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ABSTRACT Allometric mo hogenesis is the generation
of form or pattern as a result of differential growth according
to power-law relationships among the elements of a complex
system. This phenomenon has been noted in a variety of fields
for many years, in some cases for centuries, and yet it has never
been related to the underlying determinants of the systems. By
starting with fundamental properties of the component mech-
anisms in such systems, one can derive a basic growth equation
from which the well-known law of allometric morphogenesis
follows naturally.

The development of form or pattern by differential growth
among the component parts of a complex system appears to
follow relatively simple rules in spite of what is known about
the enormous complexity of such systems. Julian Huxley was
the first to treat this subject in depth, which he did within the
context of growing biological organisms, in his book Problems
in Relative Growth (1). He used the empirical formula y = bck
to describe his observations. The parameters b and k are con-
stants, x is the amount or size of some part of the organism (or
the entire organism), and y is the amount or size of another part.
Growth according to this relationship is called allometric.
The astonishing fact is not that it fits in many cases, but that

a wide variety of phenomena is described by this simple law.t
Numerous examples can be found in the original work of
Huxley (1), and since that time additional examples have been
found among all the major groups of animals (3) and higher
plants (4, 5). Allometry has been found in studies of morphol-
ogy, physiology, pharmacology, biochemistry, cytology, and
evolution (see ref. 6). Allometry also has been found in the
etiology of certain diseases; e.g., coronary disease is related al-
lometrically to the concentration of serum cholesterol (7).

Joseph Needham (8) has presented numerous examples of
the relative change of one chemical substance with respect to
another that conform to the allometric law. In addition, his
finding the same constant, relative growth patterns for sub-
stances in a wide range of organisms led Needham to suggest
the existence of a common "chemical groundplan." Needless
to say, the broad aspects of such a common chemical plan have
been dramatically revealed by molecular biologists in recent
years.

According to Adolph (9), we should expect future observa-
tions of this kind to conform to the allometric relationship be-
cause there are now so many confirmed examples in any given
organism. Any new finding that did not conform would be in-
consistent with the harmony among the component parts of the
growing organism, as expressed by the allometric relation-
ships.

Allometry is not confined to examples within biological or-
ganisms. Other types of complex phenomena that exhibit this
law are the distribution of income within an economic system
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(10), the process of urbanization (11), social differentiation and
division of labor in primitive societies (11), relative growth of
staff within industrial firms (12), and the change of proportions
in technological design (13). There is no doubt as to the wide-
spread occurrence of allometry in complex systems.

Allometry is a purely empirical law, but there have been
several attempts to provide it with a theoretical basis and
thereby relate it to other well-established principles (see ref. 14).
Early attempts to derive the allometric law used dimensional
analysis or various similarity rules based on physical consider-
ations. This approach has been used repeatedly for such deri-
vations and in some cases to predict the numerical values of the
parameters in the allometric equation (see refs. 15 and 16).
Derome (17) has suggested that group theory is the most ap-
propriate formalism underlying this approach. Bertalanffy (18)
provided a derivation of allometry based on competition or
partitioning among the parts within an organism or system (see
also ref. 14). Rosen (13) has shown that the allometric law can
be derived from the principle of optimality in biological design.
Although these approaches have met with some success, they
are all formal approaches that do not address the questions of
underlying mechanisms and causation. Because of this and
contemporary emphasis on the analytic experimental sciences,
allometry has failed to be incorporated into the mainstream.
The power-law approach presented earlier (19) allows yet

another derivation of the allometric law, but one that provides
an important link between the underlying molecular deter-
minants and the well-established allometric properties of the
intact system.
System description
The derivation of the fundamental equations describing com-
plex systems is given in detail elsewhere (19); it will be outlined
here only in brief.

For purposes of analysis, spatially distributed systems can be
conceptually subdivided into compartments sufficiently small
that within them the system may be considered spatially ho-_
mogeneous. The concentration or amount of an element within
such a compartment will be represented by the symbol Xi,
where the subscript i signifies both the name (type) and the
location (compartment) of the element.

For a general system of n elements, one can define additional
variables Xn+ as aggregate measures of the entire system and
of particular subsystems within the system. For example, these
could be the total weight of an organism or a particular organ
of the organism; the total population of a society or a particular
group within the society; the capital accumulation of an
economy or of a particular sector of the economy, etc. Each

* This is paper no. 2 of a series. Paper no. 1 is ref. 19.
t Even complex biological shapes and shape changes, which may not
immediately suggest allometry, exhibit regular patterns of allometric
growth when appropriate measurements are made and then trans-
formed according to the general methods recently developed by
Bookstein (2).
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X+ is the sum of all the relevant elements of the system or
subsystem.
The functional equations describing a general system of n

elements different in kind or location or both and (s - n) ag-
gregate measures can be written in the form

Xi = V 1(X1, X2,.* *, Xn) - V-i(X1, X2, , Xn) [1]
i'= 1, 2,. . ,s

and

n

Xi E: Xj i =n+ 1,n+2,..., s [2]
relevant
; from 1

in which Vi is a polynomial (or rational) function representing
the composite rate of increase in Xi and, similarly, V-s is a
polynomial (or rational) function representing the composite
rate of decrease in Xi. Xi is the time derivative of Xi.

Polynomial and rational functions can be approximated over
a wide range of values for the variables by a linear relationship
in a space with logarithmic coordinates (20, 21); this approxi-
mation corresponds to a product of power-law functions in the
conventional space with cartesian coordinates (21). Thus, Eqs.
1 and 2 can be written

- n n= ai JJ Xigqj - f3 II X hi [3]
1=1 1=1

i=1,2,. ,s
and

n
X yiH Xjfij i=n+ 1,n+2,...,s. [4]

j=1
This approximation applies to a large class of systems that have
been called synergistic (19); its validity is discussed in detail
elsewhere (19, 21).

Allometric growth
Only one assumption is necessary to derive the allometric re-
lationships from Eqs. 3 and 4; namely, there is a single, tem-
porally dominant process in the growing system. This as-
sumption implies that a single equation in 3, representing the
slowest phenomenon of interest, determines the temporal be-
havior of the entire system; all other equations, representing
the faster phenomena, can be assumed to have reached a
quasi-steady state with time derivatives equal to zero (see ref.
19).

Eqs. 3 and 4 then can be rewritten as

X1l= alX1- f3lXIhil
Xt = 6,Xlei i = 2, 3,.. . , s, [5]

in which the parameters gIi, h11, and ej1 are functions of the
original fs, gs, and hs and the parameters a1, f#I, and bi are
functions of all the original parameters in Eqs. 3 and 4. By
suitably renumbering the variables, one can have X1 represent
any of the basic variables or any of the aggregate measures of
the system. Thus, each of the variables in the system is related
to each of the other variables by means of the allometric relation
(Eq. 5). Simple allometry follows naturally from the power-law
formalism and the assumption of a single, temporally dominant
process.
Anomalous allometric growth
Although simple allometric growth as described in the previous
section is the rule (i.e., there is usually a good fit of experimental
data to a straight-line relation between the variables expressed

logarithmically), exceptions are recognized (see refs. 1, 6, and
14). In this section I shall show that these anomalous forms of
allometric growth can be accounted for by relaxing the -as-
sumptions of the preceding section.

Sharp Breaks in Allometry. At critical times of reorgani-
zation (metamorphosis, puberty, the managerial revolution)
a sharp break in an allometric growth relationship can occur
with simple allometric growth exhibited before and after the
break. Mathematically, this anomalous growth behavior can
be accounted for by allowing two of Eqs. 3 to be temporally
dominant. If the relaxation times for these two equations are
sufficiently different, there will be two zones in which the
represented growth is governed by simple allometric relations
and these zones will be separated by a relatively sharp
break.

In the first zone, the more slowly varying of the two tempo-
rally dominant components (say X1) may be considered es-
sentially a constant, whereas the other (say X2) governs simple
allometric growth. After X2 has reached quasi-steady state, the
behavior is again simple allometric growth in a zone governed
by Xl. In the first zone, X1 is constant, X2 is governed by the
equation

X2 = a2X2g22- 2X2

and each of the remaining (s - 2) variables is in quasi-steady
state and related to X2 as follows:

Xi = 6i2X2e12 =3, 4,. s.

In the second zone, X 1 is governed by the equation
X = a1Xign - f1X lhll,

and all the remaining (s - 1) variables are in quasi-steady state
and related to X1 as follows:

Xi=31Xlea1 i=2,3,..s.
In general, eil # ei2 and &il # bi2, so the allometric relations
will be different in the two zones.

Continuously Changing Allometry. In a log-log plot of
relative growth the slope changes continuously in a few well-
documented cases. This behavior can be represented mathe-
matically when the two temporally dominant processes of the
last subsection have comparable relaxation times. Under these
conditions XI and X2 are governed by equations of the form:

X6 = a1Xjg11X2g12 - fllXlhllX2hl2
X2 = -2X- 32XIh21X2h

The remaining (s - 2) variables are in quasi-steady state and
related to X1 and X2 as follows:

Xi = (6,X2et2)Xlet i = 3, 4,. s.

Thus, a log-log plot of Xi against X 1 continuously changes be-
cause the instantaneous value of the intercept-indicated within
the parentheses-is a function of X2 and continuously changing.
This is the simplest explanation for continuously changing al-
lometry. However, there could be cases in which more than two
processes have relaxation times within the relevant range.

Oscillations in Allometry. Cyclic changes in a log-log plot
of relative growth are another anomalous form of allometric
relation that has been recognized for some time in biological
and economic systems. One of the simplest mathematical
representations involves one temporally dominant equation [6]
together with a pair of equations [7 and 8] coupled so as to
produce oscillations (e.g., see ref. 22):

X1= aix l - f3lXihil
X2 = a2X2g22X3gs23- 2X2h22X3h23

[6]
[7]

Xs = a3X2g32X3g33 - 03)(2h32X3h33. [8]

Proc. Natl. Acad. Sci. USA 76 (1979)



Applied Mathematical Sciences: Savageau

These three equations then govern the growth behavior. All the'
remaining equations are in quasi-steady state and the cor-

sponding variables are related to the first three as follows:

Xi = (biX2et2X3e,3)Xleil i= 4,5,... ,s.

A log-log plot of Xi against X1 will show a simple allometric
trend with an intercept given by the time-average of the
quantity within the parentheses. Superimposed upon this trend
will be oscillations due to changes in the instantaneous value
of this intercept.

Thus, as in the case of the growth laws treated earlier (19),
essentially all of the data can be accounted for, at least in
principle, by synergistic systems in which one, two, or at most
three variables play a dominant temporal role and all other
variables are in a quasi-steady state.

Discussion
Most methods for the analysis of complex systems involve: (i)
strictly linear models, which are inappropriate for most complex
systems in biology and elsewhere; (ii) a detailed nonlinear
model of a specific component of the system, yielding results
that have a correspondingly restricted range of application; or

(iii) arbitrary nonlinear models having little, if any, relationship
to the actual system but chosen for their ability to mimic certain
aspects of the complex system. The formalism that has been
developed elsewhere (19, 21) and described briefly in earlier
sections of this paper largely overcomes these difficulties.
Considerable evidence has accumulated for the validity and
utility of this approach.
To begin with, there is evidence that rests on first principles.

The development of this formalism began with the basic non-

linear nature of the component mechanisms of complex syn-

ergistic systems. The most general set of equations describing
such systems is insoluble, but the nonlinearities in these equa-
tions can be simplified by expanding them in a Taylor series
and retaining the first two terms. However, the Taylor series
expansion is performed in a logarithmic space, which yields
power-law rather than linear equations in the corresponding
cartesian space. Although the philosophy of approximation is
much like that involved in the linearization of nonlinear sys-

tems, the resulting approximate equations are still nonlinear.
Consequently, the resulting approximate equations are guar-
anteed to be an accurate representation of the original system
so long as the excursions of the variables about their normal
operating values are not excessive.

Second, there are experimental data in agreement with the
theoretical results. Power-law relations are predicted for the
variables of a system in quasi-steady state. Experimental evi-
dence for this prediction can be found in many biological sys-

tems including hormone-mediated effects in various differ-
entiated tissues (23725) and gene dose-response relationships
in microorganisms (25-27). There also is direct evidence from
studies in situ showing that individual reactions are governed
by power-law kinetics over a wide range of concentrations in
living animal cells (28). Analogous examples for other types of
complex systems can be found in ref. 19 and the refs. cited
therein.
The results presented in the previous paper (19) and in the

preceding sections lend further support to the validity and
utility of the power-law formalism. We have seen that all the
well-known laws of growth are special cases of a more general
law of growth that can be derived in a straightforward manner
by using this formalism (19). Furthermore, there are un-

doubtedly many examples of growth for which the well-known
laws do not apply and for which the data are never reported or

characterized. Such examples might well-be characterized by
this general growth equation. The preceding sections on allo-

Proc. Natl. Acad. Sci. USA 76 (1979) 6025

metric growth also show that essentially all of the phenomena
catn be accounted for, at least in principle, by this formalism.

It is important to reemphasize that the parameters in the
growth law and the parameters in the allometric relationships
can, in principle, be related to the parameters that characterize
the component mechanisms of the'intact system. Thus, a link
between the level of the intact system and the level of the ele-
mental components is provided.
Having provided such a link does not solve any of the cur-

rently outstanding problems of growth and morphogenesis. The
study of these phenomena is still at the stage of trying to identify
the underlying component mechanisms. Nevertheless, we have
seen how the well-established laws of growth and allometry can
ultimately be reconciled with molecular findings as they begin
to emerge. This formalism also provides an important new tool
for further theoretical investigation of these important phe-
nomena.
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