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ABSTRACT Evolutionary selection of sequences is stud-
ied with a knowledge-based Hamiltonian to find the design
principle for folding to a model protein structure. With
sequences selected by naive energy minimization, the model
structure tends to be unstable and the folding ability is low.
Sequences with high folding ability have not only the low-lying
energy minimum but also an energy landscape which is
similar to that found for the native sequence over a wide region
of the conformation space. Though there is a large fluctuation
in foldable sequences, the hydrophobicity pattern and the
glycine locations are preserved among them. Implications of
the design principle for the molecular mechanism of folding
are discussed.

A protein chain can take on an enormous number of different
conformations, and an astronomically long time is required for
an exhaustive survey of those conformations. How does a
protein accomplish the fast structural search to find its unique
native structure (1)? One possible explanation is that the
native structure corresponds to a pronounced minimum of free
energy, so that the thermodynamic predominance should
assure its kinetic preference at the same time. This mechanism
was discussed by Bryngelson and Wolynes (2, 3) and was
quantitatively analyzed with replica methods (4-7). More
recently, thorough investigations have been done with lattice
models (8-14): Leopold et al. (8) showed that convergent
pathways, or “funnels,” guided folding to the native structure;
Dill and colleagues (11, 12) suggested that “hydrophobic
zipper” processes were responsible; and Sali et al. (13) showed
that the chain should fold efficiently when the energy of the
correct structure was low enough. All these theoretical results
support the picture that the energy landscape of the foldable
chain must have some coherence which leads to the convergent
pathways to the native structure. From the spin-glass theoret-
ical point of view, the physical basis for this coherence should
be the minimal frustration among interacting residues (2, 3,
15).

One way to examine this “minimal frustration” principle and
to find the further molecular mechanism of folding is to look
by computer for sequences that are compatible with a given
three-dimensional structure. This problem is termed the in-
verse folding problem (16-28). By finding sequences which can
fold to the given structure, we could understand the design
principle for sequences to have efficient folding abilities. Dill
and coworkers (17-19) examined sequences in the lattice
model and showed that hydrophobic interactions played the
key role. Shakhnovich and Gutin (20, 21) performed artificial
evolution experiments by selecting randomly generated se-
quences. These studies (17-21), however, were based on
simplified lattice models, and many important features of real
proteins were lacking. Thus, it is strongly desired to examine
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sequence-selection experiments with a more realistic model of
proteins.

The aim of this paper is to reveal new design principles
through simulated evolution of sequences. The amino acid
sequence space is randomly sampled and selected according to
several different criteria by using an off-lattice knowledge-
based Hamiltonian. First, the Hamiltonian is explained and
forward-folding results are discussed. Then the random se-
quence-space walk is explained and results with different
selection criteria are compared.

A Knowledge-Based Hamiltonian

We express the energy of the chain as a sum of pairwise
potentials. The potential is constructed from a library of 75
protein structures. These 75 structures were selected as a
subgroup of the library used in Table 2 of ref. 24. For short
sequence distance, when the residues p and g are found at
positions i and i + k in structure u of the library, a Gaussian
function whose center is at r = rfZ% is summed into the
potential V%
]

for k = 10,
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where p and q represent 2 of the 20 amino acids, Ny is the
number of pairs that appear in the library, ¢, is chosen to be
0.5k A2, and rFi4 is the spatial distance between B-carbon (CP)
atoms. Here, CF'is used instead of the a-carbon C* because CP
is much more sensitive to the conformation (25). For glycine,
C= is used instead of CP. For longer sequence distance,
contributions from residues at distance j with m(k) =j <m(k
+ 1) are summed into the class-k potential:

Vi) =
-1 (r- ri",’;*,‘)z]
N2mM'2 iey=Smiie+1y (C,)l/2 2 Eexp[ 2 ’
for 11 =k =15, [2]
where m(k) is chosen as m(11) = 11, m(12) = 31,m(13) =
m(14) = 101, m(15) = 151, and m(16) = «. Thus, this

expression has a close similarity to that of Sippl and coworkers
(23, 24). As in Sipp!’s potential (24), V47 has two sharp minima
for many pg combinations. One minimum is at the spatial
distance in the a-helix and the other corresponds to the
B-sheet. The energy depth of these minima depends on the
helix or sheet propensities of p and g.

Additional hydrophobic interactions are introduced with
similar Gaussian functions.

Abbreviations: MD, molecular dynamics; HLH, helix—loop-helix.
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where & = 1 when p is hydrophilic and § = 0 when
hydrophobic. The first term is the self-avoiding repulsion and
the second term is the shallow attraction potential. Parameters
were chosen to stabilize the native conformation: ¢s, = 16 Az’
r = 4 A, and ¢, = 900 A2 Then the energy of the chain is a
sum of these 15 class potentials:

E = D[aVi(ry) + bid(ry)], [41
1>

where r;; is the spatial distance between CP of the ith and jth
residues of the protein under consideration and & is chosen to
satisfym(k) = (| —j) <m(k + 1) fork =11, andk =i — j
for k = 10. To make the contributions balanced, weight factors
are chosen to be ax = 1 and by = 0 for k =< 10 and ax = 0.5 and
by = 0.4 for k = 11.

Here, the library data are superposed to obtain the smooth
potentials suitable for molecular dynamics (MD) calculation.
By similar Gaussian summations, potentials for the neural-
network models of folding were constructed (29, 30). Their
potentials depend on the absolute position of residues in the
sequence and thus are context-dependent. The potentials in
Egs. 1 and 2, on the other hand, depend only on the relative
sequence distance and are context-independent. We will re-
strict our discussion to the context-independent form of po-
tentials because it is more straightforward to use them to test
many newly generated artificial sequences.

Forward Folding of a Calcium-Binding Protein

One of the simplest four-helix bundle proteins, a Ca?*-binding
protein (Protein Data Bank code 3icb; number of residues, N
= 75), is used as a target structure for the forward-folding
simulation. Neither 3icb nor its homologue is included in the
library for potentials. Since only the C? coordinates are taken
into account, we consider the virtual polymer chain connecting
CP atoms. Fig. 1a is the CP-chain representation of the 3icb
x-ray structure. It has two helix-loop-helix (HLH) motifs
stacked with canted angles. Ca* ions are bound at the loop
positions. Here we focus only on these topological features,
although the neglected structural details would be crucial for
Ca?* affinity.

Forces acting upon the virtual polymer chain are derived
from Eq. 4. First, the 3icb sequence is threaded on the chain.
Starting from the x-ray structure, the structure without Ca?*

FiG. 1. (a) The x-ray structure of a Ca2*-binding protein (Protein
Data Bank code 3icb). CP atoms are connected by a solid line for
residues 1-40 and by a dashed line for residues 41-75. Ca2* ions are
bound at the loop positions. (b) The apo structure obtained by the
folding simulation has 6.2-A rms deviation from the structure in @ and
4.8-A rms deviation from the reference apo structure.
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ions (apo state) is optimized with these forces. This optimized
apo structure is used as the reference structure in the following
calculations.

Starting from the stretched conformation, the motion of the
chain is simulated with a Brownian-motion MD (MD with
random forces) calculation. Then, by gradually lowering the
noise level with the factor 1/log(t + o), the optimal confor-
mation is obtained after 10° simulation steps. Here ¢ is the
number of steps and ¢, is a constant chosen to be 200. This
simulated-annealing calculation was tried several times with
different random-number implementation. For 30% of the
simulated annealing runs (6 runs out of 20 trial runs), struc-
tures with rms difference <5 A from the reference structure
or from its mirror image were obtained. An example of the
structure is shown in Fig. 1. It has two HLH motifs stacked
with the proper orientation. For the other 70% of the runs, two
HLH motifs were stacked in the wrong direction and the rms
deviation was >10 A. One reason for this high yield of
incorrect conformations would be the lack of dihedral-angle
restriction.

The quality of the present potential was examined by
threading the 3icb sequence on other structures in the library.
Energies were found to spread with width yE around the
average value E,,. The energy of the reference structure, E¢q4,
is well below E,y; AE/yE = 4.42, where AE = E,y — E¢qa. The
energy of the typical incorrect result, Enisoia, is well above
Etqg; nE/¥E =~ 3, where nE = Ea — Enistold-

Structures that appear along the folding pathway are shown
in Fig. 2. The chain folds with three successive steps: 1,
formation of helices and primordial HLH motifs; 2, collapse to
the globule; and 3, structural search in the globular state. Steps
1 and 2 occur quickly, but a much longer time is needed for step
3. Distinctive minima in the short-range potentials guide the
chain to the a-helix formation at an early stage. In step 2,
hydrophobic interactions play the decisive role. Since the
primordial forms of the second structures have already ap-
peared in step 1, hydrophobic interactions between these
structural units in step 2 greatly affect the overall topology. In
step 3, structures in various length scales continue to develop,
and competitions arise among them. After a long structural
search, these structural conflicts are minimized. By changing
the random-number implementation, similar pathways are
found when the trajectory reaches the correct conformation,

7 8 9

FiG.2. Structures that appear along the folding pathway are shown
at every 2 X 10° steps. Structures 4-9 are drawn with a length scale
twice as large as that in structures 1-3.
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and the pathways seem to be “funneled” in the sense of
Leopold et al. (8).

The probability of reaching the correct conformation does
not depend much on parameters in Eq. 3 but depends sensi-
tively on ax and by in Eq. 4. When b,y = 0 for all k, the
probability of finding the correct conformation decteases to a
few percent. The probability is maximum when both Z¢<io
arlVi? = Zi=11 (@iVE? + by ®%?) and Zy=11 axVE? =~ Zp=11 bi®E?
are satisfied for the reference structure. When Z;<10 axV%? is
smaller than 3= (axVZ? + b ®%?), the chain collapses before
the short-range orders develop, and a longer time is needed for
the structural search in step 3. When k<10 axV%? is too large,
on the other hand, the flexibility of the chain is lost and the
probability of folding is low.

When the rms deviation is <5 A, the simulated structure is
regarded to be topologically the same as the reference struc-
ture. This model system is used as a testing ground for the
evolutionary selection. For each evolutionarily selected se-
quence, 10 simulated forward-folding runs are tried with
different random-number implementation. Then, out of the 10
structures thus obtained, 3 structures which have the smallest
rms deviations from the reference structure are picked up. The
averaged rms deviation of these 3 structures from the refer-
ence structure is used as a measure of the folding ability of the
sequence. When the average rms value is <5 A, the criterion
used to select the sequence would be based on sensible design
rules.

Random Walk in the Sequence Space

The result of threading the 3icb sequence and other sequences
in the library onto the 3icb reference structure is shown in the
histogram of Fig. 3. The 3icb sequence has the lowest energy
and other structurally unrelated sequences look like “random
sequences” with the energy distribution width 8E.

This is further confirmed by actually generating random
sequences. Starting from the native sequence (original 3icb
sequence), a position in the sequence is randomly selected and
replaced with the arbitrarily chosen type of residue. This
“point mutation” is iterated many times. This random walk
trajectory quickly goes into the energy region where other
library sequences are located and wanders around there. We
may conclude that when threaded onto the certain structure,
most of the 20" possible sequences have random energy with
the width 8E. Some sequences which occupy a tiny portion of
the vast sequence space may be located at the low-energy edge
of this random distribution. The number of these sequences,
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FiG. 3. Results of threading sequences in the library onto the 3icb
reference structure are shown by the histogram. The energy fluctua-
tion along the sequence-space random walk is superposed.
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however, could still be extremely large. Then how many such
sequences exist? How is the energy landscape in the sequence
space? To get insights into these questions, random sequences
are selected with several selection criteria in the next section.

Inverse Folding with Evolutionary Selection

The cost function H is used to select sequences. A random
point mutation is generated and the change in H, 8H, is
evaluated. The chain conformation is fixed in the reference
structure. When 8H = 0, this mutation is accepted, but when
8H > 0, the mutation is rejected with the probability 1 —
exp(—8H/T) and is accepted otherwise. This is a Metropolis
Monte Carlo algorithm with the “selection temperature” T.
Sequences are selected with different criteria by using different
cost functions. Starting from a random sequence, the sequence
which minimizes H is found by gradually lowering 7. Such
simulated annealing-selection runs are examined below with
five different selection criteria.

Criterion I. The cost function is energy, H = E. The energy
of the selected sequence quickly becomes lower than the
energy of the native sequence and >80% of the residues are
replaced by Trp. This is so because the Trp-Trp distance is
small in most cases found in the library and the Trp-Trp
potential has a deep minimum at a short distance (6 A for the
class 9 potential).

Criterion II. To exclude the frequent Trp pair appearance, the
cost function is set to be H = |E — Emative| where Enative js the
energy of the reference structure threaded with the native 3icb
sequence. After the cost function is lowered enough, there still
exists large fluctuation in sequence; the cost-function land-
scape is almost flat around H = 0. With these sequences,
however, the reference structure is unstable; with application
of forces derived from Eq. 4, the reference structure is
deformed to other irrelevant structures. Thus the naive energy
minimization in the sequence space does not yield a mean-
ingful result.

Criterion III. To assure the stability of the reference struc-
ture, the following cost function is considered:

N 1/2
H = |E — Erative| 4 a[ E(aE/ar,-)Z]
i=1

1/2

20
+ b[ 2 (wa _ wzative)Z:I , [51
a=1

where the second term is proportional to the force strength at
the reference structure. w, and B¢ with « = 1-3N are
eigenvalues obtained by diagonalizing the matrices 32E/or;dr;
and 9%E"2tve /gr,qr;, respectively. Since the higher-lying eigen-
values depend on the details of the potential and should not be
important in the sequence comparison, only the 20 low-lying
eigenvalues are used. It is harder to make the second and third
terms small than to make the first term small; therefore, a
relatively large value, a = b = 10, is used.

With this cost function, the evolutionary trajectory does not
reach the sequence with H = 0 but travels among the local
minima with low H values; the cost-function landscape is
rugged around H = 0. The fluctuation of sequence identity
between the generated sequences and the native 3icb sequence
is shown in Fig. 4a. To examine the folding ability, some of the
generated sequences are picked up and for each of them the
forward-folding test is performed with Brownian-motion MD.
The average rms values obtained with this test are plotted in
Fig. 4b. The average rms deviation is >10 A for most of the
sequences; the chain is easily frozen to the metastable de-
formed structure having distorted helices. Thus the stability
against small conformational fluctuations at the optimized
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FiG. 4. (a) Fluctuation of the sequence identity of selected se-
quences to the native 3icb sequence. The solid line shows the sequences
selected with criterion V, the dotted line shows those selected with
criterion IV, and the dashed line shows those selected with criterion
III. (b) The average rms deviation from the reference structure is
shown as a measure of the folding ability of selected sequences. O,
Sequences selected with criterion V; @, sequences selected with
criterion I'V; and +, sequences selected with criterion III.

structure is not enough to assure the kinetic preference of the
structure. Therefore, not only the small fluctuations but also
the large-amplitude deformation of the structure must be
taken into account.

Criteria IV and V. To take account of distant conformations,
the following cost function is considered:

10
H= }jlp(ﬂ){ |E,, — Ee|
=

N

1/2
+a E(aE,L/ari—aE;a‘ive/ari)2] ] [6]

i=1

1/2

20
+ b[ E (wa — wzative)z:l ,
a=1

where 10 different conformations w = 1-10 are used; w = 10
is the reference structure, and the conformations p = 1-9 are
structures 1-9 in Fig. 2. E,, and ER?%"° are energies at the uth
conformation with the tested and the native sequences, re-
spectively. P(u) is P(n) = exp(—cE./T)/Z.exp(—cE,/T), and
c is chosen to be a rather small value, ¢ = 0.01 (criterion IV)
or 0.001 (criterion V), so that multiple conformations are
efficiently sampled even at the low selection temperature. The
sequence-selection calculations are started from a random
sequence with the selection temperature T = 0.1. At this initial
temperature, in criterion I'V, P(1) = 0.036, P(2) = 0.047, P(3)
= 0.060, P(4) = 0.111, P(5) = 0.121, and P(6) = 0.121, and in
criterion V, P(1) = 0.091, P(2) = 0.094, P(3) = 0.096, P(4) =
0.102, P(5) = 0.103, and P(6) = 0.103. Thus the stretched
conformations have greater importance in criterion V.

With criterion IV, H stays around 25% of the initial value
after 5000 mutation steps; the cost-function landscape is
rugged as is the case with criterion III. With criterion V,
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however, H continues to become smaller during the simula-
tion. Thus, in the case of the criterion V, there seems to be a
fairly deep minimum of the cost function though the trajectory
has not yet reached that minimum during the simulation.
Examples of sequences generated with criterion V are shown
in Fig. 5. They share two important features with the native
sequence: (i) Positions of glycine are the same in the simulated
and the native sequences, except around residues 57-59, and
(ii) there is a close similarity in the hydrophobicity pattern
between the simulated and the native sequences. Though
sequences fluctuate much along the evolutionary trajectory,
these two features remain unchanged. With criterion IIl or IV,
however, the pattern similarity is less evident, and with crite-
rion II the pattern matches poorly with that of the native
sequence. By changing parameters in Eqs 3 and 4, the param-
eter dependence of the results can be tested. Within the range
of reasonable parameter values, however, the qualitative re-
sults shown in Fig. 4 are not altered.

The results of the forward-folding test are shown in Fig. 4b.
Criterion IV is not sufficient to select the foldable sequences.
The resulting conformations often include the bent helices and
the average rms deviation is >5 A. With criterion V, on the
other hand, the generated sequences have folding ability as
high as that of the native sequence. Along the evolutionary
trajectory, the average rms deviation rapidly decreases, and at
around 5000 mutation steps it becomes <5 A. It should be
noted that at around 5000 steps the sequence identity to the
native sequence is still as low as 25%. It is interesting that the
minimum sequence identity between two homologous confor-
mations found in the Protein Data Bank is about 25-30% for
N =~ 60-80 (31). Thus the evolutionary trajectory first finds the
foldable sequences at this “homology threshold” area and then
proceeds to the sequence space which is closer to the native
sequence.

Comparing five different selections, we find that not only the
local but also the global features in the conformation space
have to be considered. It is especially important to take the
energy landscape of the extended conformations into consid-
eration (Fig. 6). When the sequence is selected so as to have
an energy surface similar to the native one along the folding

1 20

(V6 )STQDEFE AREE®VL
( V20)KSPEELR AREE®LM

21 40
(Native) NQLSKEELKLLLQTEFPSLL
(V6 )MHYVEEHFQWLMWKDNIALC
( V2O)MHYVEEHFQWLMWEDKIALC

4 60

(V6 )O@DNWYRELLEHFDN@ON®SD
( V20 )KOTKWYRELIEEIYN@ON®SD
61 75

LVKKIEQ
LYKKINE

FiG. 5. Selected sequences compared with the native 3icb se-
quence. V6 is the sequence generated at 6000 mutation steps in the
evolutionary trajectory selected with criterion V, and V20 is the
sequence generated at 20,000 mutation steps with criterion V. Glycines
are marked with circles and hydrophobic residues are underlined.
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FiG. 6. Schematic representation of the amino acid sequence
space. There are many low-energy sequences which are unrelated to
the target structure. The foldable sequences belong to a subgroup of
both the low-energy sequences and the sequences which can stabilize
the target structure against small fluctuations.

pathway, the chain can fold with as high probability as the
native chain.

With criterion V a number of foldable sequences are easily
found that have 25-50% sequence identity to the native
sequence. Preliminary analysis suggests that the speed of the
sequence alternation is not uniform along the trajectory.
Statistical properties of these sequences need to be investi-
gated to see how the neutral drift among sequences is possible.

The forward folding kinetics of the present system are
characterized by hierarchical structural ordering due to the
coexistence of different length scales (helices, turns, HLH
motifs, and stacking of two HLH motifs). To reach the correct
conformation, structures in various length scales have to
develop and competitions arise among them. The chain visits
many conformations until this structural conflict is minimized.
This competition and cooperation are observed with a wide
range of parameter values and are important features of the
present model system. When the trajectory fails to fold, some
structural order often develops too rapidly, without waiting for
the growth of structures in other length scales. These results
are in accord with the earlier observation of Go (32), who
stressed the importance of consistency among the different
length scales. The energy surface which supports such hierar-
chical structural ordering should also have a hierarchical
nature; the energy surface should lead to the “funnel” along
which the structural conflicts among orders in different length
scales are avoided. The present inverse-folding results suggest
that sequences must be selected so as to reproduce this
hierarchical nature of the energy surface. Especially the com-
parison between selection criteria IV and V suggests that the
sequence should be designed so that the primordial forms of
various structural orders are prepared before the collapse to
the globule state. ‘

The method is still limited to the helix-bundle proteins.
There is much room, however, to improve the Hamiltonian we
used here. The dihedral-angle restriction should be taken into
account and forces proportional to the surface area should be
used. The context-dependent forces are also important (29,
30). The present simulated-evolution experiments have shown
that the sequence design is closely related to the design of the
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hierarchical energy surface. Thus, improvement of folding
algorithms, finding of new design principles, and understand-
ing of the diversity of protein structures will progress in a
synergistic way by analyzing the global structures of the energy
landscape. There, the combined forward- and inverse-folding
simulations with the sophisticated knowledge-based Hamilto-
nian will play an important role.
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