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1. Overview
In this document, we introduce the detailed modeling assump-
tions and dynamical model we use for recombination under se-
lection (section 2); introduce the experts problem from com-
puter science, and the multiplicative weights update algorithm
(MWUA) used to solve it (section 3); point out that the MWUA
can be interpreted as an algorithm which at each step optimizes
a convex combination of the cumulative sum of gains and of the
distribution’s entropy (section 4); and prove the equivalence of
the dynamics under weak selection to the MWUA in Theorem 4
with « = s, the selection strength (section 5).

2. Population Genetics Under Selection and Recombination
Wemake several (more or less standard) simplifying assumptions,
which are generally trusted not to change substantially the essence
of the evolutionary dynamics. The population of genotypes is
infinite. We assume that the genotypes are haploid (contain only
one copy of each gene), and that the organisms mate at random to
produce a new generation; further, we assume there is no overlap
between generations (as if all mating happens simultaneously and
soon before death). Each offspring’s genome is formed by picking,
for each gene, an allele from one of the two parent genomes, in-
dependently and with probability half each.
Our exposition will be for the case of two genes with m and n

alleles, respectively, even though our results can be easily seen to
extend to any number of genes. Thus, genotypes are pairs ij.
Each genotype ij has a fitness value wij which is the expected
number of offspring the genotype produces (by mating ran-
domly). The matrix W = [wij], often called the fitness landscape
of the species, entails the basic genetic parameters of the species
(it is a k-dimensional tensor for k genes).
We shall be interested in the statistics of the genotypes in the

population. The frequency of the genotype ij will be denoted pij.
The matrix of the pijs is the state of the dynamical system we shall
follow. We denote the value of pij in generation t by ptij.
How do the ptijs change from one generation to the next? Each

pair of genotypes mates with a probability determined by the
frequencies of those genotypes and recombines with probability
r∈ ½0; 1=2� to produce an offspring, which is then selected. Ac-
cordingly, the expected frequency of genotype ij at the next
generation pt+1ij can be written

pt+1ij =
wij

wt

�
ð1− rÞptij + r

X
l

ptil
X
k

ptkj

�

where wt is the sum of the numerators for all ij, so that frequen-
cies add up to 1 (1).

Wright Manifold, Weak Selection, and Nagylaki’s Theorem
Besides the pij frequencies, one has the marginal frequencies,
one for each allele: xi =

P
j pij and yj =

P
i pij. Within the simplex

of the pijs, of particular interest to us is the Wright manifold on
which pij is a product distribution (the matrix pij has rank 1): pij =
xi · yj. It turns out that, on the Wright manifold, the population
genetic equations take a much simpler form, expressed in terms
of the marginal probabilities xi and yj (Lemma 2).
Life, in general, does not reside on the Wright manifold—that is

to say, genotype frequencies do not in general have rank 1. This is
called linkage disequilibrium, and is measured by the distance from

the Wright manifold Dij = pij − xi · yj. Intuitively, it comes about
because differences in the fitness of genotypes distort the allele
statistics; just imagine two alleles of two genes whose combination
is deleterious. By definition, Dij is zero on the Wright manifold.
Weak selection is an important point of view on evolution,

which postulates that the entries of the tensorW are all very close
to one another relative to recombination. Differences in fitness
are minuscule, and the wijs all lie within the interval [1 − s, 1 + s]
for some very small s > 0 which we call the selection strength.
There is an important connection between theWright manifold

and weak selection, best articulated through Nagylaki’s theorem.
Consider the evolution of genome frequencies ptij (or for more
than two genes) in a situation in which the fitness values are
within [1 − s, 1 + s] for some tiny s > 0—that is, weak selection
prevails. Consider also the corresponding time series of linkage
disequilibria Dt

ij = ptij − xi · yj.
Theorem 1 [Nagylaki (2, 3)]. (1) For any t≥ t0 = 3 logð1=sÞ and

any i, j, Dt
ij =OðsÞ; and furthermore (2) for t ≥ t0 there is a cor-

responding process fp̂ijg on the Wright manifold such that (a)
jp̂tij − ptijj= OðsÞ; and (b) both processes converge and there is
one-to-one correspondence between the equilibria of ptij and the
equilibria of p̂tij.
Nagylaki’s theorem states essentially that, to understand a ge-

notype frequency process in the weak selection regime, one can
instead follow a closely related process on the Wright manifold.
As we shall see next, it turns out that this brings about some
unexpected connections.

3. Experts Problem
We now discuss a seemingly completely unrelated problem from
computer science, and an important algorithm used to solve it.
Imagine that every day you receive advice from n financial

experts, and then you must select one of them and follow his
advice for that day. Following the advice of expert i in day t
results in a net gain (or loss) of gti , a number between −1 and 1.
The gti s are arbitrary numbers in this range, and are not known
in advance. This process is repeated for a large number T of days.
In the end of the T days, the optimum expert is the one with the
largest cumulative gain Gi =

PT
t=1g

t
i ; let i* be this expert, and G*

be this maximum cumulative gain. We wish to come up with an
algorithm—possibly randomized—for selecting an expert on each
day so that in the end of the T days our total gain is in expectation
very close toG*. In other words, we want to achieve, in the end of
the T days, a performance very close to the performance of the
expert who is best in retrospect, even though the gti s are unknown
and arbitrary—for example, they could be chosen by an adversary
striving to deteriorate the performance of the algorithm.
This ambitious goal (which, some would argue, seems in-

tuitively impossible to achieve) can be attained by a very simple
method called MWUA. This method was first discovered by the
economist Hannan in connection with repeated games (4), then
rediscovered by Cover in relation to portfolio analysis (5); later,
it was used in artificial intelligence under the name “Boosting”
(6), and earlier in a version called “Winnow” (7), until it was
recognized as the common idea underlying several simple and
curiously effective optimization algorithms developed by com-
puter scientists to solve linear and convex programming prob-
lems and network congestion problems, among many others, and
codified as MWUA (8).
The MWUA assigns each day t weights, or probabilities, pti > 0

to the experts, and each day selects an expert at random among
the n with these probabilities. Initially all weights are, say, equal
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p1i = 1=n for all i. Then each day, the weight of the ith expert is
modified as follows:

pt+1i =
1

Z
t+1 p

t
i

�
1+ egti

�
 
�
MWUA

�
;

where the normalization Z
t+1

=
Pn

i=1p
t
ið1+ egtiÞ keeps the weights

probabilities, and « > 0 is a small constant chosen to balance
long-term risk with short-term gains (in the experts problem,
a good choice of « turns out to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðln nÞ=Tp
). That is, the

probability of selecting expert i is “boosted” by a small multiple
of the expert’s gain that day (decreased if that gain is negative).
The following result now captures the surprisingly favorable

performance of this simple algorithm:
Theorem 2. The total gain achieved by the MWUA is in expec-

tation at least ð1− eÞ ·Gp − ðln nÞ=e.
To see how favorable the performance of MWUA is as stated

by this result, notice that it comes « close to the optimum, minus
a quantity that does not depend on T. To put it differently, if we
choose e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðln nÞ=Tp
), on an average day this algorithm does

only Oð1= ffiffiffiffi
T

p Þ worse than the ex post facto best expert.

4. Optimization Interpretation of MWUA
In this section we point out that the MWUA can be thought of as
a multistep optimization algorithm which, at each step, strives to
optimize a convex combination of (i) the expected cumulative
gain; and (ii) the entropy of the experts’ distribution. This in-
terpretation is implicit in the literature (9, 10).
Let Gt

i =
Pt

τ=1g
τ
i be the cumulative gain of expert i in the first t

days; thus, Gp =maxfGT
1 ; . . . ;G

T
n g. Suppose now that at step t we

wish to choose the probabilities pti so as to maximize the sum
of two quantities: The expected cumulative gain so far, and
(some positive constant 1=e times) the entropy of the distribution
pti s, −

Pn
i=1p

t
i ln p

t
i. That is,

max
fptig

 Xn
i=1

ptiG
t
i −

1
e

Xn
i=1

pti ln p
t
i

!
;

subject to
P

ip
t
i = 1. Now this is a strictly convex optimization

problem, as one term is linear and the other strictly concave,
and thus it has a unique optimum, which can be found through
the Karush–Kuhn–Tucker conditions (11):

Gt
i −
�
1+ ln pti

�
+ μt = 0; i= 1; . . . ; n;

where μt is the Lagrange multiplier corresponding to the equality
constraint. Similarly, we can write the same equation for the next
generation, with t replaced by t + 1:

Gt+1
i −

�
1+ ln pt+1i

�
+ μt+1 = 0; i= 1; . . . ; n:

Subtracting these two equations and solving for pt+1i , and recalling
that Gt+1

i −Gt
i = gt+1i , we obtain precisely equation (MWUA), where

the normalization Z
t+1

= expðμt+1 − μtÞ.
5. Coordination Games Between Genes
We now introduce the basic formalism of game theory. In a game,
each of finitely many players has a set of strategies, and a payoff
function mapping the Cartesian product of the strategy sets to the
reals. A game in which all payoff functions are identical is called
a coordination game. In a coordination game the interests of all
players are perfectly aligned, and, intuitively, they all strive to hit
the same high value of the common payoff function. In terms of
equilibrium calculations, they are trivial.
Fix a game, and a mixed strategy profile, that is, for each player

p a distribution xp over her strategies. For each player p and each

strategy a ∈ Sp one can calculate the expected payoff of this strat-
egy, call it q(a). How does the player’s strategy change in time? One
possibility is inspired by the MWUA of the previous section. The
multiplicative weight update dynamics of the game transforms the
mixed strategy profile {xp} as follows: For each player p and each
strategy a ∈ Sp, the probability xp(a) of player p playing a becomes

xpðaÞ · �1+ e · qðaÞ�
1+ e ·

P
b∈Sp x

pðbÞqðbÞ=
xpðaÞ · �1+ e · qðaÞ�

1+ e · q
;

where by q we denote the expected payoff to p (in a coordination
game, to all players). That is, the probability of playing a is
boosted by an amount proportional to its expected payoff, and
then renormalized. It is known that two players following the
multiplicative update dynamics attain the Nash equilibrium in
zero-sum games (this has been rediscovered many times over
the past 50 years; see for example ref. 8), but not in general games.
It follows directly from the results below that it also converges to
the Nash equilibrium in coordination games. Beyond games and
portfolio management, the multiplicative updates dynamics lies at
the foundations of a very simple, intuitive, robust, and powerful
algorithmic idea of very broad applicability (8).
Going back now to population genetics dynamics, let wij be

a fitness landscape (matrix for two genes, tensor for more) in the
weak selection regime, that is, each entry is in the interval [1 − s,
1 + s]. Define the differential fitness landscape to be the tensor
with entries Δij = ðwij − 1Þ=s.
We next point out a useful way to express the important an-

alytical simplification afforded by the Wright manifold:
Lemma 3. On the Wright manifold, the population genetics dy-

namics becomes

pt+1ij =
1
wt

xti · y
t
j ·wij;

and similarly for more genes.
Proof: As is shown in ref. 1, we can rewrite the population

genetics dynamics as

pt+1ij =
1
wt

wij

�
ptij − rDt

ij

�
;

where Dt
ij = ptij − xti y

t
i is the linkage disequilibrium. Now, because

Dij = 0, we have

pt+1ij =
1
wt

ptijwij:

Finally, because at Dt
ij = 0, ptij = xtiy

t
j. The result follows.

We are now ready for the main result of this section:
Theorem 4. Under weak selection with selection strength s, the

population genetic dynamics is precisely the multiplicative update
dynamics of a coordination game whose payoff matrix is the dif-
ferential fitness landscape and « = s.
Proof: We only show the derivation for two genes, the general

case being a straightforward generalization.

xt+1i =
X
j

pt+1ij =
1
wt

X
j

xti y
t
jwij =

xti
wt

�
1+ s

X
j

ytjΔij

�

=
xti ·
�
1+ s

P
j y

t
jΔij

�
1+ s ·Δ

:

Here the first equation is the definition of marginal frequen-
cies, the second is the lemma, the third uses the definition of
Δij, and the last one follows from the expectation of wij being 1
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plus s times the expectation of Δij. The last expression is precisely
the multiplicative update dynamics, completing the proof.
Finally, we can connect our result to the optimization in-

terpretation of MWUA:
Corollary 5. Under weak selection with selection strength s, the

population genetics dynamics is tantamount to each gene optimiz-
ing at generation t a quantity equal to the cumulative expected fit-

ness over all generations up to t, plus 1=s times the negative entropy
of the allele distribution of the gene at time t.
One interpretation is this: If the optimization of cumulative

expected fitness is sought, then it makes sense at each step, and in
view of the uncertainties of future steps, to balance off cumulative
expected fitness so far against the distribution’s entropy (a well-
known measure of dispersion).
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