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This Supplementary Information contains two sections. In the Supplementary Methods section,

we provide a more detailed description of the Ising model and a worked example on how to compute

probabilities of certain states with this model. Also, the theoretical background of the estimation

procedure is described more elaborately. In the Supplementary Results section, we describe the

results of an additional analysis on the validity of our proposed method eLasso.

Supplementary Methods

In this section, we provide an introduction to the Ising model on which eLasso is based. The original

model was based on magnetic behaviour of metals1. In the easiest case, such models operate on

the behaviour of small dipoles or spins of a ferromagnet, which are arranged as in Supplementary

Figure S1. This two-dimensional representation is often called a grid or lattice. An individual

dipole can be either in a ”spin up” (+ 1) or a ”spin down” position (- 1)2; in an alternative variant,

which we will use here, these variables are scored 0 or 1. Objects, or variables, in the Ising model

can interact with each other but interactions are subject to an important restriction: they can

only influence direct neighbours. That is, taking neurons as an example, a firing neuron can only
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Supplementary Figure S1: Graphical representation of the Ising model.

transmit information to a connected neuron.

Although the Ising model was used to explain ferromagnetism, it generalises to all kinds of

objects in a network that can be in two states: a voter who can be ”pro” or ”con, a neuron that

can ”fire” or ”not fire”, or a person that can be ”infected” or ”not infected” by some virus2.

When applying this model to psychopathology, variables can be symptoms of a disorder, which can

be either ”present” or ”absent”. Now, suppose we have p variables collected in the set of nodes

V . Then there are 2p possible configurations of the system (in a basic application, these would

for instance be all possible item response patterns). Suppose we have three symptoms of major

depressive disorder (MDD) according to the DSM-IV-TR: ”insomnia”, ”fatigue”, and ”significant

unintentional weight loss or gain”3. Then there are 23 = 8 possible configurations: (0, 0, 0), (1,

0, 0), (1, 1, 0), and so on. A system is inclined to move to or persist in the most favourable

configuration possible. For example, if two nodes (say, anxiety and depressed mood) are positively

connected, then a configuration in which one is present but the other is not (e.g., an individual

who is anxious but not sad) is less consistent with the model structure than one in which both are

present or both are absent. Thus, the configuration that is most consistent with the model has the

highest probability of occurring. In the Ising model, consistency of a configuration depends on the

Hamiltonian function H(x):

H(x) = �
X

j2V
⌧
j

x
j

�
X

(j,k)2E

�
jk

x
j

x
k

, (1)

where V is the set of nodes and E is the set of edges, ⌧
j

is the threshold of symptom x
j

, �
jk

is
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Supplementary Figure S2: A hypothetical example network of three symptoms: x1
(insomnia or sleeping too much), x2 (fatigue and, or loss of energy), and x3 (significant
unintentional weight loss or gain). �12 and �23 are the connection strengths (interaction
parameters). Since there is no connection between x1 and x3, �13 = 0.

the interaction strength between symptoms j and k, and x
j

(and x
k

) can assume one of two values

{0, 1}2,4. The threshold of a symptom, ⌧
j

, indicates the autonomous disposition of the symptom

to take the value one, i.e., it describes the probability of that value in the absence of any influences

of neighbouring symptoms. Consequently, when this threshold is positive, the symptom tends to

be present. This state (with value 1) is, in this case, preferred over the absent state (with value 0),

since it lowers the energy. On the other hand, a negative threshold indicates that the symptom,

taken by itself, has a disposition to be absent. The interaction strength between two symptoms,

�
jk

, indicates how symptoms influence each other: when �
jk

> 0, symptoms will prefer to be in

the same state, whereas �
jk

< 0 indicates that symptoms will prefer to be in di↵erent states. The

sum of the interactions runs over all existing connections (edges) in the set E. We define ⇥ to be

a matrix (p by p), containing ⌧
j

on the diagonal and �
jk

on the o↵-diagonal.

As soon as we know the structure and parameters of the network, it is easy to calculate the

energy of a configuration. Suppose our three symptoms have a structure and parameters as de-

picted in Supplementary Figure S2. For each possible configuration, the Hamiltonian is given in

Supplementary Table S1.

As stated before, the lower the value of the Hamiltonian function for a certain configuration,
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Supplementary Table S1: Example of how to calculate the Hamiltionian of all
possible configurations of a network with three nodes.

config. insomnia fatigue weight loss probability Hamiltonian

1 1 1 present present present P(1 1 1) �(⌧1+⌧2+⌧3)�(�12+�23+0)
1 1 0 present present absent P(1 1 0) �(⌧1 + ⌧2 + 0)� (�12 + 0 + 0)
1 0 1 present absent present P(1 0 1) �(⌧1 + 0 + ⌧3)� (0 + 0 + 0)
1 0 0 present absent absent P(1 0 0) �(⌧1 + 0 + 0)� (0 + 0 + 0)
0 1 1 absent present present P(0 1 1) �(0 + ⌧2 + ⌧3)� (0 + �23 + 0)
0 1 0 absent present absent P(0 1 0) �(0 + ⌧2 + 0)� (0 + 0 + 0)
1 0 1 present absent present P(1 0 1) �(⌧1 + 0 + ⌧3)� (0 + 0 + 0)
0 0 0 absent absent absent P(0 0 0) �(0 + 0 + 0)� (0 + 0 + 0)

the higher the probability of that configuration. The probability of configuration x is given by5,6:

P⇥(x) =
1

Z(⇥)
exp[�H(x)]

=
1

Z(⇥)
exp

"
X

j2V
⌧
j

x
j

+
X

(j,k)2E

�
jk

x
j

x
k

#
, (2)

where Z(⇥) is the normalising constant (or partition function) that guarantees that the distribution

sums to one:

Z(⇥) :=
X

x2{0,1}p
exp

"
X

j2V
⌧
j

x
j

+
X

(j,k)2E

�
jk

x
j

x
k

#
. (3)

This distribution sums to one when Z(⇥) sums over all possible configurations. For a small number

of variables, as in our example, computing the normalising constant is feasible. When the number of

variables increases, however, the state space (set of possible configurations) increases exponentially,

which makes the normalising constant intractable.

Thus, computing the full likelihood function for the model is computationally prohibitive. An

alternative is to use the so-called pseudo-likelihood, which only uses the (conditional) probability

of X
j

given all other nodes X\j . For the expression of this conditional probability, the normalising

constant reduces to the sum over all possible configurations of one single node (X
j

), which is just

{0, 1}. In this case, the normalising constant becomes

Z(⇥) := 1 + exp
⇥
⌧
j

+
X

k2V\j

�
jk

x
k

⇤
, (4)
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where V is the set of nodes {1, 2, .., p} and V\j is the set of nodes, excluding node j. Therefore,

the normalising constant for the conditional probability of X
j

given all other nodes X\j is in fact

tractable, even if the normalising constant for the full model is not. From combining equation 2

and 4, it follows that the conditional probability of X
j

given all other nodes X\j is given by

P⇥(xj | x\j) =
exp

⇥
⌧
j

x
j

+ x
j

P
k2V\j

�
jk

x
k

⇤

1 + exp
⇥
⌧
j

+
P

k2V\j

�
jk

x
k

⇤ . (5)

With our network of three variables and the parameters in Supplementary Figure S2, we can

calculate the probabilities of each configuration. As an example, we will compare two probabilities:

the probability of x2 = 1 given that (1) x1 = 1 and x3 = 0 and that (2) x1 = 0 and x3 = 1. In the

case of P⇥(x2 = 1 | x1 = 1, x3 = 0), the Hamiltonian can be computed by filling in the parameters

as given in Supplementary Figure S2:

H(x) = �(⌧1 + ⌧2)� (�12) = �(.3 + .7)� .54 = �1.54 (6)

Now, the probability can be computed using Formula 5:

P⇥(x2 = 1 | x1 = 1, x3 = 0) =
e�1.54

1 + e�1.54
= .82 (7)

Doing the same for the second case results in probability P⇥(x2 = 1 | x1 = 0, x3 = 1) = .78.

Apparently, in this model, the probability that a person will be fatigued is higher for a person who

has insomnia but no weight loss, than for someone who su↵ers from weight loss, but does not have

insomnia.

Since the Ising model assumes that only pairwise interactions exist, the conditional probability

of x
j

given all other variables is therefore reduced to the conditional probability of x
j

given the

neighbours of x
j

:

P⇥(xj | x\j) = P⇥(xj | x
ne(j)) (8)

where ne(j) is the set of neighbours of node x
j

. We can now relate the Ising model to undirected

graphs, since any set of variables for which conditional probabilities can be written as in (8) satisfy
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the Markov property2. A set of random variables with the Markov property can be described by

an undirected graph. Such graphs are also known as Markov random fields, Markov networks, or

undirected graphical models7. In daily practice, the graph structure of psychological constructs is

unknown, as opposed to the spins in a ferromagnet that are arranged as in Supplementary Figure

S1. Therefore, the estimation of the unknown graph structure is of central importance.

By viewing X
j

as the response variable and all other variables X\j as the predictors, we may

fit a logistic regression function to investigate which nodes are part of the neighbourhood of the

response variable. The intercept ⌧
j

of the regression equation is the threshold of the variable, while

the slope �
jk

of the regression equation is the connection strength between the relevant nodes. In

order to perform the logistic regression, we need multiple independent observations of the variables.

To establish which of the variables in the data are neighbours of a given variable, and which

are not, we used `1�regularised logistic regression6,8. This technique is commonly called the

lasso (least absolute shrinkage and selection operator) and optimises neighbourhood selection in a

computationally e�cient way, by optimising the convex function

⇥̂⇢

j

= arg min⇥j
{�x

ij

· (⌧
j

+
X

k2V\j

�
jk

x
ik

) + log(1 + exp{⌧
j

+
X

k2V\j

x
ik

�
jk

}) + ⇢
X

k2V\j

|�
jk

|}, (9)

in which i represents the independent observations {1, 2, .., n}, ⇥̂⇢

j

contains all �
jk

and ⌧
j

param-

eters, and ⇢ is the penalty parameter. The final term with ⇢ ensures shrinkage of the regression

coe�cients6,9. This optimisation procedure is applied to each variable in turn with all other vari-

ables as predictors. To this end, the R package glmnet can be used10. The glmnet package uses

a range of maximal 100 penalty parameter values. The result is a list of 100 possible neighbour-

hood sets, some of which may be the same. To choose the best set of neighbours, we used the

EBIC11 (extended Bayesian Information Criterion). The EBIC has a good trade-o↵ between pos-

itive selection rates (proportions of true selected edges) and false discovery rates (proportions of

false positives among the selected edges) in selecting edges in the Ising model12. The EBIC is the

ordinary BIC with an additional term that penalises more complexity (more connections) and more

variables. The EBIC is preferable in this situation, because the ordinary BIC is too liberal for high
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dimensional data11. The EBIC is represented as

BIC
�

(j) = �2`(⇥̂
J

) + |J | · log(n) + 2�|J | · log(p� 1), (10)

in which `(⇥̂
j

) is the log likelihood (see below), |J | is the number of neighbours selected by logistic

regression at a certain penalty parameter ⇢, n is the number of observations, p�1 is the number of

covariates (predictors), and � is a hyperparameter, determining the strength of prior information on

the size of the model space13. From equation (5), it follows that the log likelihood of the conditional

probability of X
j

given its neighbours X
ne(j) over all observations is

`(⇥̂
j

) =
nX

i=1

0

@⌧
j

x
ij

+
X

k2V\j

�
jk

x
ij

x
ik

� log(1 + exp{⌧
j

+
X

k2V\j

x
ik

�
jk

})

1

A . (11)

The EBIC has been shown to be consistent for model selection and to performs best with hyper-

parameter � = 0.25 for the Ising model13. The model with the set of neighbours J that has the

lowest EBIC is selected.

At this stage, we have the regression coe�cients of the best set of neighbours for every variable;

i.e., we have both �
jk

and �
kj

and have to decide whether there is an edge between nodes j and

k or not. Two rules can be applied to make the decision: the AND rule, where an edge is present

if both estimates are nonzero, and the OR rule, where an edge is present if at least one of the

estimates is nonzero6,8.

Although we do have the final edge set by applying one of the rules, note that for any two

variables j and k, we get two results: the result of the regression of j on k (�
jk

), and the result of

the regression of k on j (�
kj

). To obtain an undirected graph, the weight of the edge between nodes

j and k, !
jk

, is defined as the mean of both regression coe�cients �
jk

and �
kj

. This methodology is

incorporated in the R package IsingFit (http://cran.r-project.org/web/packages/IsingFit/

IsingFit.pdf).
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Supplementary Results

Another way to assess e↵ectivity of the method is to inspect the F1 score, which takes both precision

and recall into account14. Precision expresses the proportion of correctly estimated connections with

respect to all estimated connections and is defined as PRE = TP/(TP + FP). Recall corresponds to

the proportion of correctly estimated connections with respect to all connections that should have

been estimated and is defined as REC = TP/(TP + FN), which is in fact the same as sensitivity.

The F1 score is then defined as F1 = 2 · PRE · REC/(PRE + REC).

F1 scores increase with more observations but to a di↵erent extent for di↵erent conditions

(Supplementary Table S2). For almost all conditions with more than 100 observations, F1 scores

are moderate to high (M = .713, sd = .143)). The only exception results when the largest random

and scale-free networks (100 nodes) are coupled with the highest level of connectivity, as we also

have seen in the results of sensitivity and specificity in the main text. In these cases, the F1 score

is low (.271) and moderate (.516), respectively.

More detailed information about eLasso’s performance is given by the two components of the

F1 score: precision and recall. Since recall is the same as sensitivity, we only discuss precision here.

Overall, precision is high across all conditions (M = .920, sd = .122) with lower precision scores

for the largest and most dense random networks (see Supplementary Table S3).

In some cases it might be desirable to have a higher recall at the expense of precision. In eLasso,

recall can generally be increased in two ways. First, eLasso identifies the set of neighbours for

each node by computing the EBIC. EBIC penalises solutions that involve more variables and more

neighbours. This means that if the number of variables is high, EBIC tends to favour solutions that

assign fewer neighbours to any given node. In this procedure, a hyperparameter called � determines

the strength of the extra penalty on the number of neighbours13. In our main simulation study,

we used � = .25. When � = 0, no extra penalty is given for the number of neighbours, which

results in a greater number of estimated connections. Second, we applied the so-called AND-rule to

determine the final edge set. The AND-rule requires both regression coe�cients �
jk

and �
kj

(from

the `1-regularised logistic regression of X
j

on X
k

and of X
k

on X
j

) to be nonzero. Alternatively,

the OR-rule can be applied. The OR-rule requires only one of �
jk

and �
kj

to be nonzero, which

also results in more estimated connections.

8



Applying the OR-rule and � = 0, indeed results in a loss of precision, but is still reasonable

across all conditions (M = .735, sd = .131; Supplementary Table S3). This indicates that, in a

liberal setting, the estimated network contains more connections that are not present in the true

network than in the more conservative setting.

To conclude, inspecting the F1 scores (and its component precision), confirm the results for

specificity. eLasso adequately recovers the true network structure in almost all simulated conditions.

Exceptions to this rule are larger and/or more dense networks.
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