Supplementary Information

Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes

Sébastien Ferreira-Cerca, Irene Kiburu, Emma Thomson, Nicole Laronde and Ed Hurt

Supplementary Figure 1 & 2

Supplementary Table 1 & 2

Supplementary Figure 1 | Multiple sequence alignment of eukaryotic Rio1 in comparison to archaeal Rio1 orthologs. Sequence alignment of eukaryotic *ct*Rio1 (*Chaetomium thermophilum;* XP_006692618.1), *sc*Rio1 (*Saccharomyces cerevisiae;* NP_014762.3), *mm*Rio1 (*Mus musculus;* NP_648489.1), *hs*Rio1 (*Homo sapiens;* NP_113668.2), *sp*Rio1 (*Saccharomyces pombe;* NP_593261.2) in comparison to archaeal *af*Rio2 (*Archaeoglobus fulgidus;* NP_070631.1) and *hv*Rio1 (*Haloferax volcanii;* YP_003534210.1) using T-Coffee multiple sequence alignment (http://www.ebi.ac.uk/Tools/msa/tcoffee) and Jalview. Yeast Rio1 point and deletion mutations are indicated in blue.

Supplementary Figure 2 | Electron density maps and fit comparisons for ADP/phosphoaspartate in the structure of human Rio1. a. Composite omit map calculated for the entire asymmetric unit, contoured at 3σ and carved at 3 Å around the ADP and the phosphate of pAsp 341. b. Difference density (Fo-Fc) calculated with omission of transferred phosphate only (green-positive; red-negative). Positive and negative density near ribose and base moieties may be due to slight repositioning of the nucleotide with refinement in the absence of the γ -phosphate. c. Superposition of the active sites of human Rio1 (blue) and *C. thermophilum* Rio2 (grey). Catalytic residues, including phosphoaspartate, are shown as sticks, and numbered according to hRio1 sequence. d. B-factors (in Å³) for the β - and γ -phosphates (PB and PG respectively) when ATP is fit compared to the ADP β -phosphate of the ATP and the corresponding phosphoasparta of the PAsp for comparison. Occupancies were fixed at 1.00 for all atoms. Lower B-factors, and shape of density, were used to determine the best fit ligand was ADP and phosphoaspartate.

Strain	Genotype	Plasmid	Origin
BY4741/WT	Mat <u>a;</u> his3∆; leu2∆; met15∆; ura3∆		Euroscarf
<i>Rio1∆ RIO1</i> diploid	BY4743 Mat a/α; his3∆/his3∆; leu2∆/leu2∆; LYS2/ lys2∆; MET15/met15∆; ura3∆/ura3∆; YOR119c/ YOR119c::kanMX4		Euroscarf
<i>RIO1</i> shuffle strain	Mat <u>a;</u> his3∆; leu2∆; lys2∆; met15∆; ura3∆; YOR119c::kanMX4	Ycplac33-RIO1	this work: derived from <i>rio1∆/RIO1</i> diploid
GAL::RIO1	Mat <u>a;</u> his3∆; leu2∆; met15∆; ura3∆; NatMX6::P _{GAL} -3xHA-RIO1		this work; derived from BY4741

Supplementary Table 1 | List of strains used in this study.

Plasmid	Features	Origin
Ycplac33-Rio1	<i>CEN</i> ; URA3; <i>RIO1</i> ORF including 400nt before ATG and 220nt after stop codon	this study
P _{ADH1} -ProtA-Tev-Flag-Nob1	CEN; LEU2;	(1)
P _{ADH1} -ProtA-Tev-Flag-Rio1	CEN; LEU2;	this study derived from P _{ADH1} -Flag-Tev-ProtA- Nob1
P _{ADH1} -ProtA-Tev-Flag- <i>rio1</i> D244A	CEN; LEU2;	this study derived from P _{ADH1} -Flag-Tev-ProtA- Nob1
P _{ADH1} -ProtA-Tev-Flag- <i>rio1</i> C∆46	CEN; LEU2;	this study derived from pADH1-Flag-Tev-ProtA- Nob1
P _{ADH1} -ProtA-Tev-Flag- <i>rio1</i> C∆80	CEN; LEU2;	this study derived from P _{ADH1} -Flag-Tev-ProtA- Nob1
P _{ADH1} -Rio2-Flag-Tev-ProtA	CEN; LEU2;	this study derived from P _{ADH1} -Flag-Tev-ProtA- Nob1
pET24a- <i>ct</i> Rio1	Kanamycin	this study
pET24a- <i>ct</i> Rio1 D244A	Kanamycin	this study
pET24a- <i>ct</i> Rio1 D261A	Kanamycin	this study

Supplementary Table 2 | List of plasmids used in this study.

pET24a- <i>ctRio1</i> C∆80	Kanamycin	this study
pDEST527- <i>hs</i> Rio1(143-494)	Ampicillin	this study
YEP352-GAL::RIO1	2μ; URA3; <i>RIO1</i> ORF under <i>GAL</i> promoter	this study
YEP352-GAL::RIO1 D244A	2μ; URA3; <i>RIO1 D244A</i> ORF under <i>GAL</i> promoter	this study, derived from YEP352- <i>GAL::RIO1</i>
YEP352- <i>GAL::RIO1</i> C∆46	2μ; URA3; <i>RIO1</i> C∆46 ORF under <i>GAL</i> promoter	this study
YEP352- <i>GAL::RIO1 D244A</i> C∆46	2µ; URA3; <i>RIO1 D244A</i> C∆46 ORF under <i>GAL</i> promoter	this study
YEP352-GAL::ProtA-TEV- Flag-RIO1	2μ; URA3; <i>RIO1</i> ORF under <i>GAL</i> promoter	this study
YEP352-GAL::ProtA-TEV- Flag-rio1 D244A	2μ; URA3; <i>RIO1</i> ORF under <i>GAL</i> promoter	this study

1. Pertschy, B., Schneider, C., Gnadig, M., Schafer, T., Tollervey, D. and Hurt, E. (2009) RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. *J Biol Chem*, **284**, 35079-35091.