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SI Text

Dispersion Energy Mediated by the Transverse Electric and
Transverse Magnetic Modes of a Coaxial Line
In the main text we analyzed the dispersion energy, namely, van
der Waals (vdW) or Casimir interaction energy, between dipoles
that are coupled via the transverse electromagnetic (TEM) mode
of a transmission line (TL). Here we outline the calculation of the
contribution of higher-order transverse modes and show that (i)
their contribution is negligible with respect to that of the TEM
mode for z > a, where z is the interdipolar distance and a is the
typical separation between the two conductors that compose the
TL, and (ii) in the limit z � a their contribution sums up to be
that of free space.
In the following we demonstrate these results for a coaxial line

(Fig. 1A in the main text), where most calculations can be per-
formed analytically.

Dispersion Energy Mediated by Modes with a Cutoff. In ref. 1, the
dispersion energy mediated by the modes of a metallic wave-
guide is analyzed, and a formalism for a general case where the
typical scale for confinement a that is much smaller than the
typical dipole transition wavelength λe is developed. We follow
a similar approach.
We consider modes with normalized mode functions and dis-

persion relation
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respectively. Here k is the wavenumber at the propagation axis z
with quantization length L, μ is the index of the polarization, and
l and m are indexes of the transverse mode whose dependence
on the transverse coordinates is described by Eμ

lmkðx; yÞ and its
cutoff frequency is ckμlm. When the confinement is tight, namely
for a � λn ∀n, where we recall the excited states with energies
En = Z2πc/λn, and because typically kμlm ≥ π=a (also in the coaxial
line, see below), then ωμ

lmk � En=Z ∀n, and the dispersion en-
ergy, Eq. 3 in the main text, can be approximated as (1)
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The indices i, j, p, and q run over the projections of the vectors dn
and Eμ

lmkðx; yÞ onto the x, y, z directions, e.g., dnx = dn · ex.

Transverse Modes of a Coaxial Transmission Line. Apart from
the TEM mode, the coaxial TLs possess transverse electric
(TE) and transverse magnetic (TM) modes. In ref. 2 their
mode functions are found, and we normalize them such thatR b
a dρρ

R 2π
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being ρ=
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p
;  ϕ= arctanðy=xÞ. Their dispersion relations

are those from Eq. S1 above, with μ = TE, TM. The cutoff

wavenumbers are determined by the transcendental equations
(2)
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for TE and TM, respectively. Here Jl(x) and Yl(x) are the Bessel
functions of order l, of the first and the second kind, respec-
tively, and J′lðxÞ, Y ′lðxÞ are their derivatives. For each μ = TE,
TM, and l, the infinite solutions of the transcendental equa-
tion for the kμl are ordered by the index m, and hence kμlm.
The corresponding normalized mode functions are given by
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with
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The normalization factors DTE
lm and DTM

lmk in Eq. S4 depend on
a and b; however, only DTM

lmk depends on the wavenumber k.
Hence, as is seen below, the exact expression for DTE

lm is not
needed for our calculations here, whereas DTM

lmk is given by
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where

~IJlm =
ZkTMlm b

kTMlm a

dxxJ2l ðxÞ; ~IYlm =
ZkTMlm b

kTMlm a

dxxY 2
l ðxÞ;

~IYJlm =
ZkTMlm b

kTMlm a

dxxYlðxÞJlðxÞ; IJlm′ =
ZkTMlm b

kTMlm a

dxxJ′2l ðxÞ;

IYlm′ =
ZkTMlm b

kTMlm a

dxxY ′2l ðxÞ; IYJlm′ =
ZkTMlm b

kTMlm a

dxxY ′l ðxÞJ′l ðxÞ;

IJlm =
ZkTMlm b

kTMlm a

dx
1
x
J′2l ðxÞ; IYlm =

ZkTMlm b

kTMlm a

dx
1
x
Y ′2l ðxÞ;

IYJlm =
ZkTMlm b

kTMlm a

dx
1
x
Y ′l ðxÞJ′l ðxÞ:

[S7]

Dispersion Energy: Results. TE modes. The dispersion energy is
obtained by inserting ETE

lm from Eq. S4 into Eq. S2 for the energy
U. We note that for TE modes ETE

lm does not depend on k, so it
can be taken out of the integral for FTE

lm;nij. This is also the case for
TE modes in a metallic waveguide, where we get (1)
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K0(x) being the zeroth-order modified Bessel function.
TM modes. For TM modes, we first approximate the integrand
in FTM

lm;nij by ωμ
lmk=ðωμ

lmk +En=ZÞ≈ 1, recalling that ωμ
lmk � En=Z.

Then, the resulting integrations for FTM
lm;nij are similar to those en-

countered in ref. 1 for the metallic-waveguide case, and we find
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Retarded Limit: z ≫ a. Let us assume b = 2a for simplicity, such
that a sets the scale for the confinement. The cutoff wave-
numbers kμlm exist due to the confinement a, and hence we expect
them to satisfy kμlm ≥ π=a. This is verified by solving numerically
the transcendental Eqs. S3, where we find, e.g., kTM11 a= 3:1966
and kTM1;500;1;500a= 2; 992. For TM modes we further verify that
~Dlm
Dlm

kTMlm a≥ 1 such that at the retarded limit, z� a, FTM
lm;nij from Eq.

S9 are all very small due to the exponential decay. Moreover, for
TE modes we can take the asymptotic limit K0ðxÞ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2xÞp

e−x,
obtaining FTE

lm;nij ∝
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p
e−k

TE
lm z. This leads to the conclusion that

the contribution of TE and TM modes to the dispersion energy
in the retarded regime is exponentially decaying and negligible
with respect to that of the TEM mode.

Van der Waals Limit: z ≪ a. TE modes. Using exactly the same
arguments as in the metal-waveguide case, based on the ap-
proximation K0(x) ∼ ln(x) + const. for small x, we can show that
the contribution of the TE modes to the energy in the z� a limit
scales as in ref. 1, (ln z/z)2. This scaling is more weakly divergent
than the vdW limit in free space, which scales as 1/z6; hence TE
modes cannot explain how the free-space result is restored at
short distances and is not dominant in this regime.
TM modes.When the dipoles are placed at the center, between the
two conductors at ρ = 1.5a, and are close enough such that z� a,
they do not “sense” the structure of the coaxial waveguide and
their interaction energy is expected to be that of free space. Our
previous conclusion, that TE modes do not give rise to such
interaction, suggests that the TM modes are the dominant in-
teraction mediators in the vdW, short-range, regime and that
their contributions sum up to give the free-space result. This is
shown analytically for the TM modes of a metallic waveguide in
ref. 1. Here, kTMlm can be calculated only numerically from Eq. S3,
and we demonstrate it, e.g., for the case where the dipoles can be
polarized only in the z direction (dni = dnzδiz). The vdW energy
from Eq. S2 then becomes
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where FTM
lm;nzz is the one from Eq. S9. In Fig. S1 we present the

numerical summation of a3Fzz as a function of z, for ρ = 1.5a and
up to l = 800, m = 1,500. An excellent agreement with Fzz = 1/z3
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is obtained, which gives exactly the vdW energy in free space for
this case (3).

Imperfections
Inhomogeneity of the Dipolar Transition Energies. In the main text
we mentioned the possibility of inhomogeneity of the parameters
of the dipolar transition in artificial systems such as super-
conducting transmons. This means that fluctuations of a few
percent about the parameters En and dn of a transition jg〉 → jn〉
may exist due to inaccuracy in the circuit production process.
Whereas the spatial structure of the vacuum interaction energy
between two general dipoles U(z) (Eqs. 11–13 in the main text)
does not depend on these dipole parameters, its numerical value,
including all prefactors, does. Therefore, depending on the
amount of inaccuracy with respect to the interaction energy U(z)
one wishes to measure, the (exact) evaluation of U(z) may re-
quire one to first measure the dipolar parameters of each
transmon separately, when it is decoupled from the other
transmon. Because the transmons are coupled only via the TL,
the latter requirement amounts to the ability to decouple a trans-
mon from the TL. This may be achieved by, e.g., externally con-
trolling the capacitive coupling of the transmon to the TL (4).

Single-Dipole Energy Shifts Induced by TL Conductors. For atomic
and molecular dipoles, single-dipole energy shifts and hence in-
homogeneities may exist due to the (vacuum-mediated) in-
teraction of each dipole with the conductors that compose the TL.
These energy shifts can be viewed as the modified Lamb shift

experienced by a dipole due to the electromagnetic vacuummodes
near a metal. For dipoles as small as atoms, we estimate this
dipole–metal interaction energy by the so-called Casimir–Polder
or vdW potential of a polarizable particle near a surface (5, 6):
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1+ eðωÞ αðωÞ
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Here l is the distance between the dipole and the surface, e(ω) is
the bulk dielectric response of the surface, and α(ω) is the par-
ticle polarizability. This expression is correct in the nonretarded
limit, where the distance l, typically on the order of 1 μm in the
circuit quantum electrodynamics (QED) case, is much smaller
than the typical/dominant wavelength of the dipolar transition.
Considering the complex dielectric response of TL conductors
e(ω), the perfect lossless conductor limit is given by Re{e} →
−∞ and Im{e} = 0. Nevertheless, Eq. S12 yields a dispersive
(real) energy shift regardless of the fact that in practice e may
have an imaginary part (losses). Indeed, because the system as
a whole is in its (unperturbed) ground state (vacuum for the
photons and ground state for dipoles), and the only excitations
it exhibits are virtual, irreversible effects due to losses are not
expected to play a role. The effect of losses in either the con-
ductors or the dipoles is manifest in Eq. S12 by the frequency
dependence of e or α, respectively: The Kramers–Kronig rela-
tions determine their real and imaginary parts.
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Fig. S1. Evaluation of the sum Fzz in Eq. S11: log–log plot of the result of the direct numerical summation compared with the curve 1/(z/a)3.

Shahmoon et al. www.pnas.org/cgi/content/short/1401346111 3 of 3

www.pnas.org/cgi/content/short/1401346111

