Appendix S2: Enhancement and sharpening

1 Moving frame of reference

Expressions for the moving frame of reference without using Euler angles [1,2]:
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Where R, is any rotation which rotates e, to n via n = Rje,, and R denotes a counterclockwise
rotation of angle h, around e;. Although the choice of R, does matter in the derivatives in Eq. 1, in the
combinations used in the enhancement and sharpening operations it does not.

2 Convolution for linear contour enhancement

The following analytical approximation for the convolution kernel for linear contour enhancement in
R3 x S% can be derived from R? x S! kernels (for further details see [1]):
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Convolution in R? x S2 is then obtained by
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in which the kernel is both rotated and translated, and multiplied with the image.

3 Finite differences

Implementation of forward finite difference schemes to approximate Eq. (5) in the manuscript for linear
contour enhancement is done as follows [2]:
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Here, the superscript ¢ denotes that we use centered finite differences (in this case of second order). For
more information on this numerical implementation and its stability, see [2]. For the finite difference
implementation of erosions, [3] and [4] can be consulted.
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