAAG GAAGCTGTTGGGATTGATGTGTGGGGATAATTCTATGGTCGACGAGATTGTTGCTCT TGAAGGACAACATACGTGGGATATTTGTGATCTTCCTCTCAACAAAACTGCGCTTG GAAGCCAATGGGTCTATAAAATCAAATATAATACTGACGGTACTATTAGACGTCATA AGTCTCGCGTTGTTGTCATGGGAAATAAACAAGTAGAAGGAGAAGATTATAACGAA ACCTTTGCTCCAGTGGTTAAGATGACGACCGTCCGTATGTTTCTGCGTCTAGTCGC AGCCAATCAATGGGAAGTGTTTCAGATGGATGTCAACAACGCATTTCTCCATGGTG ATCTCGACGAGGAAGTATATATGAAACTCCCACCTGGGTTTCGCCACTCTCATCCA TTGGTTTAAAAAGCTCTCTGACGCCCTGCTCAAGTTCGGTTTCTGTCAGTCCTACG ATGACTACTCATTATTCTCATACACTCGTAAAGGCATTCAGCTCCATGTGCTGATTT ATGTTGATGATCTGCTCATCAGTGGTAATGATAGACACATGGTACAAAGGTTCAAA GACTACTTGGGAAAATGTTTTTCTATGAAGGATCTTGGCAAACTCAAGTATTTTCTA CTTAGACATTATAGCTGAAACAGGAAATCTCGGTTGCAGACCGGCTGCTACTCCGC TCGAACAAAACCATCAACTTGGCAAAGTCGAGAGTCCAGTGCTTGGAGACCCCCA CAAGTATCGGAGGCTCGTAGGTCGTCTGCTCTATCTTGTTCACACCAGACCTGAGT TAAGTTATTCGGgTTCATGTTTTGTCACAGTATATGCAGACTCCGAAAGAAGCTCAC TGGGATGCAGCTCAACGAGTTGTGCqGGTTTTTAAAAGGCTCACCTGGACAAGGC

Supplemental Figure 4. DNA sequence of the retrotransposable element Sal-*T1* inserted in the 5' UTR of the *FAE1* alleles E^2 and E^3 .

The long terminal repeats (LTR) was highlighted in red. The motifs representing the primer binding site (PBS) and polypurine tract (PPT) are underlined, and highlighted in green and pink, respectively. Sequence annotation of the transposable element Sal-*T1* was predicted using GenScan at GeniusNet (<u>http://genome.dkfz-heidelberg.de/cgi-in/GENSCAN/genscan.cgi</u>). The start codon (ATG) and stop codon (TGA) are in red type. The open reading frame is highlighted in grey.

MSVESSEVKNTPEKSTRDVSSLPSPYILYGSDNPGAMITPVMLNGENYNQWANEMLN ALQAKRKVCFINETLKKPATDDPDYDNWVAVNSMIIGWIRASIDPKIKASVTFVSEASLL WTDLKQRFSVGNKVRIHQIKAQLAACRQEGQSVLEYYGKVVHSLGRTRRLSTSANVY VVGAAKDIRKERDDDKVHQFIMGLDDSRFGSLCTSLIGMDPLPSIGEVYSKVVQEEQR LSTFTKQRTAARDFTPDQWKVLTQLIQEKSGSDKLSGPFLEDSDWNRLHTATCLWVR LAILIESQEAKTSLVREVAFVCLLDILLGKRDNKVYDMERGEFITSRDVVFREDGVSICY KICTGYHNNPGGSKRWMRTGSFTVPPVLVDLIDRGSLAGVTPTTDSPVNTASGSENLS PLADESDDIDEEVTTGAADLTDDTSGSETVNEALGRGRRHAVPSVKLKDYVTYNAEAH ALSTHHAHTISVPQSSSSVQGNTLYPLTKFVCDSNFSPQQQAFLAAITAGVEPKHFKEA VGIDVWDNSMVDEIVALEGQHTWDICDLPLNKTALGSQWVYKIKYNTDGTIRRHKSRV VVMGNKQVEGEDYNETFAPVVKMTTVRMFLRLVAANQWEVFQMDVNNAFLHGDLDE EVYMKLPPGFRHSHPNKVCRLRKSLYGLKQAPRCWFKKLSDALLKFGFCQSYDDYSL FSYTRKGIQLHVLIYVDDLLISGNDRHMVQRFKDYLGKCFSMKDLGKLKYFLGIEVSRG PEGIFLSQRNICRLRKKLTGMQLNELCGFLKGSPGQGIMLSSSTDLSLTIYCDSDWSSC PSTRRSLSAFVAMLGDSPISWKTKKQDTVSHSSAEAEYRAMSDALKEVKWLRKLLHG FDIKQVSTRFFCDSKAAIYIATNPVFHERTKHVENDCHAVRDAVRDGLIILHHIRTNEQIA DILTKALGRAQFTTLLSKLGVCDLHAPT

Supplemental Figure 5. The 959 amino acids of the deduced protein of the retrotransposable element Sal-*T1* predicted using GenScan at GeniusNet (<u>http://genome.dkfz-heidelberg.de/cgi-in/GENSCAN/genscan.cgi</u>). The putative locations of gag integrase, reverse transcriptase and RNase H are highlighted in green, yellow, and red, respectively.

GAGCACCCTCATC GCTGGTGCTTAGGGGGATTGCTTAACCTAATTTTGTGTTTAAAAT TAAATAAAAAAGCCAATTAAACTTAAGCTTCGTTGCCTAATTAAGCGCATGAAGCAA TCGTCTCcATTCTGCtTTCGtTCtTCTCTCTCTCTCCCGTCTTCCTCTCCCACGAAGG CGATGTGTCTCTCTCACCGTGGCTCGTCGACGqAGACGGCGACCGGTCAtTCTGTC TCGGTGTTTGTCGTCGACGACATGGTCGATGAtTGTCTTCCTCACTGTGGGTCTCAT CGTGGGCGGTGGACCGGTAAATCGTTGTTGCCTTTCCGCGAATCTGAAGGTAAAG ATGATTTTGTTTTCGGTTTTTATCATGCATGTCTTAGATTAGTGTTTGTCTTGGTCTA ATCGATGTTTTTTTTTTTTTTTTTCTCTGTTCGATGATGTCTCTCACAACGGCGAAGGA GGAGCTCGATGATGTCTCTCACAACGGCGAAGGAGGAGCTCGATGATGGTGGGT CTCCGGTGTCCTCGTATCGGTCTGGTAAAGCTTCGTCTTTTACTTCTTTTCACTTTG ATTCTTCTTTTCAATTATTTTGTTAAATCGATGTATATTCTTTTATGTTGATTCTTTTG ATTTTGTTTCTGACTTTTTGTGGTGAGCTGGAGTGATCAAATCGCTGTCTCTTGTTC GGTGTTAAGAGACGTCAGGAAGGTTCATCGAACAGAGGAGTTCAATAAGTTCACA GGTTAGTTGTGTGATGAATGTTTCATCTTAAATGGATGwCAAGTCCTTCATCTCTC TTCTCTCTTTATTACTTCTTCTCTCTCTCTCCCGAATCACTCTACATTCCTGGA TCTTTTACTTCTTCTATCTTTTCTTCTTCTCCCCTTCCCATTTCCTCAAATGGATT CTACTcCcATTTGCGTACAATGCAAATTTTGTTGAGCTTCTTAATAGCCAACAAGATA GTGTATTTCGTTTAGTAGAAGCTACTGTCGAACCAAGTTCATGAGCAGTGTTCTGG CACCTTTTGGAAGGTGTATTTTGTTTCTTTTGTGTCAAGGTCATGTCATGTATTTTG GAGTCACTTGGAGTCACTTGGAGTCAGTTGGAGTCATGTGTTTTGATCAATTGTGT CACGGACTGTCCTTGGAGTCCCTTCTCCTTATGTAATTTGYAATCTAATTTTGTTTG TAATATTGTGTCACGGATTTAGTTGTTATGTATGTTTGATGTACTATAAATTATTATC CCATTACCAAACCGAAATCATCTCTTTTCTCTTTTATCCATCTCCAAGATTCAAATAAAA ATCAATATTTTGATCAAACCTTTGAAAAATTTACCATGGGTCATCAAGAAGAACCAA GGAAACwAAAAAAAAAGAGAGCTTATATTGAAAGAAATCGTGAAGAAGGCCATATT CGATTATGGATCAGTCTCTCCCCCTTCAAAAGTGTACTGCAGCCATCCGTGTCTT GGCATATGGTTGTGCGGGTGATATGGTCGACGAATACCTTCGGCTCGGTGAAACA

GAGTACTTAAGAAGACCAACCCCGACTGATCTTCAACGtTTACTTGATGTTGGGGA GTATCGTGGATTTCCCGGGATGATAGGAaGCATCGATTGTATGCATTGGGAGTGGA AGAATTGTCCAAcCGCTTGGAAAGGACAATATTCTCGTGGTTCGGGCAAACCTACT ATCGTTTTAGAGGCGGTTGCTTCGTATGATCTCTGGATATGGCATGCGTTTTTGG ACCTCCAGGTACCTTAAATGATATCAACGTTCTTGATCGTTCACCTGTTTTGATGA CATAATACATGGTCAAGCTCCGCCAGTCACTTTCTCTGTCAATGGAAGACAATATC ATATGGCTTACTATCTGACTGATGGTATTTATCCGAAATGGGCAACTTTTATCCAAT CTATTCGTTTACCACAGGTGCCGAAAGCAGTTTTATTTGCTCAACGTCAAGAGGCT GTCCGAAAAGATGTCGAGCGTGCTTTTGGAGTCCTACAAGCTCGTTTTGCAATTGT TAAAAATCCAGCTCTGTTCTGGGATAAAGTCAAAATTGGGAAAATTATGAGAGCAT GTATCATACTCCATAATATGGTAGTAGAAGACGAACGAGATGGATACACTCAATAT GATGTTTCAGAGTTCGTCCAAGGAGAAGAAAACCGAAGTTCTCATGTCGATCTCGA TTTTGATAGAGATATCCCATCAAATATCGCAAATACAATGGATGCTCGAACAAGAAT TCGTGATAAACCAATGCATCAACAACTAAAACATGATTTAGTTGAACATATATGGCA TAAGTTTGGAGGTGATGAAGACAACAACTAACTGAGATGGATCTTTCAAATAATTCT CATGTATTTCCTAGTCTTTGTTCATGTTTTTTTTTAAACTATGTTTGAAATATTGT TTAAAATTGTTAAAATAAGCAACTTGCAATGGAAAAATAAAATTAACAAATTGCTTAG CTAAGTTGCTTAACCCAAATAAATTATTAAATACTATTAATTTTAATTAAGCAaCCCA TAATGGGtTGTTAG<mark>GATGAGGGTGCTC</mark>

Supplemental Figure 6. The sequence of the DNA transposon Sal-*PIF* inserted in the coding region of the *FAE1* allele *e*.

Sequence annotation of DNA transposon Sal-*PIF* was predicted using GenScan at GeniusNet (http://genome.dkfz-heidelberg.de/cgi-in/GENSCAN/genscan.cgi). ORF1: highlighted in grey; ORF2: highlighted in light blue. The start codon (ATG) and stop codon (TAA, TGA) are underlined. The terminal inverted repeats (TIRs) are highlighted in red.

7A

MTLTQKKQNTPSKRRIKVKRSKRRSFTRPIRGHRRPTIIELLLRRCERHHRAPPSPLFA ERQQRFTGPPPTMRPTVRKTIIDHVVDDKHRDRMTGRRLRRRAT

7B

MSSSSENTFEDLFDDAFDQYFDQTFEKFTMGHQEEPRKXKKKRAYIERNREEGHIRL WISLSPLQKCTAAIRVLAYGCAGDMVDEYLRLGETTTRLCVENFVEGVINLFGDEYLRR PTPTDLQRLLDVGEYRGFPGMIGSIDCMHWEWKNCPTAWKGQYSRGSGKPTIVLEAV ASYDLWIWHAFFGPPGTLNDINVLDRSPVFDDIIHGQAPPVTFSVNGRQYHMAYYLTD GIYPKWATFIQSIRLPQVPKAVLFAQRQEAVRKDVERAFGVLQARFAIVKNPALFWDKV KIGKIMRACIILHNMVVEDERDGYTQYDVSEFVQGEENRSSHVDLDFDRDIPSNIANTM DARTRIRDKPMHQQLKHDLVEHIWHKFGGDEDNN

Supplemental Figure 7. Deduced amino acid sequences of the DNA transposon Sal-*PIF* predicted using GenScan at GeniusNet (<u>http://genome.dkfz-</u> heidelberg.de/cgi-in/GENSCAN/genscan.cgi).

(**A**) The 103 amino acids of the deduced protein of ORF1. (**B**) The 383 amino acids of the deduced protein of ORF2.

Supplemental Figure 8. PCR amplification of the entire *FAE1* alleles E^1 , E^2 , E^3 and *e* using the primer pair WF/WR No 14 (Supplemental Table 1 online). M: 1 kb DNA ladder; Lanes 1 and 2: 2524 bp fragment of E^1 ; Lanes 3 and 4: 7424 bp fragment of E^2 ; Lanes 5 and 6: 7424 bp fragment of E^3 ; Lane 7 and 8: 5369 bp of *e*.

	*	2444	▲▲* ▲		• *	60	*	80		
Unconverted AtSN1 :	GAATATCTGGAAGTT	CAGGCCCAAAG	GCCTTA <mark>C</mark> A:	TCTCCCAG	AGGCGGGACCC	ATACCAGAAATT	ATCTTCTT	TGGAAAAGA	:	83
AtSN1-1:	GAATATCTGGAAGTT	CAGGCCCAAAG	SCCTTA <mark>C</mark> A!	TTTTTCAG	AGGCGGGATTC	ATACCAGAAATT	ATCTTCTT	TGGAAAAGA	:	83
AtSN12:	GAATATCTGGAAGTT	CAGGCCCAAAG	GCCTTA <mark>C</mark> A!	TTTTTCAG	AGGCGGGATTC	ATACCAGAAATT	ATCTTCTT	TGGAAAAGA	:	83
A65N1-3 :	GAATATCTGGAAGTT	CAGGCCCAAAG	GCCTTACA?	ICICCCAG	AGGCGGGATTC	ATATT <mark>AGAAATT</mark>	ATCTTTT	TGGAAAAGA	:	83
AGN1-4 :	GAATATCTGGAAGTT	CAGG <mark>T</mark> CCAAAG(GCCTTACA?	ICTCCCAG	AGGCGGGATCI	ATAT <mark>C</mark> AGAAATTT	ATCTTCTT	TGGAAAAGA	:	83
AtSN1-5 :	GAATATCTGGAAGTT	CAGG <mark>T</mark> CCAAAG(GCCTTACA	ICTCCCAG	AGGCGGGAT <mark>C</mark> I	ATATCAGAAATTT	ATCTTCTT	TGGAAAAGA	:	83
AtSN1-6	GAATATCTGGAAGTT	CAGGCCCAAAG	GCCTTACA	ICTCCCAG	AGGCGGGATT <mark>C</mark>	ATAT TAGAAATT I	ATCTTTT	TGGAAAAGA	:	83
A6SN1-7 :	GAATATCTGGAAGTT	CAGG <mark>T</mark> CCAAAG(GCCTTACA:	ICICCCAG	AGGCGGGAT <mark>C</mark> T	ATATCAGAAATTT	ATCTTCTT	TGGAAAAGA	:	83
AtSN1-8 :	GAATATCTGGAAGTT	CAGG <mark>CCC</mark> AAAG(GCCTTACA	TTTTTAG	AGGCGGGATTT	ATATTA <mark>A</mark> AAATTT	ATTTTTT	TGGAAA <mark>G</mark> GA	:	83
AtSN1-9 :	GAATATCTGGAAGTT	CAGG <mark>TTT</mark> AAAG(STTTTATA:	TTTCCCAG	AGGCGGGATTT	ATATTAGAAATTT	ATTTTTT	TGGAAAAGA	:	83
A6SN1-10 :	GAATATCTGGAAGTT	CAGGCCCAAAG	GCCTTACA	ITTCCCAG	AGGCGGGAT T T	ATAT TAGAAATT I	ATTTTTT	TGGAAAAGA	:	83
AtSN1-11 :	GAATATCTGGAAGTT	IAGGTTTAAAG(GTTTTATA?	TTTTTCAG	AGGCGGGATTT	ATATTAGAAATTT	ATTTTTT	TGGAAAAGA	:	83
AtSN1-12 :	GAATATCTGGAAGTT	CAGG <mark>TTT</mark> AAAG(STTTTATA	TTTTTCAG	AGGCGGGAT T T	ATATTAGAAATTT	ATTTTTT	TGGAAAAGA	:	83
AtSN1-13 :	GAATATCTGGAAGTT	CAGGCCCAAAG	SCCTTACA:	ITTCCCAG	AGGCGGGATTT	ATATTAGAAATTT	ATTTTTT	TGGAAAAGA	:	83
AtSN1-14 :	GAATATCTGGAAGTT	CAGG <mark>CCCAAAG</mark>	SCCTTATA	TTTTTAG	AGGCGGGATTI	ATATTAGAAATTT	ATTTTTT	TGGAAAAGA	:	83
	+ 1		- •	100	+	140	•			
Linear sector (Archide							Scances	. 156		
Onconvened ALBIVI :	CARCONNECCAACGI	STOTOGAATOC		TATCIGAG	AGATTTACCA		CGIIGGI	. 150 . 156		
AEGNIT-I - ARCARD -	CARCERECCEAACGI	STCICGARICC.	CCLCCIC.	TAICIGAG	AGAITIACCA	TGGGCCAACAACA	CGIIGGI	. 156		
ALCHVI-2 -	CAREFERENCE	CTUTCGAATCC		TAICIGAG	ACATTIACOAC		CCTTGGT	. 156		
ALDIVIT-J -	CARCERERCECAACCE	STITCGAATIC		TATCIGAG	ACATTTALIAC		CCTTGGT	· 156		
ALDIVI-4 -	CATCOTTCTCAACCT	STITCGARTIC		TATCIGAG	ACATTTACCAC	TCCCTTANTANA	CCTTCCT	· 156		
ADIVI-J -	CATTOTCARCOT	STITCGAATIC		ТАТСІGАС Татстсас	АСАТТТАССАС АСАТТТАТТА	ТСССТТААТААТА	CGTTGGT	· 156		
ALDIVID.	GATCOTTCTTAACCT	CTRTCCAATEC	CTATTC	TATCTGAG	AGATTTATTAC	TGCCTTAATAATA	CGTTGGT	· 156		
- PTVIGA	GATTTTTTTAACGT	STRTCGAATRT		TATCTGAG	AGATTTATTAT	TGCCTTAATAACA	TGTTGGT	· 156		
Arshid.9	GATTTTTTTAACGT	STRTCGAATRC		TATCTGAG	ΑΓΑΤΤΤΑΤΤΑΓ	TGGGTTAACAADA	CGTTGGT	· 156		
ALGN/1-10 ·	GATCCTTCCTAACCT	GTCTCGAATCC	GCACCEC	TATCTGAG	AGATTTACTAC	TGGGTTAATAACA	CGTTGGT	: 156		
ArSN(1-10 -	GATTTTTTCTAACGT	GTUTCGAATUC	AGTATTT	ТАТСТСАС ТАТСТСАС	ΑGATTTATTAT	TGGGTTAATAATA	тсттсст	: 156		
ABM-11 :	GATTTTTTTAACGT	STRTCGAATEC	ACT ATTTT	TATCTGAG	AGATTTATTAT	TGGGTTAATAATA	CGTTGGT	: 156		
ALSN/1-12 -	GATCOTTCCTAACGT	GTCTCGAATCC	AGCACCTC	TATCTGAG	AGATTTATCA	TGGGTCAATAACA	CGTTGGT	: 156		
ALDIVI-13 -	CATTOTTTTTCAACCT			TATCTCAC	ACATTTATCA	TCCCTCAATAATA	CCTTCCT	· 156		
ALDIVI-14 -	CARLICIT I TOMACGI	and a constant to the		INICIONG	CAL		.9011001	. 130		

Supplemental Figure 9. DNA methylation in the internal region between the long terminal repeats of *AtSN1* (positive control).

The known eighteen methylated cytosines as reported by Kuhlmann and Mette (2012), and one additional methylated cytosine (highlighted as yellow) were detected in the internal region between the long terminal repeats of *AtSN1* (positive control). Circle: CG; Rectangle: CHG; Triangle: CHH.

Supplemental Figure 10. DNA methylation in the coding regions of the *FAE1* alleles E^1 , E^2 and E^3 .

DNA methylation was not detected in the 1515 bp coding region (nucleotides 1-1515) of E^1 in Y517 (**A**), E^2 in Y496 (**B**) and E^3 in Y1130 (**C**), E^3 in 5-azaC induced revertants of Y1130 (**D**) and E^3 in spontaneous revertant of Y1130 (**E**).

11A	÷	20	- 40	÷	< 0 +	
Unconverted ATP1 : ATP1-Y517-1 : ATP1-Y517-2 : ATP1-Y517-3 : ATP1-Y517-3 : ATP1-Y517-5 : ATP1-Y517-6 : ATP1-Y517-7 : ATP1-Y517-8 : ATP1-Y517-10 :	TGAACGAGATTGAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG TGAATGAGATTTAAG	20 CTGGGGAAATGGTT CTGGGGAAATGGTT TTGGGGAAATGGTT TTGGGGAAATGGTT TTGGGGAAATGGTT TTGGGGAAATGGTT TCGGGGAAATGGTT TCGGGGAAATGGTT TTGGGGAAATGGTT	TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG TTTTTGTTAATG	A STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG STGTGAAAGGAATGG	CCTTGAATCTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA TTTTGAATTTTGAGA	BU ATGAGAATG : 81 ATGAGAATG : 81
Unconverted ATP1 : ATP1-Y517-2 : ATP1-Y517-2 : ATP1-Y517-3 : ATP1-Y517-3 : ATP1-Y517-5 : ATP1-Y517-6 : ATP1-Y517-7 : ATP1-Y517-8 : ATP1-Y517-10 :	* TCGGGATTGTTGTCT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT TTGGGATTGTTGTTT	100 * TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT TTGGTGGTGATATT	120 CTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG TTATAAAAGAAG	* 1 SAGAT GAGAT TTT GTTAAGT SAGAT TTT GTTAAGT	40 * GCACTGGATTCATTG GTATTGGATTTATTG GTATTGGATTTATTG GTATTGGATTTATTG GGTCGGCTTTTTTG GTATTGGATTTATTG GTATTGGATTTATTG GTATTGGATTTATTG GTATTGGATTTATTG GTATTGGATTTATTG GTATTGGATTTATTG	160 IGGATGTTC : 162 IGGATGTTT : 162
Unconverted ATP1 : ATP1-Y517-1 : ATP1-Y517-2 : ATP1-Y517-2 : ATP1-Y517-3 : ATP1-Y517-6 : ATP1-Y517-6 : ATP1-Y517-7 : ATP1-Y517-9 : ATP1-Y517-10 :	* 1 CCCCGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT TTGTGGGAAAGCTAT	80 * GCTACGCGTGTGTGGT GTTACGTGTGTGTGGT GTTACGTGTGTGTGGT GTTACGTGTGTGTGGT GTTACGTGTGTGTGGT GTTACGTGTGTGTGGT GTTACGTGTGTGGGT GTTACGTGTGTGGT	200 CACCCGATGGGAG TGATGTGATGGGAG TGATGTGATG	* 220 TACCTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA TATTATTCATGCAA	AGGC : 227 AGGA : 227 AGGC : 227 CAGGC : 227	
11B						
Unconverted P1 : P1-E'(Y517)-1 : P1-E'(Y517)-2 : P1-E'(Y517)-3 : P1-E'(Y517)-4 : P1-E'(Y517)-6 : P1-E'(Y517)-6 : P1-E'(Y517)-8 : P1-E'(Y517)-9 : P1-E'(Y517)-10 :	* TCAAAGAAGATTCTT TTAAAGAAGATTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT	20 CGTAGTTAGAGACAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC CGTAGTTAGAGATAC	* 40 AAAATCTACATAC AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATT AAAATTTATATATA	* CTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA TTTTATTTGGAGTA	60 * ACAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT ATAATGGAGATATTT	80 TAAGCAATGA : 81 TAAGTAATGA : 81
Unconverted P1 :	* ATTTATGA <mark>C</mark> GTTATA	100 * 	120 TTCATTTTTAATT	* GAAAG <mark>C</mark> ATTATTTT	140 * TATC <mark>GAAATGAAAT</mark> C	160 TAGTATATAA : 162
$\begin{array}{l} P1-E^{i}(Y517)-1 & :\\ P1-E^{i}(Y517)-2 & :\\ P1-E^{i}(Y517)-3 & :\\ P1-E^{i}(Y517)-4 & :\\ P1-E^{i}(Y517)-5 & :\\ P1-E^{i}(Y517)-5 & :\\ P1-E^{i}(Y517)-7 & :\\ P1-E^{i}(Y517)-8 & :\\ P1-E^{i}(Y517)-9 & :\\ P1-E^{i}(Y517)-10 & :\\ \end{array}$	ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGTTATA ATTTATGATGATGATATA	NTTATATAGTTTAT NTTATATAGTTTAT NTTATATAGTTTAT NTTATATAGTTTAT NTTATATATAGTTTAT NTTATATATAGTTTAT NTTATATAGTTTAT NTTATATAGTTTAT NTTATATAGTTTAT NTTATATAGTTTAT	TTTATTTTAAT TTTATTTTTAAT TTTATTTTTAAT TTTATTTTAAT TTTATTTTAAT TTTATTTTTAAT TTTATTTTAAT TTTATTTTAAT TTTATTTTAAT TTTATTTTAAT	CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT CGAAAGTATTATTTT	TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT TATTGAAATGAAATT	TAGTATATAA : 162 TAGTATATAA : 162

		*	180	*	200	*	220	*	240		
Unconverted P1	:	TATAATGTTTTAT	CATCAGGATA	CTTTCCTAT7	rttttgg <mark>c</mark> ac	CTTTCATAGGA	CTACTGATTT.	ATTT <mark>C</mark> AATO	TGTATGCCT	:	243
P1-E1(Y517)-1	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-2	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-3	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTTAT?	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-4	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTTAT	ITTTTGGTAI	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-5	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAI	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-6	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTAT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-7	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTTAT	ITTTTGGTAI	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-8	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-9	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243
P1-E1(Y517)-10	:	TATAATGTTTTAT	TATTAGGATA	TTTTTTATT	ITTTTGGTAT	TTTTTATAGGA	TTATTGATTT.	ATTTTAATG	TGTATGTT	:	243

		*		
Unconverted P1	:	GCATGAGCATGAGT	:	257
P1-E1(Y517)-1	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-2	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-3	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-4	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-5	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-6	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-7	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-8	:	GTATGAGTATGAGT	:	257
P1-E ¹ (Y517)-9	:	GTATGAGTATGAGT	:	257
P1-E1(Y517)-10	:	GTATGAGTATGAGT	:	257

11C

	*	20	*	40	*	60	*	80		
Unconverted P2 :	ATTTTTGGC	ACCTTTCATAGGAC	TA <mark>C</mark> TGATTTATTT	CAATGTGTAT	GCCTGCA	ATGAG <mark>C</mark> ATGAG	TATA <mark>CAC</mark> ATGI	CTTTAAAA	:	83
P2-E ¹ (Y517)-1 :	ATTTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGI	TTTTAAAA	:	83
P2-E ¹ (Y517)-2 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E ¹ (Y517)-3 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E1(Y517)-4 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E ¹ (Y517)-5 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E1(Y517)-6 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E ¹ (Y517)-7 :	ATTTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGI	TTTTAAAA	:	83
P2-E1(Y517)-8 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
P2-E ¹ (Y517)-9 :	ATTTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGI	TTTTAAAA	:	83
P2-E ¹ (Y517)-10 :	ATTTTTGGT.	ATTTTTTATAGGAT	TATTGATTTATTT	TAATGTGTAT	GTTTGTA	ATGAGTATGAG	TATATATATGT	TTTTAAAA	:	83
	*	100	<u>* 1</u> 2 <u>0</u>	**	1	40				
Unconverted P2 :	atg <mark>c</mark> atgtaaa	.GTGTAAC <mark>GGA</mark> CCAC	AAAAGA <mark>G</mark> GAT <mark>C</mark> TA	TACAAATACA	TCTCATC	ACTIC : 140	3			
P2-E ¹ (Y517)-1 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>A</mark> GATTTA	TATAAATATA	TTTTATT	ATTTT : 143	3			
P2-E ¹ (Y517)-2 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>A</mark> GATTTA	TATAAATATA	TTTTTTT	ATTTT : 143	3			
P2-E ¹ (Y517)-3 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>A</mark> GATTTA	TATAAATATA	TTTTTTT	ATTTT : 143	3			
P2-E ¹ (Y517)-4 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>A</mark> GATTTA	TATAAATATA	TTTTTTT	ATTTT : 143	3			
P2-E ¹ (Y517)-5 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>A</mark> GATTTA	TATAAATATA	TTTTTTT	ATTTT : 143	3			
P2-E ¹ (Y517)-6 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>G</mark> GATTTA	TATAAATATA	TTTTTTT	ATTTT : 143	3			
P2-E ¹ (Y517)-7 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>G</mark> GATTTA	TATAAATATA	TTTTATT	ATTTT : 143	3			
P2-E ¹ (Y517)-8 :	ATG <mark>A</mark> ATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>G</mark> GATTTA	TATAAATATA	TTTTATT	ATTTT : 143	3			
P2-E ¹ (Y517)-9 :	ATGTATGTAAA	.GTGTAAT GGATTAT	AAAAGA <mark>G</mark> GATTTA	TATAAATATA	TTTTATT	ATTTT : 143	3			
P2-E ¹ (Y517)-10 :	ATGTATGTAAA	.GTGTAATGGATTAT	AAAAGA <mark>G</mark> GATTTA	TATAAATATA	TTTTATT	ATTTT : 143	3			

Supplemental Figure 11. Bisulfite sequence alignment of *ATP1* (control gene) and the *FAE1* allele E^1 in line Y517.

(A) The control gene *ATP1* had 100% conversion of C to T in the 10 clones analyzed. (B) DNA methylation was not detected in the promoter region (nucleotides -335 to -79) of E^1 . (C) DNA methylation was not observed in the partial promoter region (nucleotides -143 to 1) of E^1 . Unconverted genomic sequence is shown on the top. P1: The promoter region (nucleotides -335 to -79) was amplified using primer pair No 30. P2: The promoter region (nucleotides -143 to 1) was amplified using primer pair No 28. (D) DNA methylation was not detected in the promoter region (-335 to 1) of the *FAE1* allele E^1 in the three plants Y517-1, -2 and -3. Ten clones were analyzed for each bisulfite experiment.

1ZA	+		-	10	+	60	+ 00	
Unconverted ATP1 : ATP1-Y496-1 : ATP1-Y496-2 : ATP1-Y496-3 : ATP1-Y496-4 : ATP1-Y496-4 : ATP1-Y496-6 : ATP1-Y496-7 : ATP1-Y496-8 : ATP1-Y496-10 :	TGAACGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT TGAATGAGATT	CAAGCTGGGG, TAAGCTGGGG, TAAGTTGGGG, TAAGTTGGGG, TAAGTTGGGG, TAAGTTGGGG, TAAGCTGGGG, TAAGCTGGGG, TAAGCTGGGG, TAAGCTGGGG,	AAATGGTTCTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT AAATGGTTTTTTT	TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT TGTTAATGGT	STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG STGAAAGGAATG	GCOTTGAATCT GTTTTGAATTT GTTTTGAATTT GTTTTGAATTT GTTTTGAATTT GTTTTGAATTC GTTTTGAATTT GTTTTGAATTT GTTTTGAATTT GTTTTGAATTT GTTTTGAATTT	rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat rgagaatgagaat	G : 81 G : 81
Unconverted ATP1 : ATP1-Y496-1 : ATP1-Y496-2 : ATP1-Y496-3 : ATP1-Y496-4 : ATP1-Y496-6 : ATP1-Y496-6 : ATP1-Y496-7 : ATP1-Y496-8 : ATP1-Y496-10 :	* TCGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT TTGGGATTGTT	100 PGTC TTTGGTG PGTTTTTGGTG PGTTTTTGGTG PGTTTTTGGTG PGTTTTTGGTG PGTTTTTGGTG PGTTTTTGGTG PGTTTTTGGTG	* STGATACC GCTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT STGATATTGTTAT	120 AAAAGAAGGA AAAAGAAGGA AAAAGAAGGA AAAAGAAG	* GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG GATETTGTEAAG	140 CGCACTGGATC TGTATTGGATT TGTATTGGATT TGTATTGGATT TGTATTGGATT TGTATTGGATT TGTATTGGATT TGTATTGGATT TGTATTGGATT	* 160 FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT FATTGTGGATGTT	C : 162 T : 162
Unconverted ATP1 : ATP1-Y496-1 : ATP1-Y496-2 : ATP1-Y496-2 : ATP1-Y496-4 : ATP1-Y496-6 : ATP1-Y496-6 : ATP1-Y496-8 : ATP1-Y496-9 : ATP1-Y496-10 :	* CCGCCGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA TTGTGGGAAAA	180 GGTATGCTAG GGTATGTAG GGTATGTAG GGTATGTAG GGTATGTAG GGTATGTAG GGTATGTAG GGTATGTAT	* GGCGTGTGGTCGA GGTGTGGTGGTTGA GGTGTGTGGTTGA GGTGTGTGGTTGA GGTGTGTGT	200 CCCGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA TGTGATGGGA	* 2 STACCTATTGAT STACCTATTGAT STACCTATTGAT STACCTATTGAT STATCTATTGAT STATTTATTGAT STATTTATTGAT STATTTATTGAT STATTATTGAT STATTATTGAT	20 GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG : GGAAGAGGG :	227 227 227 227 227 227 227 227 227 227	
12B								
Unconverted P1 : $P1-E^2(Y496)-1$: $P1-E^2(Y496)-2$: $P1-E^2(Y496)-3$: $P1-E^2(Y496)-3$: $P1-E^2(Y496)-6$: $P1-E^2(Y496)-6$: $P1-E^2(Y496)-7$: $P1-E^2(Y496)-9$: $P1-E^2(Y496)-10$:	* TCAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT TTAAAGAAGAT	20 CTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK TTTTGTAGTTAK	* SAGACAGAAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT SAGATAGAAATTT	40 ACATACTCTTT ATATATTTTTT ATATATTTTTT ATATATTTTTT ATATATTTTTT	* ATTTGGAGTAAC ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT ATTTGGAGTAAT	60 * AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT AATGGAGATATT	80 TTTAAGCAATGA : TTTAAGTAATGA : TTTAAGTAATGA : TTTAAGTAATGA : TTTAAGTAATGA : TTTAAGCAATGA : TTTAAGCAATGA : TTTAAGTAATGA : TTTAAGTAATGA : TTTAAGTAATGA :	81 81 81 81 81 81 81 81 81 81
Unconverted P1 :	* ATTTATGACGT ATTTATGACGT	100 TATATTTATAT.	* AGTTTATTTC <mark>ATT</mark>	120 FTTAATTGAAA	* 14 GCATTATTTTA	0 * T <mark>C</mark> GAAATGAAAT	160 CTAGTATATAA :	162
	Unconverted ATP1 : ATP1-Y496-1 : ATP1-Y496-2 : ATP1-Y496-3 : ATP1-Y496-3 : ATP1-Y496-4 : ATP1-Y496-6 : ATP1-Y496-7 : ATP1-Y496-7 : ATP1-Y496-8 : ATP1-Y496-1 :	12A * Unconverted ATP1: TGAACGAGATT ATP1-Y496-1: TGAACGAGATT ATP1-Y496-2: TGAATGAGATT ATP1-Y496-3: TGAATGAGATT ATP1-Y496-4: TGAATGAGATT ATP1-Y496-5: TGAATGAGATT ATP1-Y496-6: TGAATGAGATT ATP1-Y496-7: TGAATGAGATT ATP1-Y496-7: TGAATGAGATT ATP1-Y496-7: TGAATGAGATT ATP1-Y496-10: TGGATGATTGTT ATP1-Y496-11: TTGGGATTGTT ATP1-Y496-12: TTGGGATTGTT ATP1-Y496-13: TTGGGATTGTT ATP1-Y496-14: TTGGGATTGTT ATP1-Y496-15: TTGGGATTGTT ATP1-Y496-10: TTGGGATTGTT ATP1-Y496-11: TTGGGATTGTT ATP1-Y496-11: TTGGGATTGTT ATP1-Y496-11: TTGGGATTGTT ATP1-Y496-11: TTGGGATTGTT ATP1-Y496-11: TTGGGGATAGT ATP1-Y496-11: TTGTGGGAAAQ ATP1-Y496-11: TTGTGGGAAAQ ATP1-Y496-12: TTGTGGGAAAQ ATP1-Y496-11: TTGTGGGAAAQ ATP1-Y496-12:<	$\frac{12A}{x} = \frac{20}{x}$ Unconverted ATP: : TGAACGAGATTCAAGTCGGGG ATPI-Y496-1: TGAACGAGATTCAAGTTGGGG ATPI-Y496-2: TGAACGAGATTTAAGTTGGGG ATPI-Y496-3: TGAATGAGATTTAAGTTGGGG ATPI-Y496-5: TGAATGAGATTTAAGTTGGGG ATPI-Y496-5: TGAATGAGATTTAAGCTGGGG ATPI-Y496-7: TGAATGAGATTTAAGCTGGGG ATPI-Y496-10: TGGATGGAGATTTAAGCTGGGG ATPI-Y496-11: TGGATGTGTTTTGGTGTTTTGGTG ATPI-Y496-12: TGGATGTGTTTTTGGTGT ATPI-Y496-12: TGGGATGTGTGTTTTGGTGG ATPI-Y496-12: TGGGATGTGTGTTTTGGTGG ATPI-Y496-12: TGGGATGTTGTTTTGGTGG ATPI-Y496-12: TGGGATGTTGTTTTGGTGG ATPI-Y496-12: TGGGATGTTGTTTTGGTGG ATPI-Y496-12: TGGGATGTTGTTTTTGGTGG ATPI-Y496-12: TGGGATGTTGTTTTTGGTGG ATPI-Y496-13: TTGGGATTGTTGTTTTGGTGG ATPI-Y496-14: TTGGGATTGTTGTTTTGGTGG ATPI-Y496-15: TTGGGATTGTTGTTTTGGTGG ATPI-Y496-10: TTGGGATTGTTGTTTTGGTGG ATPI-Y496-10: TTGGGATTGTTGTTTTGGTGG ATPI-Y496-10: TTGGGAATGTTGTTTTTGGTGG ATPI-Y496-10: TTGGGAAAGGTTATGTTAG ATPI-Y496-11: TTGTGGGAAAGGTTATGTTAG ATPI-Y496-11: TTGTGGGAAAGGTTATGTAG ATPI-Y496-11: TTGTGGGAAAGGTTATGTAG ATPI-Y496-11: TTAAAGAAGATTTTTGTAGTTA PI-EYY490-11: TTAAAGAAGATT	12A * 20 * Unconverted ATPI : GAAC GAGATT CAAC TGGGGAAAT GGT CTTT ATPI-Y496-1: TGAAT GAGATT CAAC TGGGGAAAT GGT CTTTT ATPI-Y496-2: TGAAC GAGATT CAAC TGGGGAAAT GGT TTTTT ATPI-Y496-2: TGAAC GAGATT CAAC TGGGGAAAT GGT TTTTT ATPI-Y496-2: TGAAT GAGATT CAAC TGGGGAAAT GGT TTTTT ATPI-Y496-2: TGAAT GAGATT CAAC TGGGGAAAT GGT TTTTT ATPI-Y496-2: TGAAT GAGATT TAAC TGGGGAAAT GGT TTTTT ATPI-Y496-2: TGGGAT GTGT CTTTGGTGGTGATAT GTTAT ATPI-Y496-2: TGGGAT GTGT CTTTGGTGGTGATAT GTTAT ATPI-Y496-2: TGGGAT GTTGT TTTGGTGGTGATAT GTTAT ATPI-Y496-2: TGGGAT GTGT TTTTGGTGGTGATAT TGTAT ATPI-Y496-2: TGGGAT GTGT TTTTGGTGGTGATAT TGTAT ATPI-Y496-1: TGGGAT GTGT TTTTGGTGGTGATAT TGTAT ATPI-Y496-1: TGGGAT GTGT TTTTGGTGGTGATAT TGTAT ATPI-Y496-1: TGTGGGAAAGC TATCT TA GCTGTGTGT FA ATPI-Y496-1: TGTGGGAAAGC TATCT TA GCTGTGTGT GA ATPI-Y496-1: TGTGGGAAAGC TATCT TA GCTGTGTGT FA ATPI-Y496-1: TGTGGGAAGG TATCT TA GCTGTGTGTGT FA ATPI-Y496-1: TGTGGGAAGG TATCT TA GCTGTGTGT GA ATPI-Y496-1: TGTAGGAAGGAT TTTGTAGT AGAGAAGAATTT PI-EYY496-1: TTAAAGAAGAT TTTGTAGT AGAGAAGAATTT PI-EYY496-1: TTAAAGAAGAT TTTGTAGT AGAGAGAATTT PI-EYY496-1: TTAA	<pre> * 20 * 40 * 20 * 20 * 40 * 20 * 40 * 20 * 20 * 40 * 20 * 40 * 20 * 20</pre>	120 * 20 * 40 * 1000000000000000000000000000000000000	12A 20 00 00 00 00 00 17P:VMS: 00A 60A 60A 60A 60A 60A 17P:VMS: 00A 60A <	Unserved 20 40 60 60 90 Warmsweit Total Anders Total Construction Total Co

Unconverted P1 :	. ATTTATGAGGTTATATTTATATAGTTTATTTGATTTTTAATTGAAAGGATTATT	ATAA	:	162
P1-E ² (Y496)-1:	: ATTTATGA <mark>T</mark> GTTATATATTATATAGTTTATTTC <mark>ATTTTTAATTGAAAGC</mark> ATTATTTTTATTGAAATGAAATTTAGTAT.	ATAA	:	162
P1-E ² (Y496)-2:	: ATTTATGACGTTATATATATATAGTTTATTTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E2(Y496)-3:	: ATTTATGA <mark>T</mark> GTTATATATATATAGTTTATTTC <mark>ATTTTTAATTGAAAGT</mark> ATTATTTTTATTGAAATGAAAT	ATAA	:	162
P1-E2(Y496)-4 :	: ATTTATGA <mark>T</mark> GTTATATATATATAGTTTATTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E ² (Y496)-5:	: ATTTATGA <mark>T</mark> GTTATATATATATAGTTTATTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E ² (Y496)-6 :	: ATTTATGA <mark>T</mark> GTTATATATTATATAGTTTATTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E ² (Y496)-7:	: ATTTATGA <mark>T</mark> GTTATATATTATATAGTTTATTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E ² (Y496)-8:	: ATTTATGA <mark>T</mark> GTTATATATTATATAGTTTATTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATTGAAATGAAA	ATAA	:	162
P1-E ² (Y496)-9:	: ATTTATGA <mark>T</mark> GTTATATTTATATAGTTTATTTT <mark>T</mark> ATTTTTAATTGAAAGTATTATTTTTATT <mark>G</mark> AAATGAAATTTAGTAT.	ATAA	:	162
P1-E ² (Y496)-10:	: ATTTATGA <mark>C</mark> GTTATATTTATATAGTTTATTT <mark>A</mark> ATTTTTAATTGAAAGTATTATTTTAT <mark>C</mark> GAAATGAAAT <mark>C</mark> TAGTATA	ATAA	:	162

	*	180	*	200	*	220	*	240		
Unconverted P1 :	TATAATGTTTTAT	CATCAGGATA	CTTTCCTAT	rttttgg <mark>c</mark> ac	CTTTCATAGGA	CTACTGATT1	FATTT <mark>C</mark> AATC	TGTATGCCT	:	243
P1-E ² (Y496)-1 :	TATAATGTTTTAT	TATTAGGATA	CTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATT	TATTTTATC	TGTATGTTT	:	243
P1-E ² (Y496)-2 :	TATAATGTTTTAT	TAT <mark>C</mark> AGGATA	TTTTTTAT	FTTTTTGGTAT	TTTTTATAGGA	FTATTGATT	TATTT TAAT C	TGTATGTTT	:	243
P1-E ² (Y496)-3 :	TATAATGTTTTAT	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT.	TTTTTATAGGA	FTATTGATT	TATTT <mark>T</mark> AATG	TGTATGTTT	:	243
P1-E ² (Y496)-4 :	TATAATGTTTTAT	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATT	ΓΑΤΤΤ <mark>Α</mark> ΑΑΤΟ	TGTATGTTT	:	243
P1-E2(Y496)-5 :	TATAATGTTTTAT	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATT	TATTT <mark>TA</mark> ATG	TGTATGTTT	:	243
P1-E2(Y496)-6 :	TATAATGTTTTAT	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	rtattgatt <mark>o</mark>	GAAAAAG-C	TGTATGTTT	:	242
P1-E ² (Y496)-7 :	TATAATGTTTTAI	CATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATT-	-AAATAAG-C	TGTATGTTT	:	241
P1-E ² (Y496)-8 :	TATAATGTTTTAI	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATTT	TAATTT <mark>T</mark> AATG	GGTATGTTT	:	243
P1-E ² (Y496)-9 :	TATAATGTTTTAI	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	FTATTGATTT	TAATTTAATG	TGTATGTTT	:	243
P1-E ² (Y496)-10:	TATAATGTTTTAI	TATTAGGATA	TTTTTTAT	ITTTTTGGTAT	TTTTTATAGGA	r tat tgatt t	TATTT <mark>TA</mark> ATG	TGTATGTTT	:	243

Unconverted P1	:	G <mark>C</mark> ATGAG <mark>C</mark> ATGAGT	:	257
P1-E2(Y496)-1	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-2	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-3	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-4	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-5	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-6	:	GTATGAGTATGAGT	:	256
P1-E2(Y496)-7	:	GTATGAGTATGAGT	:	255
P1-E2(Y496)-8	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-9	:	GTATGAGTATGAGT	:	257
P1-E2(Y496)-10	:	GTATGAGTATGAGT	:	257

*

12C

		-	*	20	*		40	+		60	*		80		
Unconverted P2:	A1	TTTTTGG	CACCTTT	CATAGGA	CTACTGAT	TTATTC	AATGI	GTATGCO	TGCATGA	.G <mark>C</mark> ATGA	GTATACA	CATGTC	TTTAAAA	:	83
P2-E2(Y496)-1 :	A1	TTTTTGG	TATTTT	TATAGGA	TTATTGAT	ITG <mark>A</mark> AAAA	AG-GI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	82
P2-E2(Y496)-2 :	A	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	TTATTT	AATGI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-3 :	A1	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	TTATTT	AATGI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-4 :	AT	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	TTATTA	AATGI	GTATGT	TGTATGA	.GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-5 ;	AI	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	TTATTT	AATGI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-6 :	AT	TTTTTGG	PATTTTT	TATAGGA	TATTGAT	TGAAAAA	AG-GI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	82
P2-E2(Y496)-7 :	A1	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	п-ааала	AG-GI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	81
P2-E2(Y496)-8 :	AT	TTTTTGG	PATTTTT	TATAGGA	TATTGAT	TTATTT	AATG	GTATGTI	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-9 :	AT	TTTTTGG	PATTTTT	TATAGGA	TTATTGAT	TTATTT	AATGI	GTATGT	TGTATGA	GTATGA	GTATATA	TATGTT	TTTAAAA	:	83
P2-E2(Y496)-10 :	AI	TTTTTGG	PATTTTT:	TATAGGA	TATTGAT	TTATTT	AATGI	GTATGT	TGTATGA	GTATGA	GTATATA	T <mark>G</mark> TGT T	TTTAAAA	:	83
. ,	_														
		*	10	0	*	120		*	140						
Unconverted P2 :	A	GCATGTA	AAGTGTA.	ACGGACC	a <mark>c</mark> aaaag <i>a</i>	AGGAT <mark>C</mark> TA	TACAA	ATACAT	TCATCAC	TTC :	143				
P2-E2(Y496)-1 :	АA	AG <mark>GATGTA</mark>	AAGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	TTT :	142				
P2-E2(Y496)-2 :	A	GTATGTA	AAGTGTA.	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	ттт :	143				
P2-E2(Y496)-3 :	Ag	GTATGTA	AAGTGTA.	ATGGATT.	ATAAAAGA	AGGATTTA	TACAA	ATACAT	TCATCAC	ттс :	143				
P2-E2(Y496)-4 :	АA	AGCATGTA.	AAGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	TTT :	143				
P2-E2(Y496)-5 :	A	GTATGTA	AAGTGTA.	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	ттт :	143				
P2-E2(Y496)-6 :	A,A	AG <mark>G</mark> ATGTA.	AAGTGTA.	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	ттт :	142				
P2-E2(Y496)-7 :	AC	GAATGTA.	AAGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TT <mark>G</mark> TTAT	TTT :	141				
P2-E2(Y496)-8 :	A	GTATGTA	AAGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	ттт :	143				
P2-E2(Y496)-9 :	AC	G-ATGTA	AAGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	ттт :	142				
P2-E2(Y496)-10 :	АA	GAAAGAA	AGTGTA	ATGGATT.	ATAAAAGA	AGGATTTA	TATAA	ATATAT	TATTAT	TTT :	143				

Supplemental Figure 12. Bisulfite sequence alignment of *ATP1* (control gene) and the *FAE1* allele E^2 in line Y496.

(A) The control gene *ATP1* had 97% conversion of C to T in the 10 clones analyzed. (B) DNA methylation was not detected in the promoter region (nucleotides -5234 to -4978) of E^2 . (C) DNA methylation was not observed in the promoter region (nucleotides -5042 to -4900) of E^2 . Unconverted genomic sequence is shown on the top. P1: The promoter region (nucleotides -5234 to -4978) was amplified using primer pair No 30. P2: The promoter region (nucleotides -5042 to -4900) was amplified using primer pair No 29. (D) DNA methylation was not detected in the promoter region (-5234 to -4900) of the *FAE1* allele E^2 in the three plants Y496-1, -2 and -3. Ten clones were analyzed for each bisulfite treatment.

13A						
Unconverted ATP1 : ATP1-Y1130-1 : ATP1-Y1130-2 : ATP1-Y1130-3 : ATP1-Y1130-4 : ATP1-Y1130-6 : ATP1-Y1130-6 : ATP1-Y1130-7 : ATP1-Y1130-8 : ATP1-Y1130-9 : ATP1-Y1130-10 :	* TGAACGAG-ATTCA TGAACGAGG-ATTTA TGAATGAG-ATTTA TGAATGAG-ATTTA TGAATGAG-ATTCA TGAACGAG-ATTTA TGAATGAG-ATTTA TGAATGAG-ATTTA TGAATGAG-ATTTA TGAATGAG-ATTTA	20 * AGCTGGGGAAATGGTT AGCTGGGGAAATGGTT AGTTGGGGAAATGGTT AGTTGGGGAAATGGTT AGTTGGGGAAATGGTT AGTGGGGAAATGGTT AGCTGGGGAAATGGTT AGCTGGGGAAATGGTT AGCTGGGGAAATGGTT AGCTGGGGAAATGGTT	40 CTTTTTGCCAACGGT TTTTTAGA-AATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT TTTTTTGTTAATGGT	* 600 CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT CGTGAAAGGAATGGT	* TTGAATCTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT TTGAATTTTGAGAAT	80 GAGAA : 79 GAGAA : 80 GAGAA : 79 GAGAA : 79
Unconverted ATP1 : ATP1-Y1130-1 : ATP1-Y1130-2 : ATP1-Y1130-3 : ATP1-Y1130-3 : ATP1-Y1130-5 : ATP1-Y1130-6 : ATP1-Y1130-6 : ATP1-Y1130-8 : ATP1-Y1130-10 :	* TGTCGGGATTGTTGT TGTTGGGATTGTTGT TGTTGGGATTGTTGT TGTTGGGATTGTTGT TGTTGGGATTGTTGT TGTTGGGATTGTTGT TCTTGGGATTGTTGT TGTTGGGATTGTTGT TGTTGGGATTGTTGT	100 * CTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT TTTTGGTGGTGGTGATAT	120 GCTATAAAAGAAGGA GTTATAAAAGAAGGA GTTATAAAAGAAGAA GTTATAAAAGAAGAA GTTATAAAAGAAGAA GTTATAAAAGAAGAA GTTATAAAAGAAGAA GTTATAAAAGAAGAA GTTATAAAAGAAGGA	* 140 AGATCTTGTCAAGCG AGATCTTGTTAAGTGT AGATCTTGTTAAGTGT AGATCTTGTTAAGTGT AGATTTTGTTAAGTGT AGATTTTGTTAAGTGT AGATTTTGTTAAGTGT AGATTTTGTTAAGTGT AGATTTTGTTAAGTGT	* ACTGGATCTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC ATTGGATTTATTGTC	160 GATGT : 160 GATGT : 161 GCCGT : 160 GATGT : 160
Unconverted ATP1 : ATP1-Y1130-1 : ATP1-Y1130-2 : ATP1-Y1130-3 : ATP1-Y1130-4 : ATP1-Y1130-6 : ATP1-Y1130-6 : ATP1-Y1130-7 : ATP1-Y1130-9 : ATP1-Y1130-10 :	* TCCCCCCGCGGAAAGG TTTTCTGGGAAAGG TTTCGGGAAAGG TTTTCGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG TTTTCTGGGAAAGG	180 * TATGCTAGGGGGTGT TATGTTAGGGTGTGT CCTGTTAGGGTGTGT TATGTTAGGGTGTGT TATGTTAGGGTGTGT TATGTTAGGGTGTGT TATGTTAGGGTGTGT TATGTTAGGGTGTGT TATGTTAGGGTGTGT	200 GGTCGACGCGATGG GGTTGATGTGATGG GGTTGATGTGATG	* 220 GAGTACCTATTCATC GAGTAATCACTAGTC GAGTAATCACTAGTC GAGTAATCACTAGTC GAGTATTTATTCATC GAGTATCTATTCATC GAGTATCTATTCATG GAGTATCTATTCATG GAGTATCTATTCATG GAGTATCTATTCATG GAGTATCTATTCATG	GAAGAGGG : 227 TTGTGGGG : 228 CGGCCCCC : 227 CGGCCCCC : 226 GAAGAGGG : 227 GAAGACGG : 227 GAAGACGG : 227 GAAGAGGG : 227	
13B						
Unconverted P1 : P1-E ³ (Y1130)-1 : P1-E ³ (Y1130)-2 : P1-E ³ (Y1130)-3 : P1-E ³ (Y1130)-5 : P1-E ³ (Y1130)-6 : P1-E ³ (Y1130)-6 : P1-E ³ (Y1130)-7 : P1-E ³ (Y1130)-9 : P1-E ³ (Y1130)-10 :	* TEAAAGAAGATCTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT TIAAAGAAGATTTTT	20 * STAGTTAGAGAGAGAGA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA	40 ATCTACATACTCTTT ATTTATATATTTTTT ATTTATATATTTTTT ATTTACATACTCTTT GTTTACATACTCTTT ATTTACATACTCTTTT ATTTACATATTTTTT ATTTATATATTTTTT ATTTATATATTTTTT	* 60 ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT ATTTGGAGTAATAAT	* GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG GGAGATATTTTAAG	80 AATGA : 81
	-5146	100 *	120	+ 140	*	160
Unconverted P1 : P1-E ³ (Y1130)-1 : P1-E ³ (Y1130)-2 : P1-E ³ (Y1130)-3 : P1-E ³ (Y1130)-5 : P1-E ³ (Y1130)-6 : P1-E ³ (Y1130)-7 : P1-E ³ (Y1130)-7 : P1-E ³ (Y1130)-9 : P1-E ³ (Y1130)-10 :	ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA' ATTTATGAC STTATA'	TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT TTTATATAGTTTATTT	Ο ΑΥΤΤΥΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΤΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΤΤΤΑΑΤΤGΑΑΑ Ο ΑΤΤΤΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΤΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΤΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΤΤΤΑΑΤΤGΑΑΑ ΤΑΓΓΓΓΤΑΑΤΤGΑΑΑ ΤΑΓΓΓΓΤΑΑΤΤGΑΑΑ	GATTATTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC GTATTATTTTTATC	AAATGAAATCTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA' AAATGAAATTTAGTA'	TATAA : 162 FATAA : 162 TATAA : 162

	*	180	*	200	*	220	*	240		
Unconverted P1 :	TATAATGTTTTAT	CATCAGG-ATA	CTTTCCT-	ATTTTTGGC/	ACCTTTC-AT.	AGGA <mark>CTA</mark> CTG.	ATTTATTT <mark>C</mark> AA	ATGTGTATG	:	240
P1-E3(Y1130)-1 :	TATAATGTTTTAT	TATTAGG-ATA	тттттт –	ATTTTTGGT	ATTTTTT-AT.	AGGATTATTG.	ATTTATTTA	TGTGTATG	:	240
P1-E3(Y1130)-2 :	TATAATGTTTTAT	CATCAGG-ATA	CTTTCCT-	ATTTTTGGT#	ACCTTTT-AT.	AGGATTATTG.	ΑΤΤΤΑΤΤΤΑ	TGTGTATG	:	240
P1-E3(Y1130)-3 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTTT-	ATTTTTGGT	ATTTTTT-AT.	AGGATTATTG.	ΑΤΤΤΑΤΤΤΑ	TGTGTATG	:	240
P1-E3(Y1130)-4 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTTT-	ATTTTTGGT	ATTTTTT-AT.	AGGATTATTG.	ΑΤΤΤΑΤΤΤΑ	TGTGTATG	:	240
P1-E ³ (Y1130)-5 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTTT-	ATTTTTGGT	ATTTTTT-AT.	AGGATTATTG.	ΑΤΤΤΑΤΤΤΑ	TGTGTATG	:	240
P1-E ³ (Y1130)-6 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTTT-	ATTTTTGGT	ATTTTTT-AT.	AGGATTATTG.	ATTTATTTAA	TGTGTATG	:	240
P1-E3(Y1130)-7 :	TATAATGTTTTAT	TAT TAGG <mark>G</mark> ATA	ттттттт	ATTTTTGGT	ATTTTTTTAT.	AGGATTATTG.	ATTTATTTAA	ATGGGGAAG	:	243
P1-E3(Y1130)-8 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTTCT-	ATTTTTGGT	ATTTTT <mark>T</mark> -AT.	AGGATTATTG.	ATTTATTTAA	TGTGTATG	:	240
P1-E3(Y1130)-9 :	TATAATGTTTTAT	CATCAGG-ATA	CTTTCCT-	ATTTTTGG <mark>C</mark> A	ATTTTTC-AT.	AGGATTATTG.	ATTTATTTAA	TGTGTATG	:	240
P1-E ³ (Y1130)-10 :	TATAATGTTTTAT	TATTAGG-ATA	TTTTT-	ATTTTTGGT	ATTTTTC-AT.	AGGATTATTG.	ATTTATTTA	ATGTGTATG	:	240

	*	260		
Unconverted P1 :	CCTGCATGAGC	ATGAGT	:	257
P1-E ³ (Y1130)-1 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-2 :	TTTGTATGAGT	ATGAGT	:	257
P1-E3(Y1130)-3 :	TTTGTATGAGT	ATGAGT	:	257
P1-E3(Y1130)-4 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-5 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-6 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-7 :	GTTGGAAGAGT	ATGAGT	:	260
P1-E3(Y1130)-8 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-9 :	TTTGTATGAGT	ATGAGT	:	257
P1-E ³ (Y1130)-10 :	TTTGTATGAGT	ATGAGT	:	257

13C

	*	20	*	40	*	60	*	80		
Unconverted P2:	ATTTTTTGG <mark>C</mark> ACCTTT	C-ATAGGA	TACTGATTTA	TTT <mark>C</mark> AATGTO	gtatg <mark>cc</mark> tg <mark>c</mark> a	TGAG <mark>C</mark> ATGA	GTATA <mark>C</mark> ACATG	TCTTAAA	:	82
P2-E ³ (Y1130)-1 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	FTTTAATGT	GTATGTTTGTA	TGAGTATGA	JTATATATA TATG	TTTTACA	:	82
P2-E ³ (Y1130)-2 :	ATTTTTTGGTATTTTT	I-ATAGGA	TA <mark>C</mark> TGATTTA	FTTTAATGT	STATGTTTGTA	TGAGTATGA	GTATATATA T	TTTTTAAA	:	82
P2-E ³ (Y1130)-3 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	FTTTAATGT	STATGTTTGTA	TGAGTATGA	GTATATATATG	TTTTTAAA	:	82
P2-E ³ (Y1130)-4 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	FTTTAATGT	GTATGTTTGTA	TGAGTATGA	GTATATATATG	TTTTTAAA	:	82
P2-E ³ (Y1130)-5 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	FTTTAATGT	STATGTTTGTA	TGAGTATGA	GTATATATA T	TTTTAAA	:	82
P2-E3(Y1130)-6 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	FTTTAATGT	STATGTTTGTA	TGAGTATGA	GTATATATATG	TCTTTAAA	:	82
P2-E3(Y1130)-7:	TTTTTTTGGTATTTTT	I TATAGGA	TATTGATTTA	ГТТ ТААТ G <mark>G</mark> G	G <mark>GAAGGTTGG</mark> A	AGAGTATGA	GTATATATATG	TCTTTAAA	:	83
P2-E3(Y1130)-8 :	ATTTTTTGGTATTTTT	I-ATAGGA	TATTGATTTA	TTTTAATGT	STATGTTTGTA	TGAGTATGA	GTATATATG	TTTTAAA	:	80
P2-E3(Y1130)-9:	ATTTTTTGG <mark>C</mark> ACCTTT	C-ATAGGA	TATTGATTTA	FTTTAATGT O	STATGTTTGTA	TGAGTATGA	GTATATATA TG	TTTTTAAA	:	82
P2-E3(Y1130)-10 :	ATTTTTTGGTATTTTT	C-ATAGGA	TATTGATTTA	TTTTAATGT	GTATGTTTGTA	TGAGTATGA	GTATATATAT G	TTTTAAA	:	82

			-4943						
	*	·10		*	120	*	_140		
Unconverted P2 :	AAT GCAT	GTAAAGTGT.	AACGGACCA	AAAAGAG	gat <mark>c</mark> tata <mark>c</mark> aa.	ATACATOTO	ATCACTTC	:	143
P2-E ³ (Y1130)-1 :	AAAGAAA	G <mark>C</mark> AAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATA <mark>T</mark> (S <mark>TAT-</mark> TTTT	ATTATTT	:	142
P2-E ³ (Y1130)-2 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	TATATT T	ATTATTT	:	143
P2-E3(Y1130)-3 :	AAT GTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATT T	ATTATTT	:	143
P2-E3(Y1130)-4 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATT T	ATTATTT	:	143
P2-E3(Y1130)-5 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATTTA	ATTATTT	:	143
P2-E ³ (Y1130)-6 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATT T	ATTATTT	:	143
P2-E3(Y1130)-7 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATT T	ATTATTT	:	144
P2-E3(Y1130)-8 :	AAT GAAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	TATATT T	ATTATTT	:	141
P2-E3(Y1130)-9 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA.	ATATATT	ATTATTT	:	143
P2-E3(Y1130)-10 :	AATGTAT	GTAAAGTGT.	AACGGATTA:	AAAAGAG	GATTTATATAA	TATATT T	ATTATTT	:	143

Supplemental Figure 13. Bisulfite sequence alignment of *ATP1* (control gene) and the *FAE1* allele E^3 in line Y1130.

(**A**) The control gene *ATP1* in Y1130 had 100% conversion of C to T in the bisulfite treatment. (**B**) Methylation occurred at positions -5146 and -5095. (**C**) Methylation occurred at position -4943. Unconverted genomic sequence is shown on the top. P1: The promoter region (nucleotides -5234 to -4978) was amplified using primer pair No 30. P2: The promoter region (nucleotides -5042 to -4900) was amplified using primer pair No 29. (**D**) DNA methylation was detected at positions -5146, -5095 and -4943 in the promoter region (-5234 to -4900) of the *FAE1* allele E^3 in the four plants Y1130-1, -2, -3 and -4. Ten clones were analyzed for each bisulfite experiment.

14A							
Unconverted ATP1: ATP1-Revertant1-1: ATP1-Revertant1-2: ATP1-Revertant1-3: ATP1-Revertant1-5: ATP1-Revertant1-5: ATP1-Revertant1-7: ATP1-Revertant1-8: ATP1-Revertant1-9: ATP1-Revertant1-9:	* TGAACGAGATTTAAGCTO TGAATGAGATTTAAGCTO TGAATGAGATTTAAGCTO TGAATGAGATTTAAGCTO TGAATGAGATTTAAGCTO TGAATGAGATTTAAGTTO TGAATGAGATTTAAGTTO TGAATGAGATTTAAGTTO TGAATGAGATTTAAGTTO TGAATGAGATTTAAGTTO	20 * GGGAAATGGTTCTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT GGGAAATGGTTTTTT	40 TTCCCAACGGTG TTTCTTAATGGTG TTTCTTAATGGTG TTTCTTAATGGTG TTTCTTAATGGTG TTTCTTAATGGTG TTTCTTAATGGTG TTTTTTTTTT	* 6 TGAAAGGAATGGCT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT TGAAAGGAATGGTT	0 * TTGAATCTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA TTGAATTTTGAGAA	80 GAGAATG : 8 GAGAATG : 8	(1)
Unconverted ATP1: ATP1-Revertant1-1: ATP1-Revertant1-3: ATP1-Revertant1-4: ATP1-Revertant1-5: ATP1-Revertant1-5: ATP1-Revertant1-7: ATP1-Revertant1-7: ATP1-Revertant1-8: ATP1-Revertant1-9: ATP1-Revertant1-10:	* 10 TCGGGATTGTTGTCTTTT TTGGGATTGTTGTTTTTT TTGGGATTGTTGTTTTTT TTGGGATTGTTGTTTTTT TTGGGATTGTTGTTTTTT TTGGGATTGTTGTTTTTTT TTGGGATTGTTGTTTTTTTT)0 * GTGGTGATACCGCTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA GTGGTGATATTGTA	120 Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac Itaaaacaaggac	* 140 ATCTTGTCAAGCGC ATTTTGTTAAGTGT ATTTTGTTAAGTGT ATTTTGTTAAGTGT ATTTTGTTAAGTGG ATTTTGTTAAGTGT ATTTTGTTAAGTGT ATTTTGTTAAGTGT ATTTTGTTAAGTGT	* ACTGGATCTATTGT ATTGGATTTATTGT ATTGGATTTATTGT ATTGGATTTATTGT TTGGGTTTTTTTGT ATTGGATTTATTGT ATTGGATTTATTGT ATTGGATTTATTGT ATTGGATTTATTGT	160 GATGTTC : 16 GATGTTT : 16	52 52 52 52 52 52 52 52 52 52 52 52 52 5
Unconverted ATP1: ATP1-Revertant1-1: ATP1-Revertant1-2: ATP1-Revertant1-3: ATP1-Revertant1-4: ATP1-Revertant1-7: ATP1-Revertant1-7: ATP1-Revertant1-8: ATP1-Revertant1-8: ATP1-Revertant1-9:	* 18 CCGCGGAAAGGTATG TTGTGGGAAAGGTATG TTGTGGGAAAGGTTATG GGGGAAAGGTTATG TGTGGGAAAAGGTATG TTGTGGGAAAGGTTATG TTGTGGGAAAGGTTATG TTGTGGGAAAGGTTATG TTGTGGGAAAGGTTATG	0 * CTAGGGCGIGTGGTGT TAGGGTGTGTGGTT TTAGGGTGTGTGGTT TTAGGGTGTGTGGTT GTATGGTGGTGTGGTGT TTAGGGTGTGTGGTT TTAGGGTGTGTGGTT TTAGGGTGTGTGGTT TTAGGGTGTGTGGTT TTAGGGTGTGTGGTT	200 GACGCGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA GATGTGATGGGA	* 220 GTACCTATTGATG GTACCTATTGATG GTATTTATTGATG GTATTTATTGATG GTATTTATT	AACAGGG : 227 AACAGGG : 227		
14B Unconverted P1 : P1-Revertant1-1 : P1-Revertant1-2 : P1-Revertant1-3 : P1-Revertant1-4 : P1-Revertant1-5 : P1-Revertant1-6 : P1-Revertant1-6 : P1-Revertant1-7 : P1-Revertant1-9 : P1-Revertant1-9 :	* TCAAAGAAGATCTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA TTAAAGAAGATTTTTGTA	20 * GTTAGAGA GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT GTTAGAGATAGAAAT	40 CTACATACTCTTT TTATATACTTTTT TTATATACTTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT TTATATATTTTT	* 60 ATTTGGAGTAACAA ATTTGGAGTAACAA ATTTGGAGTAACAA ATTTGGAGTAATAA ATTTGGAGTAATAA ATTTGGAGTAATAA ATTTGGAGTAATAA ATTTGGAGTAATAA ATTTGGAGTAATAA	* TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA TGGAGATATTTTAA	80 SCAATGA : 81 STAATGA : 81	
Unconverted P1 : P1-Revertant1-1 : P1-Revertant1-2 : P1-Revertant1-3 : P1-Revertant1-4 : P1-Revertant1-5 : P1-Revertant1-6 : P1-Revertant1-8 : P1-Revertant1-8 : P1-Revertant1-9 :	-5146 * 10 ATTTATGACGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT ATTTATGATGTTATATTT	0 * ATATAGTTTATTTCA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA ATATAGTTTATTTTA	120 TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA TTTTTAATTGAAA	-50 * 140 GATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTAT GTATTATTTTTTT	95 * GAAATGAAATCTAG GAAATGAAATTTAG GAAATGAAATTTAG GAAATGAAAT	160 FATATAA : 162 FATATAA : 162 FATATAA : 162 FATATAA : 162 FATATAA : 162 FATATAA : 162 FATATAA : 162 TATATAA : 162 FATATAA : 162 FATATAA : 162	

	*	180	*	200	*	220	*	240		
Unconverted P1 :	TATAATGTTTTAT	CATCAGGATAC	TTTCCTAT!	TTTTTGGCAC	CTTTCATAGGA	TACTGATTT?	ATTT <mark>C</mark> AATGT	GTATGCCT	:	243
P1-Revertant1-1 :	TATAATGTTTTAT	lattaggata <mark>c</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTT	:	243
P1-Revertant1-2 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT?	TTTT <mark>-</mark> GGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	242
P1-Revertant1-3 :	TATAATGTTTTAT	fattaggata <mark>c</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-4 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-5 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-6 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTT <u>T</u> TAT!	TTTTTGGTAT	TTTTTATAGGAT	TAT <mark>C</mark> GATTT?	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-7 :	TATAATGTTTTAT	fattaggata <mark>c</mark>	TTTTC <mark>TAT</mark>	TTTTTGGTAT	TTTTCATAGGAI	TATTGATTT	ATTTTA <mark>T</mark> TGT	G <mark>CAT G</mark> AT T	:	243
P1-Revertant1-8 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-9 :	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243
P1-Revertant1-10:	TATAATGTTTTAT	PAT TAGGATA <mark>T</mark>	TTTTTTAT!	TTTTTGGTAT	TTTTTATAGGA	TATTGATTT	ATTTTAATGT	GTATGTTT	:	243

		*		
Unconverted P1	:	G <mark>C</mark> ATGAG <mark>C</mark> ATGAGT	:	257
P1-Revertant1-1	:	GTATGAGTATGAGT	:	257
P1-Revertant1-2	:	GTATGAGTATGAGT	:	256
P1-Revertant1-3	:	GTATGAGTATGAGT	:	257
P1-Revertant1-4	:	GTATGAGTATGAGT	:	257
P1-Revertant1-5	:	GTATGAGTATGAGT	:	257
P1-Revertant1-6	:	GTATGAGTATGAGT	:	257
P1-Revertant1-7	:	GAAAGAATATGAAA	:	257
P1-Revertant1-8	:	GTATGAGTATGAGT	:	257
P1-Revertant1-9	:	GTATGAGTATGAGT	:	257
P1-Revertant1-10	:	GTATGAGTATGAGT	:	257

14C

	*	20	*	40	*	60	*	80		
Unconverted P2 :	ATTTTTTGGCACCT	TTCATAGGACTA	CTGATTTATT	TCAATGTGT	ATGCCTGCA	TGAG <mark>C</mark> ATGA	GTATACACAT	GT <mark>C</mark> TTTAAAA	:	83
P2-Revertant1-1 :	ATTTTTTGGTATTT	TTTATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	gtata <mark>c</mark> acati	GTTTTAAAA	:	83
P2-Revertant1-2 :	ATTTTTTGGTATTT	TTTATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	GTATANANAT	GTTTTTAAAA	:	83
P2-Revertant1-3 :	ATTTTTTGGTATT	TT <mark>T</mark> ATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	GTATACACAT	GTTTTTAAAA	:	83
P2-Revertant1-4 :	ATTTTTTGGTATT	TTTATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	GTATATATAT	GTTTTAAAA	:	83
P2-Revertant1-5 :	ATTTTTTGGTATT	TTTATAGGA <mark>C</mark> TA	TTGATTTATT	TTAATGTGI	ATGTTTGT	TGAGTATGA	GTATATATAT	GTTTTTAAAA	:	83
P2-Revertant1-6 :	ATTTTTTGGTATT	TTTATAGGATTA	TC <mark>GATTTATT</mark>	TTAATGTGI	ATGTTTGT	TGAGTATGA	GTATATATAT	GTTTTAAAA	:	83
P2-Revertant1-7 :	ATTTTTTGGTACCT	TTCATAGGATTA	TTGATTTATT	TTATTGTG	CATGATTGAA	AGAATATGA	A-ATATATAT	GT <mark>C</mark> TTTAAAA	:	82
P2-Revertant1-8 :	ATTTTTTGGCATTT	TTTATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	GTATACACAT	GTTTTTAAAA	:	83
P2-Revertant1-9 :	ATTTTTTGGTATT	TTTATAGGATTA	TTGATTTATT	TTAATGTGI	ATGTTTGT	TGAGTATGA	GTATATATAT	GTTTTTAAAA	:	83
P2-Revertant1-10 :	ATTTTTGGTATC	TT <mark>C</mark> ATAGGATTA	TTGATTTATT	TTAATGTGT	ATGTTTGT	TGAGTATGA	GTATANANAT	GTTTTAAAA	:	83
		-4943								
	*	100	* 1	20	*	_140				
Unconverted P2 :	ATG <mark>C</mark> ATGTAAAGT(GTAAC <mark>GGA</mark> CCAC	AAAAGAGGAT	C <mark>TATA</mark> CAAA	ATACATCTC	ATCACTIC :	143			
P2-Revertant1-1 :	ATGTATGTAAAGT(GTAACGGATTAT.	AAAAG <mark>A</mark> GGAT	C <mark>TATAC</mark> AAA	TATATTT	TTANTTT :	143			
P2-Revertant1-2 :	ATGTATGTAAAGT(GTAACGGATTGC	AAAAG <mark>G</mark> GGAT	TTATATAAA	TATATTT	ATTACTTT :	143			
P2-Revertant1-3 :	ATGTATGTAAAGT(GTAACGGATTAT.	AAAAGAGGAT	CTATA <mark>C</mark> AAA	TATATTT	ATTATTT :	143			
P2-Revertant1-4 :	ATGTATGTAAAGT(GTAACGGATTAT.	AAAAGAGGAT	T TATATAAA	TATATTT	ATTATTT :	143			
P2-Revertant1-5 :	ATGTATGTAAAGT(GTAAC GGATT GC.	AAAAG <mark>G</mark> GGAT	TTATA <mark>T</mark> AAA	TATATTT	ATTACTTT :	143			
P2-Revertant1-6 :	ATGTATGTAAAGT(GTAAC GGATTAT.	AAAAGAGGAT	TTATA <mark>T</mark> AAA	TATATTT	ATTATTT :	143			
P2-Revertant1-7 :	ATGTATGTAAAGT	GTAACGGATTAT.	AAAAGAGGAT	CTATATAAA	TATATTT	TTATTT :	142			
P2-Revertant1-8 :	ATCTATCTAAACT(стаасскаттат.	aaacaccam	статасааа			143			
	111011101122101(STARC GOAT TAIL					1 I O			
P2-Revertant1-9 :	ATGTATGTAAAGT	STAACGGATTAT.	AAAAGAGGAT	ТТАТАТААА ТТАТАТААА	TATATTTT	TTATTTT :	143			

Supplemental Figure 14. Bisulfite sequence alignment of *ATP1* (control gene) and the *FAE1* allele E^3 in the 5-azaC induced revertants of Y1130.

(**A**) The control gene *ATP1* had 97% conversion of C to T in the bisulfite treatment. (**B**) Methylation was not detected at positions -5146 and -5095. (**C**) Methylation was detected at position -4943. Unconverted genomic sequence is shown on the top. P1: The promoter region (nucleotides -5234 to -4978) was amplified using primer pair No 30. P2: The promoter region (nucleotides -5042 to -4900) was amplified using primer pair No 29. Revertant 1: 5-azaC induced revertant of Y1130. (**D**) DNA methylation was detected at position -4943 in the promoter region (nucleotides -5234 to -4900) of *FAE1* allele E^3 in 5-azaC induced revertant-1, -2, -3, -4 and -5. Ten clones were analyzed for each bisulfite experiment.

15A							
Unconverted ATP1 : ATP1-Revertant2-1 : ATP1-Revertant2-2 : ATP1-Revertant2-3 : ATP1-Revertant2-4 : ATP1-Revertant2-6 : ATP1-Revertant2-7 : ATP1-Revertant2-7 : ATP1-Revertant2-9 : ATP1-Revertant2-9 : ATP1-Revertant2-10:	* TGAACGAGATTCAAGT TGAATGAGATTCAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT TGAATGAGATTTAAGT	20 * GGGGAAATGGTTCTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT GGGGAAATGGTTTTTT	40 TTGCCAACGGTGTG, TTGCTAATGGTGTG, TTGCTAATGGTGTG, TTGCTAATGGTGTG, TGCTAATGGTGTG, TTGTTAATGGTGTG, TTGTTAATGGTGTG, TTGTTAATGGTGTG, TTGTTAATGGTGTG,	* 60 AAAGGAATGGCTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT AAAGGAATGGTTTT	★ GAATCTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA GAATTTEGAGAATGA	80 GAATG : 8: GAATG : 8:	1 1 1 1 1 1 1 1 1
Unconverted ATP1: ATP1-Revertant2-1: ATP1-Revertant2-3: ATP1-Revertant2-4: ATP1-Revertant2-5: ATP1-Revertant2-5: ATP1-Revertant2-6: ATP1-Revertant2-7: ATP1-Revertant2-8: ATP1-Revertant2-9: ATP1-Revertant2-10:	* 1 TCGGGATTGTTGTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT TTGGGATTGTTGTTTT	00 * GGTGGTGATACCGCTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA GGTGGTGATATTGTA	120 TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGGAGAT TAAAAGAAGAAGAAT	* 140 CTTGTCAAGCCCAC TTGGTAAGGCTAT TTGGTAAGGCTAT TTTGTTAAGGCTAT TTTGTTAAGGCTAT TTTGTTAAGGCTAT TTTGTTAAGGCTAT TTTGTTAAGGCTAT TTTGTTAAGGCTAT	* TGGAT ^C TATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA TGGATTTATTGTGGA	160 TGTTC : 163 TGTTT : 164 TGTTT : 164	2 2 2 2 2 2 2 2 2 2 1 2 2
Unconverted ATP1 : ATP1-Revertant2-1 : ATP1-Revertant2-2 : ATP1-Revertant2-3 : ATP1-Revertant2-4 : ATP1-Revertant2-5 : ATP1-Revertant2-6 : ATP1-Revertant2-7 : ATP1-Revertant2-8 : ATP1-Revertant2-9 : ATP1-Revertant2-10	* CCGCGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/ TTGTGGGAAAGGT/	180 * ATGCTAGGGCGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG ATGTTAGGGTGTGTGG	200 STCGACGCGATGGG STTGATGTGATGGG STTGATGTGATGGG STTGATGTGATG	* SAGTACCTATTGAT SAGTACTTATTGAT SAGTATTATTGAT SAGTATTTATTGAT SAGTACTTATTGAT SAGTACTTATTGAT SAGTATCTATTGAT SAGTATCTATTGAT SAGTATCTATTGAT SAGTATCTATTGAT	220 GGAAGAGGG : 2 GGAAGAGGG : 2	27 27 27 27 27 27 27 27 27 27 27 27 27 2	
15B							
Unconverted P1 : P1-Revertant2-1 : P1-Revertant2-2 : P1-Revertant2-3 : P1-Revertant2-4 : P1-Revertant2-5 : P1-Revertant2-6 : P1-Revertant2-7 : P1-Revertant2-8 : P1-Revertant2-9 : P1-Revertant2-10 :	* TCAAAGAAGATCTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT TTAAAGAAGATTTTT	20 * STAGTTAGAGACAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA STAGTTAGAGATAGAA	40 ATCTACATACTCT ATTTATATATTTT ATTTATATATA	* TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA TTATTTGGAGTAA	60 * AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT AATGGAGATATTTT	80 PAACCAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA PAAGTAATGA	: 81 : 81 : 81 : 81 : 81 : 81 : 81 : 81
	-5146	100 *	120	*14	-5095	160	
Unconverted P1 : P1-Revertant2-1 : P1-Revertant2-2 : P1-Revertant2-3 : P1-Revertant2-4 : P1-Revertant2-6 : P1-Revertant2-7 : P1-Revertant2-8 : P1-Revertant2-8 : P1-Revertant2-9 : P1-Revertant2-9 :	ATTTATGACGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA' ATTTATGATGTTATA'	TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT TTATATAGTTTATTT	CATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ TATTTTTAATTGAJ CATTTTTAATTGAJ	ААССАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААСПАТТАТТТТР ААССАТТАТТТРР ААССАТТАТТТРР ААССАТТАТТТРР	TCGAAATGAAATC TTGAAATGAAATT TTGAAATGAAAT	PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA PAGTATATAA	: 162 : 162

	*	180	*	200	*	220	*	240		
Unconverted P1 :	TATAATGTTT	ATCATCAGGATA	CTTTCCTAT	TTTTTGGCACO	TTT <mark>C</mark> ATAGGA	CTACTGATTT	ATTT <mark>C</mark> AATGI	GTATGCCT	: 24	43
P1-Revertant2-1 :	TATAATGTTTT	ATTATCAGGATA	TTTTTTTTTT	TTTTTGGTATT	TTTTATAGGA	TATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-2 :	TATAATGTTT	ATTATTAGGATA	TATTTTTTT	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	TTATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-3 :	TATAATGTTT	ATTATTAGGATA	TTTTTTTTTT	TTTTTGG <mark>C</mark> ATT	TTTTATAGGA	TATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-4 :	TATAATGTTTT	ATTATTAGGATA	TTTTTTTTTT	TTTTTGGTATT	TTTTATAGGA	TATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-5 :	TATAATGTTTT	ATTATTAGGATA	TATTTTTT	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	TTATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-6 :	TATAATGTTT	ATTATTAGGATA	TTTTTC <mark>TAT</mark>	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	TTATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-7 :	TATAATGTTTT	ATTAT <mark>C</mark> AGGATA	TATTTTTTT	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	TATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-8 :	TATAATGTTTT	ATTATTAGGATA	TATTTTTT	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	CTACTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-9 :	TATAATGTTTT	ATTAT <mark>C</mark> AGGATA	CTTTCCTAT	TTTTTGG <mark>C</mark> ATT	TTTTATAGGA	TTATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
P1-Revertant2-10 :	TATAATGTTTT	AT TAT TAGGATA	TATTTTTT	TTTTTGG <mark>T</mark> ATT	TTTTATAGGA	TATTGATTT	ATTTTAATGI	GTATGTT	: 24	43
Unconverted P1 :	GCATGAGCAT	GAGT : 257								
P1-Revertant2-1 :	GTATGAGTAT	GAGT : 257								
P1-Revertant2-2 :	GTATGAGTAT	GAG <mark>T</mark> : 257								
P1-Revertant2-3 :	GTATGAGTAT	GAG <mark>A :</mark> 257								
P1-Revertant2-4 :	GTATGAGTAT	GAG <mark>T</mark> : 257								
P1-Revertant2-5 :	GTATGAGTAT	GAG <mark>T</mark> : 257								
P1-Revertant2-6 :	GTATGAGTAT	GAG <mark>T</mark> : 257								
P1-Revertant2-7 :	GTATGAGTAT	GAGT : 257								
P1-Revertant2-8 :	GTATGAGTAT	GAGT : 257								
P1-Revertant2-9 :	GTATGAGTAT	GAGT : 257								
P1-Revertant2-10 :	GTATGAGTAT	GAGT : 257								

15C

	*	20	*	40	*	60	*	80	
Unconverted P2:	ATTTTTGGC/	ACCTTTCATAGGA	TACTGATTTATT	CAATGTGTATG	CCTGCATG	ag <mark>c</mark> atgag	TATACACATGT	CTTTAAAA	: 83
P2-Revertant2-1 :	ATTTTTGG <mark>T</mark> /	ATTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG	AGTATGAG	TATATATATGT:	TTTAAAA	: 83
P2-Revertant2-2 :	ATTTTTGG <mark>T</mark>	ATTTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG	AGTATGAG	TATATATATGT:	TTTAAAA	: 83
P2-Revertant2-3 :	ATTTTTGGC/	ATTTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG	AGTATGAG	AATATATATGT?	TTTAAAA	: 83
P2-Revertant2-4 :	ATTTTTGG <mark>T</mark> /	ATTTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG	AGTATGAG	TATACACATGT	CTTTAAAA	: 83
P2-Revertant2-5 :	ATTTTTGG <mark>T</mark>	ATTTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG	AGTATGAG	TATACACATGT	TTAAAAA	: 83
P2-Revertant2-6 :	ATTTTTGG <mark>T</mark>	ATTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG.	AGTATGAG	TATATATATGT:	TTTAAAA	: 83
P2-Revertant2-7 :	ATTTTTGG <mark>T</mark>	ATTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG.	AGTATGAG	TATATATATGT:	TTTAAAA	: 83
P2-Revertant2-8 :	ATTTTTGG T A	ATTTTTTATAGGA <mark>C</mark>	TACTGATTTATT?	TAATGTGTATG	TTTGTATG	agtatgag	TATATATATGT:	TTTAAAA	: 83
P2-Revertant2-9 :	ATTTTTGGC/	ATTTTTTATAGGAT	TATTGATTTATT	TAATGTGTATG	TTTGTATG.	AGTATGAG	TATACACATGT/	ATTTAAAA	: 83
P2-Revertant2-10 :	ATTTTTTGG <mark>T</mark> 2	ATTTTT TATAGGAT	TATTGATTTATT?	TAATGTGTATG	TTTGTATG	AGTATGAG	TATATATATGT?	T T T A A A A	: 83
		-4943							
	*	-4943	* 120	*	140				
Unconverted P2 :	* ATG <mark>C</mark> ATGTAAA	-4943 100 stgtaacggaccac	* 120 AAAAGAGGAT <mark>C</mark> TA'	* Tacaaatacatc	140 TC <mark>AT</mark> CACTT	C : 143			
Unconverted P2 : P2-Revertant2-1 :	* ATG <mark>C</mark> ATGTAAA(ATGTATGTAAA(-4943 100 stgtaacggaccac stgtaacggattat	* 120 AAAAGAGGATCTA AAAAGAGGATTTA	* FACAAATACATC FATATGTATTTT	140 T <mark>CATCAC</mark> TT TTATTATTT	C : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 :	* ATG <mark>C</mark> ATGTAAA(ATGTATGTAAA(ATGTATGTAAA(-4943 100 stgtaacggaccac stgtaacggattat stgtaacggattat	* 120 AAAAGAGGAT <mark>C</mark> TA' AAAAGAGGGATTTA' AAAAGAGGGATTTA'	* FACAAATACATC FATATGTATTTT FATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT	C : 143 T : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 :	* ATG <mark>C</mark> ATGTAAAA ATGTATGTAAAA ATGTATGTAAAA ATGTATGT	-4943 100 stgtaacggaccac stgtaacggattat stgtaacggattat stgtaacggattat	* <u>120</u> AAAAGAGGGATCTA' AAAAGAGGGATTTA' AAAAGAGGGATTTA' AAAAGAGGGATTTA'	* TACAAATACATC TATATGTATTTT TATATGTATTTT TATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT	C : 143 T : 143 T : 143 T : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 : P2-Revertant2-4 :	* ATC <mark>ATGTAAA ATGTATGTAAA ATGTATGTAAA ATGTATGT</mark>	-4943 100 STGTAACGGACCAC STGTAACGGALTAT STGTAACGGALTAT STGTAACGGALTAT STGTAACGGALTAT	* 120 AAAAGAGGATCTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA'	* PACAAATACATC PATATGTATTTT PATATGTATTTT PATATGTATTTT PATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143 T : 143 T : 143 T : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 : P2-Revertant2-4 : P2-Revertant2-5 :	* ATGCATGTAAAA ATGTATGTAAAA ATGTATGTAAAA ATGTATGT	-4943 100 STGTAACGGACCAC STGTAACGGATTAT STGTAACGGATTAT STGTAACGGATTAT STGTAACGGATTAT	* 120 AAAAGAGGATCTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA'	* PACAAATACATC PATATGTATTT PATATGTATTT PATATGTATTT PATATGTATTT PATATGTATTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143 T : 143 T : 143 T : 143 T : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 : P2-Revertant2-3 : P2-Revertant2-5 : P2-Revertant2-6 :	* ATGCATGTAAA(ATGTATGTAAA(ATGTATGTAAA(ATGTATGTAAA(ATGTATGTAAA(ATGTATGTAAA(-4943 100 STGTAACGGACCAC STGTAACGGATTAT STGTAACGGATTAT STGTAACGGATTAT STGTAACGGATTAT STGTAACGGATTAT	* 120 AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA'	* PA <mark>CAAATACATC</mark> PATATGTATTT PATATGTATTT PATATGTATTTT PATATGTATTTT PATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-3 : P2-Revertant2-3 : P2-Revertant2-4 : P2-Revertant2-5 : P2-Revertant2-6 : P2-Revertant2-7 :	* ATGCATGTAAA ATGTATGTAAA ATGTATGTAAA ATGTATGT	-4943 100 - 57 GT AACGGACCAC 57 GT AACGGAT TAT 57 GT AACGGAT TAT	* 120 AAAAGAGGATCTA AAAAGAGGATTTA AAAAGAGGATTTA AAAAGAGGATTTA AAAAGAGGATTTA AAAAGAGGATTTA	* TACAAATACATCT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 : P2-Revertant2-4 : P2-Revertant2-5 : P2-Revertant2-6 : P2-Revertant2-7 : P2-Revertant2-8 :	* ATG ^C ATGTAAAA ATGTATGTAAAA ATGTATGTAAAA ATGTATGT	-4943 100 - 2TGTAACGGACCAC 2TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT	* 120 AAAAGAGGATCTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA'	* TACAAATACATC TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT TATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143			
Unconverted P2 : P2-Revertant2-1 : P2-Revertant2-2 : P2-Revertant2-3 : P2-Revertant2-4 : P2-Revertant2-5 : P2-Revertant2-6 : P2-Revertant2-7 : P2-Revertant2-8 : P2-Revertant2-8 :	* ATGCATGTAAAA ATGTATGTAAAA ATGTATGTAAAA ATGTATGT	-4943 100- 3TGTAACGGACCAC 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT 3TGTAACGGATTAT	* 120 AAAAGAGGATCTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA' AAAAGAGGATTTA'	* PACAAATACATC PATATGTATTT PATATGTATTT PATATGTATTTT PATATGTATTTT PATATGTATTTT PATATGTATTTT PATATGTATTTT PATATGTATTTT	140 TCATCACTT TTATTATTT TTATTATTT TTATTATTT TTATTAT	C : 143 T : 143			

Supplemental Figure 15. Bisulfite sequence alignment of *ATP1* (control gene) and the *FAE1* allele E^3 in the spontaneous revertant Y1130-16.

(A) The control gene *ATP1* had 100% complete conversion of C to T in the bisulfite treatment. (B) Methylation was not detected at positions -5146 and -5095. (C) Methylation was detected at position -4943. Unconverted genomic sequence is shown on the top. P1: The promoter region (nucleotides -5234 to -4978) amplified using primer pair No 30. P2: The promoter region (nucleotides -5042 to -4900) amplified using primer pair No 29. Revertant 2: Spontaneous revertant Y1130-16. Ten clones were analyzed for each bisulfite experiment.

Supplemental Table 1 Primer pairs used in this study

No	Primer name	Sequence (5'-3')	Purpose
1	OF OR	ATGACGTCCGTTAACGTA TTAGGACCGACCGTTTTG	To clone the entire coding region of E^1 , E^2 , E^3
2	PF OR	TCGGTTCGGTTCTCTACATC TTAGGACCGACCGTTTTG	To clone the partial coding region of allele <i>e</i>
3	ZUP1-GSP-1* ZUP1-GSP-2**	GAAGGTAGCATGAGTACTCAACGAGGT GATGTAGAGAACCGAACC	To clone the remaining coding region of <i>e</i> by PCR walking
4	DOWN-GSP-1* DOWN-GSP-2**	TGGAGGCATCAAGATCAACGTTACATA TTCAGCTAAGTCAGAGACTCGTGTCCA	To clone the 3' downstream sequences from the translation stop coding site for E^1 , E^2 , E^3 and e
5	HUP1-GSP-1* HUP1-GSP-2**	TGATAGGCTGAACCGACAGAGACTCTG ACCGACAGAGACTCTGACTAATTATGG	To clone the 5' upstream sequence of E^1 , E^2 , E^3
6	MUP1-GSP-1* MUP1-GSP-2**	ACGTCTATCGACCTCTGCCAATGTGTA CGATGACAAGGTCCACCAGTTCATAAT	Primer pairs 6-9: to clone further 5' upstream sequence of E^2 and E^3
7	MUP2-GSP-1* MUP2-GSP-2**	AATCTTGTCTCCATACCACCTTGTTCG GTTCTATATGTGCCATCCTTGAACTGC	
8	MUP3-GSP-1* MUP3-GSP-2**	TCACACCATCTCTGTTCCTCAGTCCTC CGTCTTCGGTCCAAGGTAACACACTCT	
9	MUP4-GSP-1* MUP4-GSP-2**	TGCTTGGAGACTCGCCTATCAGTTGGA CAGGACACAGTATCTCACTCTTCCGCA	
10	CORE-F CORE-R	GCCTATCATTGCTAAGTACA CTCATGCAGGCATACACATT	To clone the 703 bp putative promoter sequences of E^2 , E^3 and e
11	GAP-F GAP-R	CAATGTGTATGCCTGCATGA TTGAAGGACAACATACGTGG	To clone the DNA fragment between the promoter and 5' flanking sequence of E^2 and E^3

12	MUP5-GSP-1* MUP5-GSP-2**	ATCCTCTTTTGTGGTCCGTTACACTTT TTTTGTGGTCCGTTACACTTTACATGC	To clone further promoter sequences of E^2 and E^3
13	GAP0-F GAP0-R	CGACACACACAGAGCA CACGGATGGCTGCAGTACAC	To clone the DNA fragment between the promoter and 5' flanking sequence of <i>e</i>
14	WF WR	GCCTATCATTGCTAAGTAGA TACTAGAACACCACTGCATT	To clone the entire gene sequences of E^1 , E^2 , E^3 and e
15	YF YR	GAGCAATGACGTCCGTTA GGACCGACCGTTTTG	To amplify the coding regions of E^1 and E^2 for yeast expression
16	ProF ProR	CGTAAGCTTCCTATCATTGCTAAGTAGAA AGCTCTAGACTCATGCAGGCATACACATT	To clone the 5' upstream sequence from the translation start site for E^1
17	FP1 FP2	CGTAAGCTTTCTTCTTGAACTACCTTGGA AGCTCTAGATGCTCTGTGTGTGTGTCG	To clone the 5' upstream sequence from the translation start site for E^2 and E^3
18	OF RTR	ATGACGTCCGTTAACGTA AAGACTTGTCGTCAGCTCCA	RT-PCR
19	FAE1F1 FAE1R1	AGACGGTCCAAGTACGAGCTAGTTC TGCCGCTCTCATCATCTCCTT	Quantatitive Real-time PCR
20	ActinF ActinR	ACGAGCTACCTGACGGACAAG GAGCGACGGCTGGAAGAGTA	RT-PCR, Quantatitive Real-time PCR
21	ATP1-F ATP1-R	TGAAYGAGATTYAAGYTGGGGAAATGGT CCCTCTTCCATCAATARRTACTCCCA	To amplify the ATP1 gene as bisulfite control
22	BSPCF1 BSPCR1	YGTTYGTTAAYGTAAAGTTTTTT TCCTCAAAAACTCAAACCAAAAC	To study DNA methylation of the coding region of position 1 to 200 of \vec{E}^2 and \vec{E}^3
23	BSPCF2 BSPCR2	TTTTTATCGTTTTCGGTTCGG CTACAACCCATACCACCAAAA	To study DNA methylation of the coding region of position 181 to 651 of E^1 , E^2 and E^3
24	BSPCF3 BSPCR3	TTTTGGTTTGAGTTTTTGAGG CAACAAATCCTTAACCAAATCA	To study DNA methylation of the coding region of position 361 to 711 of E^1 , E^2 and E^3
25	BSPCF4	TGATTTGGTTAAGGATTTGTTG	To study DNA methylation of the coding region of position 689 to 1143

	BSPCR4	ΑΑΑΤΑΑΤCΑΑΤΑΑCAAATTTA	of E^1 , E^2 and E^3		
26	BSPCF5 BSPCR5	TTTAAATTTGTTATTGATTATTTTTGT CATTACTTAAAACCACCCAA	To study DNA methylation of the coding region of position 1141 to 1411 of E^1 , E^2 and E^3		
27	BSPCF6 BSPCR6	GTTAGGGTTTAAGTGTAATAG CCGACCGTTTTAAACACGAATC	To study DNA methylation of the coding region of position 1365 to 1515 of E^1 , E^2 and E^3		
28	BSP1F BSP1R	ATTTTTTGGTATTTTTTATAGGATTAT AATAAACCRTAAAACTTTTCC	To study DNA methylation of the promoter region of position -143 to 56 of E^1		
29	BSP1F BSP2R	ATTTTTTGGTATTTTTTATAGGATTAT AATTTCCTATTTATCRACAAAAAA	To analyze DNA methylation of the promoter region of position-5042 to -4843 of E^2 and E^3		
30	BSP2F BSP3R	TAAAGAAGATTTTTGTAGTTAGAGATAGA ACTCATACTCATACAAACATACACA	To study DNA methylation of the promoter region of position -335 to -79 and position -5234 to -4978 of E^2 and E^3		
31	OF GR	ATGACGTCCGTTAACGTA AAGGTGCCAGAACACTGCTC	To produce marker specific for <i>e</i>		
32	MF MR	CAATGTGTATGCCTGCATGA CGAGTATCGAGCTATGTCTG	To generate marker specific for E^2		
33	AtSN1F AtSN1R	AGTGGTGGTTGTATAAGTTTAG TAAACATAAAAAAAAATTCCTTT	To amplify the <i>AtSN1</i> (positive control for bisulfite sequencing)		
to EAEd some encoder any the interest DOD. The edeptor interest for the interest, DOD is ADd (5)					

*: *FAE1* gene-specific primer for the primary PCR. The adapter primer for the primary PCR is AP1 (5'-GTAATACGACTCACTATAGGGC -3') (Siebert et al., 1995).

**: *FAE1* gene-specific primer for the nested (secondary) PCR. The adapter primer for the nested PCR is AP2 (5'-ACTATAGGGCACGCGTGGT -3') (Siebert et al., 1995).