
Proc. Natl. Acad. Sci. USA
Vol. 76, No. 12, pp. 6030-6034, December 1979
Applied Mathematical Sciences

Dynamics of technological evolution: Random walk model for the
research enterprise

(dimensionless constants/scaling)

ELLIOTT W. MONTROLL* AND KURT E. SHULERt
*Institute for Fundamental Studies, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627; and tDepartment of
Chemistry, University of California, San Diego, La Jolla, California 92093

Contributed by Elliott W. Montroll, September 27, 1979

ABSTRACT Technological evolution is a consequence of
a sequence of replacements. The development of a new tech-
nology generally follows from model testing of the basic ideas
on a small scale. Traditional technologies such as aerodynamics
and naval architecture involved feasibility experiments on
systems characterized by only one or two dimensionless con-
stants. Technologies of the "future" such as magnetically con-
fined fusion depend upon many coupled dimensionless con-
stants. Research and development is modeled and analyzed in
terms of random walks in appropriate dimensionless constant
space.

The word "research" connotes an activity that does not yield
its sought goal upon one's first attempt to achieve it. Hence that
activity is endowed with a random component. Its proper de-
scription must characterize the stochastic process that generates
the random component. The aim of this paper is to model that
process by a random walk (or flight) in an appropriate space.
This is a fourth report based on considerations of the nature of
technological evolution (1-3). It has been emphasized (2) that
the application of technology to the industrial arts and to our
life style has evolved through a sequence of replacements.
The continuing improvement of any technology eventually

becomes limited by some physical principal (3) so that a new
technology overtakes the old by becoming more cost effective
and permitting a broader range of operating characteristics
(greater speed, broader bandwidth, etc.). The speed of a tra-
ditional displacement ship is limited by the dissipation of
available power into bow wave formation at the expense of
increased thrust in the high-speed regime. The memory ca-
pacity of the old vacuum tube computers was limited by sta-
tistics of tube lifetimes.

It was also observed that feasibility studies for successful
quickly developed old technologies such as aerodynamics and
nuclear fission reactors were expedited through model tests of
systems characterized by only one or two dimensionless con-
stants. Those technologies that always seem to be a technology
of the future, such as magnetically confined fusion, require
many coupled dimensionless constants for their characteriza-
tion.
We (i) review the nature of model testing and the importance

of exhibiting results in terms of dimensionless constants to
provide scaling laws; (ii) emphasize the tyranny of many di-
mensionless constants in the investigation of processes involving
many highly correlated variables: and (iii) model the devel-
opment of a technology as the consequence of a random walk
in the space of the dimensionless constants appropriate to that
technology.
The theories upon which new technologies are based often

involve sets of nonlinear partial differential equations subject
to complicated boundary conditions. With today's state of the
art they generally cannot replace experimental feasibility
studies. Equations serve as a guide to experiment rather than
as a touchstone to conclusions. We show through hydrodynamic
examples how basic nonlinear equations aid in design of ex-
periments and in appreciation of the complexity of a tech-
nology.

USE OF DIMENSIONLESS CONSTANTS IN
DESIGN OF MODELING EXPERIMENTS

Students of Stokes and Rayleigh generally admire their em-
ployment of dimensional analysis to deduce simple explanations
of complex phenomenon. Stokes derived his law for the drag
force on a sphere pulled with a velocity v through a fluid, and
Rayleigh introduced his explanation of the blue of the sky by
dimensional analysis. It was a natural next step from dimen-
sionless constants to engineering model testing. Without
modeling, the design of airplanes, ships, harbors and even
certain electric devices would be impossible.
We review the theoretical basis and the practice of modeling

strategy in terms of the Navier-Stokes equation for the flow
field of an incompressible fluid. Let v = v(r,t) be the velocity
of a fluid element at r at time t of an incompressible fluid of
density p and with kinematic viscosity P. The Navier-Stokes
equation is

.-v/at + v Vv = -V(p/p) + vV2v + F/p, II]
p p(r,t) being the pressure and F the extreme force on the
fluid element. The equation of continuity for an incompressible
fluid is V - v = 0. We specialize the force to be gravitational
with F/p = g.

Scaling theory (4) is based on the transformation of Eq. 1 to
an equivalent equation for dimensionless quantities. The ve-
locity, pressure, and even g are all variables with dimen-
sions-their values depend on the units chosen. To obtain a
dimensionless equivalent of Eq. 1, local velocities and pressures
are measured as multiples of some important basic dimensions
of the object responsible for the flow pattern. Consider the flow
of water around a moving ship. Let
V = average velocity of body being investigated,
L = an important length (say the length of the ship), and
P = average pressure in absence of body.

Then we can define a set of dimensionless quantities u', p', x',
etc. by

v=Vv' x=Lx' pPp'. [2]
If we are concerned with steady flows, bv/ t = 0 in Eq. 1,
and

v/ = i~o/a3x' + . .. =LV [3]
transforms Eq. 1 to
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v'. Vv' = -PV'p' + (1/R)V'2v' + (1/F), with [4]

R = Reynolds number = VL/v, [5]oa]
P = pressure number = P/pV2, and [5b]
F = Froude number = V2/Lg. [5c]

Sommerfeld called the combination VL/v the Reynolds
number to honor Osborne Reynolds' pioneering studies on the
onset of turbulence in flow of fluids through pipes. F = V2/Lg
is named after William Froude, a junior naval architect under
Isambard Brunel and Scott-Russell (of recently revived soliton
fame) in the design of the Great Eastern. That great, under-
powered, unprofitable iron ship (1858), from which the first
successful Atlantic cable was laid, was a wonder of its time.
Unfortunately, since its design required a giant leap from the
state of the art, it was plagued by numerous engineering and
management faults (5) (including poor cost estimation, a
common curse on giant leaps). Froude's experiences with the
Great Eastern motivated him to consider the possibility of es-
timating power requirements for ships from model tests.

In certain flow regimes two out of the three terms on the
right-hand side of Eq. 4 are negligible relative to the third.
Suppose only the 1/F term need be retained. Then the flow
field and engineering design parameters depending upon the
flow field would be a function of only F; small scale model
experiments could yield design data for full-scale engi-
neering.

For a 1000-foot ship operating at 40 feet/sec, with pressures
being measured in units of atmospheric pressure (using the
kinematic coefficient of viscosity of water at 15'C, v = 1.23 X
lo-5 foot2/sec), 1/F = 20, P = 0.69, and R'- = 10-9. Hence,
only the 1/F term need be retained on the right-hand side of
Eq. 4. Then, ship modeling can, to a first approximation, be
based on Froude modeling; that is, modeling with a dimen-
sionless constant that depends on g.
A 10-foot ship model moving 4 feet/sec has the Froude

number of a 1000-foot real ship at 40 feet/sec. Hence, by
plotting the ratio of pounds of resistance per ton of displacement
(a dimensionless quantity) of a 10-foot model towed at 4 feet/
sec in a towing tank as a function of 1/F, one can determine the
power required to overcome the resistance expected by the
full-scale ship.

In aerodynamics the first term on the right-hand side of Eq.
4 is most important. Consider an airplane with a wing of width
10 feet designed to operate at a speed of 800 feet/sec (about 545
miles/hr). Measuring the pressure in atmospheres (and using
the kinematic coefficient of viscosity of air at 15°C, v = 1.59
X 10-4 foot2/sec), 1/F = 5 X 10-4, P = 1.45, and R-1 = 2 X
108.

If, as suggested by these numbers, we need retain only the
first term on the right-hand side of Eq. 4, the resulting equation
is the Bernoulli equation of a nonviscous fluid V[1/2V2 + p(p)]
= 0. Since the pressure difference between the bottom and top
of the wing section of an airplane, as developed by circulation
of air around the wing, determines the "lift" of the wing, it is
not surprising that the pressure term is most important in our
regime of interest. A wind tunnel (4) is the traditional device
for measuring the lift and drag (and their ratio) on a model
airplane in a flow stream. Since the length L does not enter into
the pressure number, the lift-to-drag ratio would be the same
on a small airplane model as on a full-sized object of the same
shape.

TYRANNY OF MANY DIMENSIONLESS
CONSTANTS

We have noted that the design of airplanes and ships, and re-
search on flow of fluids through pipes, are expedited by model
experiments on systems characterized by a single dimensionless
constant.

It is remarkable that within 10 years of the Wright brothers'
first motor-powered flight, Igor Sikorsky (1914) built a suc-
cessful four-engined giant, his Ilya Mourometz, capable of
remaining airborne for 61/2 hr, carrying six passengers.
Twenty-one years after Kitty Hawk, the Imperial Airways flew
Handley-Page airliners on routes from Cairo to distant parts
of Africa and India. The 1928 Handley-Page 42s seated 38
passengers. The interval from Enrico Fermi's Stagg Field ex-
periments on sustained fission (1942) to the first commercial
nuclear power plant was about 15 years. On May 31, 1935,
Robert Goddard fired a rocket vertically to an altitude of more
than 1 mile (1.6 km). Twenty-six years later a Soviet cosmonaut
encircled the earth in a rocket-launched artificial satellite.

Such successes can easily hypnotize one to believe that with
a little money and ingenuity any scientific goal is achievable.
Unfortunately, this is not always true and sometimes, even if
it is true for a particular goal, the time scale may not be fully
appreciated. Consider Project Sherwood (1951), the initiation
of the U.S. program on magnetically confined fusion. Since l/65o
of the hydrogen in sea water is the deuterium isotope, it was
believed by optimists that with the success of the program our
energy problems would be solved. Unfortunately, 28 years and
hundreds of millions of dollars later, energy by magnetically
confined fusion still remains a technology of the future. What
has happened? Why has this branch of physics failed to live up
to expectations?
We contend that the magnetically confined fusion program

has fallen victim to the tyranny of many dimensionless con-
stants. Old great engineering successes involved processes that
could, to a first approximation, be characterized by a small
number of dimensionless constants. Hence only a small number
of model experiments sufficed to establish feasibility and to
estimate the cost and difficulties to be surmounted. Even the
space program was compartmentalized into numerous inde-
pendent subprojects, each being analyzed in terms of a small
number of dimensionless constants. The combined results of
many modeling experiments then formed a basis for full-scale
engineering designs.
A complication of magnetically confined fusion seems to be

that at least eight hydrodynamic, electromagnetic, and nuclear
dimensionless constants are intimately connected in the process
of transforming a low-density low-temperature plasma to a
higher-density very-high-temperature plasma. Since, as we shall
now indicate, the cost involved in, or the time required for, the
understanding of the nature of a process characterized by N
interacting dimensionless constants can be expected to grow
exponentially with N, we should not be surprised with the slow
progress in the field of magnetically confined fusion.

Let N be the number of dimensionless constants required to
characterize a process. Then an experimental program must
sample n I X n2 x ... X nN points in the N-dimensional space
of characterization. The cost of the program P should be pro-
portional to the number of sampling tests; i.e.,

P=kni Xn2X... XfnN =kexpN{- F,lognj}. [6]

Hence, if A is the average value of the logarithm of the number
of observations for each dimensionless constant, P = k exp NX
as was suggested.
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The genius of individual inventors sometimes allows them
to cut costs and time by going directly to the correct regime of
the dimensionless constant of interest without conducting model
tests over a broad range. A probabilistic argument similar to that
given above indicates (1) that the probability of an individual's
being identified as a genius by going "directly to the point" in
the development of a technology that involves N connected
dimensionless constants decreases exponentially with N.

Consider now the search problem of starting at a point in the
space of the dimensionless constants relevant for the develop-
ment of a new process and proceeding to the location of the
operative regime of the system of interest. For the construction
of an abstract search model we divide the space of dimensionless
constants into cells, each cell representing an experiment or

observation. After each observation one moves to a neighboring
cell and makes a new observation. This is continued until a cell
is reached that yields the observation that indicates that a system
will be operative with the set of dimensionless constants ap-

propriate to that cell. In our first primative model we assume

that no special forces exist to give a special direction to the
search. A next model would include the effectiveness of
clues.
To develop some intuition about our search process we list

some theorems concerning random walks on lattices and indi-
cate their significance for our enterprise. Each cell corresponds
to a lattice point in the following random walk results.

RANDOM WALKS ON SPACE LATTICES
Consider a simple hypercubic d-dimensional space lattice with
Nd lattice points, with a typical lattice point as (S1,S2, . . . Sd).
Each sj ranges through 1,2,. N. We choose periodic
boundary conditions

(si + n1N, S2 + n2N, ... ,Sd + ndN) (S1,S2, Sd), [7]
each n1 being an integer positive, negative, or zero. With d =

1 our lattice would form a circle, with d = 2 a torus, etc. We
define random walks on these lattices to be unbiased and pos-
tulate that a walker at any given lattice point may step with
equal likelihood to any nearest neighbor point with probability
p = (2d)-1. Single steps to more distant points are prohibited.
All theorems quoted here are based on this model.
An ergodic theorem exists for these walks (6). The mean

number of steps required for a walker to return to his starting
point is (n(0)) = Nd. The number to reach a point displaced
by a vector s 5< 0 from the origin is

(n(s)) = s(N-s) for d = 1 and s = 1, 2,. N-1 [8a]
(n(s)) N2(2/r)logIs I ford = 2 [8b]

(n(s)) -' N3{P3(0,1)-2 1+ O( Is -2)} ford = 3 [8c]

with

P3(0,1) = 1.51638. .. [9]

An interpretation of P(0,1) will be given later. The d = 2 and
d = 3 results are asymptotic for Is large but yet small com-

pared with N. Generally for all d, (n(s)) = O(Nd). Nd is pre-
cisely the total number of lattice points.
The above results corroborate the observation that an expert

is one who has made all the possible mistakes in his field. In his
search for the truth he has visited all lattice points in his relevant
space.

Eqs. 8a-9 represent situations with information about the
starting and end points of a walk. In the process of technological

discovery, the destination is sometimes unknown. Then we must
search for a target of unknown position. Our lattice being ho-
mogeneous and unbiased, the number of steps required to locate
our target is equivalent to that of reaching a known target from
an undefined starting point. The appropriate results for this:
Let a lattice Ld of Nd lattice points be composed of one special
trapping point and Nd - I, ordinary points and suppose that
a walker starts with equal likelihood at any regular point. How
many steps (n) on the average are required for the walker to
reach the trapping point for the first time? For largeN one finds
(7)

N(N+ 1)/6
2ir-N2 log N + 0.195056 N2

(n) =
-~

-0.1170+0(N-2)
IP3(0,1)N3 + O(N2)

d = 1 [lOa]

d = 2 [lOb]
d = 3 [10c]

For d > 3, (n) = O(Nd). These results are also discussed in
ref. 8.

Clearly, as N o the mean number of steps required to

reach any new point (or to return to the starting point) becomes
infinite. A deeper insight is achieved by examining theorems
concerning walks on infinite lattices. A walker who has taken
many steps in a random walk of long duration but yet a number
of steps small compared with the total number of lattice points
has not yet "felt" the finiteness of the lattice and might as well
have been walking on an infinite lattice. The delicate role of
dimensionality becomes important in walks on infinite lat-
tices.

Polya (9) noticed that on infinite ld and 2d lattices a random
walker executing our subject type of walk is certain to even-
tually return to his starting point. On lattices of dimension d 2
3 an escape probability exists. On a d = 3 simple cubic lattice
the probability of eventual return to the starting point is (10)
[with P3(0,1) defined by Eq. 9],

F3(0,1) = 1 - [P3(0,1)]- = 0.340537330 ... [Ila]
with escape probability being 0.659462670. P3(0,1) is then the
reciprocal of the escape probability. For d >> 3 the probability
of return is (10)

Fd(0,1) 2+J1 + +(2d)+

12 2d (2d)2 (2d)3 (2d)4
-1 I 23_ 11 689
2d (2d)2 (2d)3 (2d)4

When d = 3 this Pade approximant type formula yields F3(0,1)
= 0.3419, deviating from Ila by less than 0.5%. Return
probabilities, Fd, are given in Table 1.
When d = 3, the probability of eventually reaching a pre-

assigned point displaced by a vector s from the starting point
decreases as Is -o as

F3(s,1)- 0.31950 ... IsI-1withS2=S= + S3 + S3. [12]
For several moderate s vectors we exhibit return probabilities
in Table 2. Similar results (6) can be obtained for d > 3.

Table 1. Return probabilities, Fd, to starting point as a function
of dimension, d

d
3 4 5 6 7 8 9 10

Fd 0.341 0.189 0.134 0.104 0.086 0.073 0.064 0.056

Proc. Natl. Acad. Sci. USA 76 (1979)



Applied Mathematical Sciences: Montroll and Shuler

Table 2. Probability, F(l,s), that a walker who starts from the
origin ever reaches a point s = (S1,S2,S3) on a simple cubic lattice

(S1,S2,S3) F(1,s) (S1,82,5S3) F1s

001 0.3405 023 0.0873
002 0.1697 l11 0.1724
003 0.1090 112 0.1265
011 0.2184 113 0.0951
012 0.1422 122 0.1035
013 0.1010 123 0.0837
022 0.1110 223 0.0896

In this symmetrical walk F(l;s1,s2,s3) = F(l;s2,s1,s3), etc.

It is evident from Tables 1 and 2 that for d > 3, a considerable
likelihood exists for a walker starting from the origin never to
reach a preassigned point only a few lattice spacings away (or
even returning to the origin itself). Let us restrict ourselves to
the class of successful walks connecting the origin with a
prespecified point s.

It has been shown (11) on a five-or-more-dimensional hy-
percubic lattice that the average number of steps required to
successfully complete the path from 0 to s is

(n(s)) = [d/(d - 4)]1s12 * 1S12 asd -a co. [13]

The Is 12 behavior is characteristic of d - 1 walks as is indi-
cated by letting N = as in Eq. Sa. Then (n(s)) = (a - 1)Is 12,
which is equivalent to Eq. 13 if a = 2(d - 2)/(d - 4). When d
is very large a - 2. Hence the mean number of steps required
by a walker who certainly reaches s (starting from 0) is about
the same as that required to reach a point halfway around a ld
ring of 2s lattice points. For the lower limiting value of d = 5,
a = 6. An alternative interpretation of Eq. 13 is (11) that the
number of steps required to go from 0 to 5 for a walker certain
to arrive at s is the same as the number required in a unidirec-
tional walk to the right along a line terminated on the left by
a reflecting barrier.

Then, if a walker who starts from 0 on a d > 5 dimensional
lattice ventures but slightly from the direct line path connecting
o with s his chance of becoming lost and never reaching s be-
comes close to certainty. Similar remarks (11) with certain ca-
veats are also valid for d = 3 and 4.
A vignette from life in harsh climes such as that of Greenland

in the winter might convince the reader that qualitative features
of the above observation are evident even when d is as small as
2. When small villages such as Ivigtut were first settled in
Greenland, houses were built several hundred or more feet
apart. During blizzards accompanied by strong wind gusts,
visibility was reduced to a few feet. Villagers innocently vent-
uring from home on such occasions sometimes became lost,
executing a 2d random walk without finding another house or
even their own. They were sometimes found frozen to death
within 50 feet of a dwelling or store. After several of these
tragedies it became customary to connect buildings by guide
ropes in the autumn to prepare for winter storms. As villages
grew, more sophisticated networks evolved analogous to the
early telephone networks, with central "stations" playing a role.
In the spirit of our random walk theorem, in the more primitive
period, a walker on stormy days had a good chance of becoming
lost by venturing slightly from the direct path to his destination.
In an analogous situation, projects may die from lack of funds
if they stray too far from the direct path to success.

It has been said that a common difference between successful
and unsuccessful scientists is that successful ones abandon foolish
ideas quickly and get on to something new. Less successful ones
continue to nurse and hang on to them too long without getting

anywhere. This remark is in the spirit of our random walk
theorem. Go directly to the target along a linear path, allowing
fbt some fluctuations!,Otherwise, it is doubtful that you will ever
get there. Unfortunately this advice is difficult to follow, be-
cause the target location is frequently unknown.

DISCUSSION
The results of the last section make one wonder how any com-
plex system ever becomes understood and how any complicated
device can be developed. Today two classes of organizations,
the invisible college and-the industrial (and government) re-
search laboratories, nurture technological innovation. A typical
invisible college is a collection of scientists, generally scattered,
who work on similar problems. They attend conferences to-
gether, read each others reports, visit and generally stimulate
each other in their investigations of the topics that fascinate
them. A region in some space of dimensionless constants is their
realm of inquiry.

Exploration of a region occasionally exposes a "bright spot"
of special significance. Then many researchers concentrate
upon the neighborhood of that spot. The sphere of under-
standing around it expands until some natural boundary in the
dimensionless constant space impedes progress, or perhaps until
someone discovers a new bright spot that distracts their atten-
tion. Sometimes new devices or-deeper understanding of nature
are consequences of the expansion of expertise.
A successful industrial laboratory operates similarly, except

that most of its researchers are housed together to provide for
easier personal cooperation and management. The manage-
ment may fine tune its program to a higher degree than that
attempted by the foundation and government sponsorers of the
invisible colleges. The laboratory directorate attempts to choose
the dimensionless constant space of inquiry so that existent
bright spots yield a large probability of contributing to the
improvement of old products and leading to the development
of new products profitable to the supporting firm. A manage-
ment that insists upon the direct achievement of a preconceived
complex goal may suffer from the tyranny of many dimen-
sionless constants and miss opportunities imbedded in regions
near bright spots. One that allows the staff to indefinitely ad-
mire the bright spots may never develop a product. It is the
subtle interplay between action and permissiveness that is a
characteristic of progressive management.

In device and production technology cost is of course one of
the first dependent variables to be considered. Technological
improvement is generally associated with the discovery of a
path, in the neighborhood of some bright spot in an appropriate
space, along which either cost decreases or quality increases.
Technological revolutions are often the consequence of finding
new bright spots and exploiting them. In maximizing some
essential attribute of a device or process one must be cautious
of great peaks in the neighborhood of an instability such that
a slight displacement from optimum becomes disastrous.
Broader peaks are preferred by the more prudent.

It is sometimes possible in the early phases of the develop-
ment of a technology to avoid the tyranny of many dimen-
sionless constants through the design of a cascade with each of
its stages depending upon only a small number of dimensionless
constants. The stages may then be perfected independently. For
example, when Kammerlingh Onnes raced James Dewar to be
the first to liquify helium he designed the best nitrogen liquifier,
the best hydrogen liquifier, and the best final stage equipment
that he could so that the cascade performed perfectly on its first
trial. As a technology advances, cascading may become less
necessary. Today's integrated circuits are preferred over net-
works of individual components.
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Social dynamics and environmental processes might also
depend on a large number of dimensionless constants. The
understanding of these processes is not exempt from the tyranny
of many dimensionless constants, nor is an attempt to make
government regulations concerning them exempt. It sometimes
seems even more difficult to make a regulation work in the
manner expected than to make a device perform as re-
quired.

This research was partly supported by the Advanced Research
Projects Agency of the Department of Defense under contracts with
the University of Michigan and the La Jolla Institute, by the National
Science Foundation under Grant CHE 78-21460, and by a grant from
Charles and Renee Taubman.

1. Montroll, E. W. (1979) in Proceedings of EPA Meeting on
Mathematical Modeling, ed. Fisher, J., in press.

Proc. Nati. Acad. Sci. USA 76 (1979)

2. Montroll, E. W. (1978) Proc. Natl. Acad. Sci. USA 75, 4633-
4637.

3. Montroll, E. W. (1979) in Proceedings of Meeting on Systems
Far from Equilibrium, ed. Shieve, W. (Univ. of Texas Press,
Austin, TX), in press.

4. Prandtl, L. & Tietjens, 0. G. (1934) Applied Hydro- and Aero-
mechanics (McGraw-Hill, Englewood Cliffs, NJ) (Dover, reprint
1957).

5. Dugan, J. (1953) The Great Iron Ship (Harper, New York).
6. Montroll, E. W. (1964) Proc. Symp. Appl. Math. 16, 193-220.
7. Montroll, E. W. (1969) J. Math. Phys. 10, 753-765.
8. Shuler, K., Silver, H. & Lindenberg, K. (1976) J. Stat. Phys.

393-397.
9. Polya, G. (1921) Math. Ann. 84, 149-160.

10. Montroll, E. W. (1956) J. Soc. Indust. Appl. Math. 4, 241-
260.

11. Lindenberg, K., Seshadri, V., Shuler, K. & Weiss, G., J. Stat. Phys.,
in press.


