1	Supporting Online Materials for
2 3 4	Molecular Network Analysis of Endometriosis Reveals a Novel Role for c-Jun Regulated Macrophage Activation
5 6 7 8	Michael T. Beste, Nicole Pfäffle-Doyle, Emily A. Prentice, Douglas A. Lauffenburger, Keith B. Isaacson,* and Linda G. Griffith*
9 10 11 12	*To whom correspondence should be addressed. E-mail: <u>kisaacson@partners.org</u> (K.B.I.) griff@mit.edu (L.G.G.)
13 14 15	Materials and Methods
16 17	Figure S1. Sample size estimation and power calculations
18	Figure S2. Multiplex immunoassay performance
19	Figure S3. Non-negative matrix factorization of randomized and reduced data sets
20	Figure S4. Peritoneal aspirate characteristics across molecular subpopulations
21	Figure S5. Isolation and relative cytokine secretion of adherent pentoneal macrophages.
22	Figure S0. Differential cytokine secretion by periorieal macrophages
23 24	Figure S8 Inferred co-expression of ASRM III/IV cytokines
25	Table S1. Pair-wise Wilcoxon rank-sum tests – Treatment Status
26	Table S2. Pair-wise Wilcoxon rank-sum tests – ASRM Staging
27	Table S3. Pair-wise Wilcoxon rank-sum tests – Cycle Phase
28	Table S4. Pair-wise Wilcoxon rank-sum tests – Recurrence Status
29	Table S5. Pair-wise Wilcoxon rank-sum tests – Lesion Distribution
30	Table S6. Pair-wise Wilcoxon rank-sum tests – Primary Indication
31	Table S7. Reported associations between peritoneal cytokines, chemokines, growth
32	factors and pelvic endometriosis.
33	Table S8. Over-represented transcriptional binding sites among macrophage secreted
34	Cytokines
33 26	Table S9. Luminex Targets and Assay Performance Unaracteristics
30 37	Table S10. Leukocyte Sub-populations Among Pentoneal Aspirates
38	

38 Supplemental Materials and Methods

39

40 Sample Size Calculations

41

42 Sample size estimates were determined using previously reported effect sizes from case-control studies investigating peritoneal fluid cytokine associations with endometriosis. Twenty 43 44 publications in which parametric statistical findings were reported indicated a broad range of effect sizes achieving significance (P<0.05). Shown in Fig. S1, published effect sizes - reported 45 46 as Standardized Mean Differences (SMD) following log-normalization - ranged between 0.54-47 4.32 with a median of 0.83. Statistical power for two-tailed Mann-Whitney U-tests tests of association between cytokine concentrations and clinical variables was calculated using 48 49 G*Power3. Maintaining a 2:1 case:control allocation ratio, approximately 60 samples are 50 required to obtain 0.8 power for moderate effect sizes corresponding to SMD = 0.8.

51 52

55

56 57

53 Gene Set Enrichment Analysis54

Gene set enrichment analysis was performed as originally described (Subramanian 2005) using gene profiles derived from the Immune Response in silico (IRIS) expression compendia and Human Immune Cell Transcriptome (GEO Accession GSE22886 and GSE3982, respectively) (Abbas 2005, Jeffrey 2006).

58 59

For all analyses, 22,283 U133A probe sets were first mapped to 14,339 unique genes and expressed sequence tags by taking the maximum intensity value across all probes. Expression values for all genes were then median-centered across all profiles in the compendia, and enrichment scores for each profile calculated using a weighting exponent of one. Finally, empirical *P* values for each enrichment score were determined by generating null distributions of scores from 1000 random cytokine signatures of equivalent size selected from the 47 detected cytokines or 79 corresponding receptors.

67

68 69

69 *Pair-wise Enrichment and Reconstruction of Hierarchical Immune Cell Networks* 70

To quantify the degree to which a set of differentially regulated cytokines contribute to specific routes of intercellular communication, we introduce a pair-wise enrichment statistic that captures the coordinate expression of signature cytokines by secreting cell populations and their cognate receptors by responding cell populations. Specifically, we define the pair-wise enrichment score, ES_{*ij*} between secreting population *i* and responding population *j* as a two-dimensional generalization of the Kolmogorov-Smirnov statistic (Ni 2012):

- 77 78
- 79

 $ES_{ij} = max |F(x_i, y_j) - G(x_0, y_0)|$

where $F(x_{i}, y_{j})$ is the two-dimensional empirical cumulative distribution function (ECDF) for signature cytokine and receptor expression levels, x_{j} and y_{j} , respectively, and $G(x_{0}, y_{0})$ is the reference ECDF for all extracellular gene products and their receptors across all lineages. The reference distribution may be constructed explicitly or approximated; here we use the median cytokine and receptor expression levels of the forty-seven assayed proteins across all cell lineages to approximate $G(x_{0}, y_{0})$.

86

For *n* distinct cell lineages, the 2D-KS enrichment score ES_{ij} is calculated over all n^2 possible pairwise combinations of secreting and responding populations. Null distributions of ES_{ij} for each n^2 interactions are similarly constructed from randomly generated cytokine/receptor signatures to obtain the corresponding significance levels. Finally, we rearrange the edgedirected network of significant (*P*<0.05) interactions according to decreasing out-degree to evaluate the hierarchy of cell-cell interactions.

93

Figure S1. Sample size estimation and power calculations. (a) Published associations between peritoneal fluid cytokines and endometriosis were evaluated to estimate the range of anticipated effect sizes. Standardized mean differences \pm 95% confidence intervals are shown to the right (Range = 0.54-4.32; Median = 0.83). (b) Power curves for two-tailed Mann-Whitney U-tests determined at the α =0.05 significance level for the indicated effect sizes and total sample size, assuming a 2:1 case:control allocation.

101 Figure S2. Multiplex immunoassay performance

Prior to analysis, raw fluorescent intensities were evaluated for relative variation above background levels (a) and total sample variation above instrument resolution (b). In (a), bars represent median ± interquartile range. A majority of concentrations for three peritoneal analytes

105 (IL-1 α , TNF β , and IL-17) fall below the lower detection limits for the immunoassay.

108 Figure S3. Non-negative matrix factorization of randomized and reduced data sets

(a) Cophenetic correlation of 1000 rank *k* factorizations in the observed (red) and permuted
 (shaded) data sets. Error bars indicate 95% confidence intervals. (b) Optimal factorization into
 two subsets is conserved across reduced data sets comprising markers exhibiting maximal
 variation.

Figure S4. Peritoneal aspirate characteristics across molecular subpopulations

- 115 Patient subpopulations defined by low (C1) and elevated (C2) peritoneal fluid cytokine
- 116 concentrations show markedly reduced median aspirate volumes (a), but equivalent total protein
- 117 and leukocyte levels (b and c).
- 118

Figure S5. Isolation and relative cytokine secretion of adherent peritoneal macrophages.

120 (A) Recovery of adherent CD68+ macrophages as a function of static incubation period with 121 tissue culture treated polystyrene plates. (B) After two hours of incubation, macrophage 122 adherence is sensitive to the presence of divalent cations, but not substrate deposition of serum 123 components among both control and endometriosis samples. P values indicate significance by 124 two-way ANOVA. (C) Cytokine secretion among adherent and non-adherent peritoneal 125 leukocytes (relative to unisolated, sample-matched controls). For all panels, data are mean \pm 126 s.e.m. of three donor samples. а

Cytokine	Rank-sum <i>P</i> -value	Fold Change
IL-1β	0.0047	62.5
IL-1ra	0.0086	11.28
IL-6	0.0002	15.1
IL-8	0.0012	2.71
IL-10	0.0002	14.13
IL-12(p70)	0.0312	2.85
G-CSF	0.0009	3.62
IFN-γ	0.0016	3.54
MCP-1	0.0281	37.7
MIP-1α	0.0003	8.09
MIP-1β	0.0002	4.73
RANTES	0.0002	19.2
TNF-α	0.0003	3.90

b

- 128 Figure S6. Differential cytokine secretion by peritoneal macrophages
- 129 (a) Thirteen of fifty cytokines assayed in media conditioned by isolated peritoneal macrophages demonstrated significant increases
- 130 (Wilcoxon rank sum test P < 0.05 and minimum two-fold change) in endometriosis samples versus controls. (b) Statistical summary
- 131 for differentially secreted cytokines in (a).

134 Figure S7. Enrichment analysis of ASRM III/IV cytokines

(A) Significance of lineage-specific enrichment scores for ASRM III/IV cytokine expression obtained by GSEA among Immune Response *in silico* (IRIS) transcriptional profiles. (B) Hierarchy of enriched intercellular cytokine-receptor interactions. Flow cytometric confirmation of increased (C) absolute and (D) relative CD68+ macrophage abundance among endometriosis patient populations. Increasing CD68+ counts among patient subpopulations grouped by ASRM stage are shown for comparison. ***P*<0.01 Wilcoxon rank-sum test; †*P*<0.05, ††*P*<0.01, linear trend test.

144 Figure S8. Inferred co-expression of ASRM III/IV cytokines

(A) Transcripts from the IRIS compendia rank-ordered according to median correlation distance
 to cytokines differentially associated with ASRM stage III/IV endometriosis (left). In contrast to
 co-expression analysis using the multivariate consensus signature, inferred co-expression of

148 macrophage surface markers and reported disease markers were broad and incoherent (right).

149 (B) Gene set enrichment of IRIS and HICT co-expression profiles derived from the ASRM III/IV

150 signature cytokines likewise demonstrate incoherent enrichment of unrelated canonical

151 pathways.

Table S1. Pair-wise Wilcoxon rank-sum tests – Treatment Status

	Median (Concentratior	ı (pg/mL)	Untreated vs.	Controls	Treated vs. (Controls	Treated vs. l	Intreated
Cytokine	Controls	Untreated	Treated	Unadjusted	BH	Unadjusted	BH	Unadjusted	BH
PDGF-bb	2.50	2.50	2.35	0.5274	0.1148	0.9617	0.9414	0.4870	0.45478
IL-1b	0.23	0.26	0.24	0.0131	0.0307	0.3586	0.8719	0.1906	0.39612
IP-10	667.11	707.89	826.82	0.5908	0.1153	0.8113	0.9006	0.8870	0.59928
IL-1ra	12.27	13.06	11.30	0.3851	0.1081	0.4163	0.8719	0.1309	0.39230
IL-2	0.15	0.15	0.13	0.6834	0.1153	0.6782	0.9006	0.4498	0.44631
IL-4	0.32	0.35	0.33	0.0193	0.0307	0.3069	0.8719	0.2548	0.39612
IL-5	0.52	0.52	0.56	0.7176	0.1162	0.0939	0.8719	0.1301	0.39230
IL-6	10.22	10.97	10.70	0.5039	0.1132	0.6906	0.9006	0.3651	0.44351
IL-7	4.93	5.06	5.19	0.4655	0.1081	0.4445	0.8719	0.8730	0.59928
IL-8	2.72	3.48	3.29	0.0221	0.0307	0.1150	0.8719	0.4190	0.44351
IL-9	2.81	3.27	2.94	0.0068	0.0307	0.6437	0.9006	0.0929	0.39230
IL-10	2.08	2.23	2.32	0.4608	0.1081	0.3988	0.8719	0.8660	0.59928
IL-12(p70)	2.45	2.66	2.79	0.4154	0.1081	0.4353	0.8719	0.8870	0.59928
IL-13	0.64	0.72	0.71	0.2187	0.0881	0.3310	0.8719	0.8800	0.59928
IL-15	1.26	1.32	1.35	0.7470	0.1162	0.6906	0.9006	0.8381	0.59928
IL-17	0.70	0.76	0.68	0.0192	0.0307	0.7236	0.9006	0.1467	0.39230
Eotaxin	70.03	89.44	109.51	0.3606	0.1081	0.1474	0.8719	0.3842	0.44351
FGFb	0.90	0.94	0.90	0.1115	0.0777	0.8483	0.9006	0.1308	0.39230
G-CSF	1.69	2.03	1.76	0.0284	0.0330	0.8234	0.9006	0.1451	0.39230
GM-CSF	0.10	0.10	0.08	0.4457	0.1081	0.8232	0.9006	0.2850	0.41140
IFN-a	23.77	27.51	26.04	0.0576	0.0573	0.3724	0.8719	0.2481	0.39612
MCP-1	44.98	64.62	43.12	0.1465	0.0850	0.8361	0.9006	0.1453	0.39230
MIP-1a	0.85	0.89	0.91	0.1653	0.0881	0.4349	0.8719	0.7351	0.59853
MIP-1b	1.23	1.20	1.25	0.6895	0.1153	0.5450	0.9006	0.3650	0.44351
RANTES	2.34	2.66	2.56	0.1442	0.0850	0.3809	0.8719	0.5940	0.52393
TNF-a	3.80	4.20	3.97	0.0709	0.0617	0.7741	0.9006	0.1451	0.39230
VEGF	15.93	17.27	16.65	0.4288	0.1081	0.4168	0.8719	0.8870	0.59928
CTACK	104.86	94.18	82.78	0.2278	0.0881	0.1388	0.8719	0.4665	0.44889
GROa	3.73	3.73	3.45	0.7997	0.1185	0.3985	0.8719	0.1309	0.39230
ICAM-1	828.72	831.64	827.01	0.3447	0.1081	0.9113	0.9325	0.4039	0.44351
IL-1a	0.13	0.12	0.13	0.7505	0.1162	0.4978	0.9006	0.2620	0.39612
IL-2Ra	49.19	45.35	46.20	0.2248	0.0881	0.6444	0.9006	0.1606	0.39230
IL-3	71.01	69.32	64.54	0.6783	0.1153	0.6558	0.9006	0.3604	0.44351
IL-12p40	216.90	219.76	189.39	0.8718	0.1248	0.2086	0.8719	0.2411	0.39612
IL-16	185.68	188.22	189.44	0.4655	0.1081	0.7989	0.9006	0.6316	0.54202
IL-18	6.08	5.22	4.04	0.8900	0.1248	0.8610	0.9006	0.9575	0.63342
LIF	1.92	1.82	1.98	0.6782	0.1153	0.7866	0.9006	1.0000	0.63507
MCP-3	16.09	17.08	13.39	0.2218	0.0881	0.6907	0.9006	0.1357	0.39230
M-CSF	0.33	0.32	0.33	0.8959	0.1248	1.0000	0.9414	0.9929	0.63507
MIF	75.35	96.61	88.26	0.0825	0.0639	0.3477	0.8719	0.4140	0.44351
MIG	452.94	436.38	469.03	0.6176	0.1153	0.2790	0.8719	0.4451	0.44631
b-NGF	7.32	7.38	6.47	0.6448	0.1153	0.2517	0.8719	0.2010	0.39612
SCF	82.52	71.04	94.45	0.3069	0.1081	0.4937	0.9006	0.1606	0.39230
SCGF	1261.96	1216.32	1118.20	0.3770	0.1081	0.9619	0.9414	0.5578	0.50608
SDF-1a	49.09	51.09	51.82	0.6067	0.1153	1.0000	0.9414	0.7091	0.59258
TNFb	0.32	0.32	0.32	0.4115	0.1081	0.5954	0.9006	0.2393	0.39612
TRAIL	32.60	31.65	23.94	0.6952	0.1153	0.0370	0.8719	0.1887	0.39612
VCAM-1	1156.08	1212.30	1068.50	0.7762	0.1175	0.1151	0.8719	0.1061	0.39230
HGF	331.54	342.44	359.96	0.1942	0.0881	0.3642	0.8719	0.8382	0.59928
IFNa2	17.43	16.94	16.24	0.6783	0.1153	0.2386	0.8719	0.3420	0.44351

Table S2. Pair-wise Wilcoxon rank-sum tests – ASRM Staging

				ASRM I/I	l vs.	ASRM III/I	V vs.		
	Ме	dian Concentrat	tion (pg/mL)	Contro	ls	Contro	ls	ASRM III/IV	vs. I/II
Cytokine	Controls	Minimal/Mild	Moderate/Severe	Unadjusted	BH	Unadjusted	BH	Unadjusted	BH
PDGF-bb	2.50	2.32	3.03	0.5566	0.9805	0.0550	0.0744	0.0190	0.0531
IL-1b	0.23	0.24	0.30	0.3395	0.9805	0.0004	0.0032	0.0095	0.0478
IP-10	667.11	707.89	707.97	0.6700	0.9805	0.6192	0.2534	0.9476	0.4864
IL-1ra	12.27	12.27	13.86	0.9708	0.9805	0.0870	0.0777	0.0502	0.1147
IL-2	0.15	0.14	0.16	0.9805	0.9805	0.4640	0.2149	0.4776	0.3475
IL-4	0.32	0.34	0.48	0.5575	0.9805	0.0002	0.0032	0.0017	0.0416
IL-5	0.52	0.50	0.55	0.9708	0.9805	0.5290	0.2315	0.4852	0.3475
IL-6	10.22	9.60	28.06	0.6878	0.9805	0.0769	0.0777	0.0345	0.0866
IL-7	4.93	4.98	5.45	0.6005	0.9805	0.4559	0.2149	0.6742	0.4095
IL-8	2.72	3.10	10.56	0.3941	0.9805	0.0009	0.0032	0.0181	0.0531
IL-9	2.81	3.11	3.61	0.0299	0.9805	0.0113	0.0260	0.3712	0.2977
II -10	2.08	1.95	2 48	0.8170	0 9805	0.0899	0 0777	0.0902	0 1417
II -12(p70)	2 45	2 45	2.97	0.9224	0.9805	0.0927	0 0777	0.0621	0 1274
IL -13	0.64	0.67	0.73	0.5504	0.9805	0 1073	0.0859	0 1675	0 1832
IL -15	1.26	1 4 5	1 28	0.4801	0.9805	0.8264	0.3030	0 7826	0.4374
IL 10	0.70	0.76	0.78	0.1098	0.0000	0.0204	0.0000	0.2108	0.4074
Fotavin	70.03	88 90	92 30	0.5507	0.0000	0.0110	0.0200	0.2100	0.2007
EGEb	0.00	0.00	0.97	0.2778	0.0000	0.0101	0.1004	0.5025	0.3025
G	1.60	1.86	2 00	0.5180	0.0000	0.0070	0.0111	0.0025	0.0478
GM-CSF	0.10	0.10	2.50	0.3100	0.3003	0.0007	0.0032	0.5617	0.0470
IEN a	22 77	24.10	32.65	0.8264	0.3003	0.0100	0.1004	0.0086	0.0022
MCD 1	23.11	24.10	96 70	0.0204	0.9005	0.0009	0.0032	0.0000	0.0470
	44.90	04.02	0.72	0.2094	0.9000	0.1390	0.1020	0.3047	0.29/7
	0.00	0.09	0.92	0.4000	0.9000	0.0737	0.0777	0.2303	0.2242
	1.23	1.09	1.20	0.2030	0.9605	0.0007	0.2554	0.2000	0.2242
RANTES	2.34	2.34	4.81	0.9120	0.9805	0.0034	0.0101	0.0035	0.0445
	3.60	4.00	4.59	0.3297	0.9605	0.0242	0.0420	0.2100	0.2097
VEGF	15.93	16.06	17.52	0.7608	0.9805	0.2603	0.1432	0.4306	0.3282
CTACK	104.86	95.20	91.00	0.6879	0.9805	0.0722	0.0777	0.1412	0.1693
GROa	3.73	3.73	4.73	0.7421	0.9805	0.3722	0.1820	0.1481	0.1693
ICAM-1	828.72	806.21	979.12	0.8170	0.9805	0.0365	0.0536	0.0156	0.0531
IL-1a	0.13	0.12	0.12	0.9593	0.9805	0.4962	0.2239	0.2053	0.2097
IL-2Ra	49.19	45.78	39.44	0.5508	0.9805	0.1144	0.0875	0.2531	0.2242
IL-3	71.01	69.32	69.64	0.7149	0.9805	0.7367	0.2882	0.8233	0.4501
IL-12p40	216.90	223.82	216.59	0.8076	0.9805	0.5392	0.2315	0.5113	0.3475
IL-16	185.68	170.73	267.55	0.5187	0.9805	0.0294	0.0470	0.0130	0.0531
IL-18	6.08	5.47	4.11	0.8171	0.9805	1.0000	0.3520	0.9895	0.4977
LIF	1.92	2.28	1.17	0.6968	0.9805	0.2034	0.1279	0.0659	0.1274
MCP-3	16.09	16.36	18.26	0.3937	0.9805	0.1982	0.1279	0.7228	0.4227
M-CSF	0.33	0.32	0.33	0.9319	0.9805	0.8951	0.3215	0.9371	0.4864
MIF	75.35	94.57	210.55	0.4954	0.9805	0.0135	0.0264	0.1062	0.1483
MIG	452.94	432.04	533.47	0.7240	0.9805	0.1649	0.1161	0.0806	0.1352
b-NGF	7.32	7.48	7.20	0.7516	0.9805	0.2033	0.1279	0.1377	0.1693
SCF	82.52	72.73	61.65	0.9127	0.9805	0.0722	0.0777	0.1448	0.1693
SCGF	1261.96	1191.07	1355.14	0.6878	0.9805	0.2364	0.1342	0.3788	0.2977
SDF-1a	49.09	57.54	46.12	0.2785	0.9805	0.7589	0.2884	0.0979	0.1448
TNFb	0.32	0.32	0.32	0.6825	0.9805	0.2926	0.1560	0.5360	0.3547
TRAIL	32.60	31.65	32.38	0.7424	0.9805	0.7367	0.2882	0.7625	0.4358
VCAM-1	1156.08	1061.17	1303.37	0.6006	0.9805	0.2364	0.1342	0.0806	0.1352
HGF	331.54	329.31	376.77	0.2895	0.9805	0.2364	0.1342	0.6839	0.4095
IFNa2	17.43	16.94	17.36	0.6878	0.9805	0.7700	0.2884	0.9476	0.4864

Table S3. Pair-wise Wilcoxon rank-sum tests – Cycle Phase 159

	Med	ian Concer	ntration (pg/n	nL)	Controls		Endometr	Endometriosis	
	Follicular	Luteal	Follicular	Luteal					
Cytokine	(-)	(-)	(+)	(+)	Unadjusted	BH	Unadjusted	BH	
PDGF-bb	2.50	2.35	2.50	2.50	0.5930	1.0000	0.9685	0.8925	
IL-1b	0.23	0.22	0.26	0.27	0.3959	0.9166	0.9685	0.8925	
IP-10	588.31	903.94	674.08	841.48	0.1965	0.8983	0.0719	0.4128	
IL-1ra	12.27	12.27	13.46	12.27	1.0000	1.0000	0.8232	0.8747	
IL-2	0.15	0.14	0.12	0.15	0.9393	1.0000	0.0849	0.4211	
IL-4	0.33	0.31	0.36	0.35	0.8189	1.0000	0.7721	0.8747	
IL-5	0.51	0.52	0.52	0.52	0.7893	1.0000	0.7321	0.8747	
IL-6	8.19	18.42	13.15	8.76	0.3047	0.8983	0.1761	0.5351	
IL-7	4.87	5.33	4.98	5.07	0.7322	1.0000	0.7625	0.8747	
IL-8	2.07	2.83	3.33	3.63	0.3619	0.9048	1.0000	0.8925	
IL-9	2.95	2.57	2.95	3.72	0.9696	1.0000	0.0030	0.0660	
IL-10	1.67	2.27	2.53	1.93	0.1105	0.8983	0.1485	0.5097	
IL-12(p70)	2.76	2.35	2.76	2.53	0.2545	0.8983	0.6268	0.8747	
IL-13	0.67	0.62	0.72	0.66	0.5423	1.0000	0.1306	0.5097	
IL-15	1.06	1.56	1.58	1.21	0.0333	0.8983	0.0740	0.4128	
IL-17	0.68	0.72	0.76	0.79	0.6728	1.0000	0.1431	0.5097	
Eotaxin	58.41	82.86	88.90	95.93	0.2871	0.8983	0.7033	0.8747	
FGFb	0.91	0.89	0.94	0.93	1.0000	1.0000	0.7825	0.8747	
G-CSF	1.74	1.69	2.39	1.90	0.9391	1.0000	0.3244	0.8042	
GM-CSF	0.06	0.10	0.09	0.12	0.3410	0.8983	0.0109	0.1623	
IFN-a	23.00	25.73	27.51	30.79	0.7322	1.0000	0.6361	0.8747	
MCP-1	28.78	51.40	64.47	65.59	0.4033	0.9166	0.4230	0.8505	
MIP-1a	0.89	0.84	0.89	0.98	0.4931	1.0000	0.0646	0.4128	
MIP-1b	1.14	1.26	1.14	1.36	0.3414	0.8983	0.0247	0.2752	
RANTES	1 84	2 34	3.06	2 59	0 2227	0 8983	0 4945	0 8747	
TNF-a	3 85	3 74	4 14	4 64	0.8786	1 0000	0 2370	0.6610	
VEGE	16 65	14 48	17 43	16 29	0 7038	1 0000	0.6363	0 8747	
CTACK	104 66	111.05	90.61	102 75	0 9394	1 0000	0.0979	0 4368	
GROa	3 40	3 89	3 73	4 57	0 2386	0.8983	0 1799	0.5351	
ICAM-1	825 79	831 64	831 64	833 30	0.5687	1 0000	0 7327	0 8747	
II -1a	0.13	0.13	0.12	0.12	0 4946	1 0000	0.9891	0.8925	
II -2Ra	48 81	50.61	42.32	45 42	0 7040	1 0000	0.9476	0.8925	
II -3	73 62	68 40	68 78	73 85	0 5949	1 0000	0.8029	0.8747	
II -12n40	213 41	218 61	212 14	223.94	1 0000	1 0000	0 4700	0.8738	
II -16	184 78	200 19	184 78	191 96	0 5947	1 0000	0 4384	0.8505	
II -18	8 65	5 44	4 53	5 88	0 1286	0.8983	0.6646	0.8747	
LIF	1 47	2.02	1.60	2.33	0.2875	0.8983	0.0551	0 4128	
MCP-3	12.86	16 55	18 14	16.62	0.0805	0.8983	0.8851	0.8925	
M-CSE	0.32	0.34	0.30	0.38	1 0000	1 0000	0.0021	0.0660	
MIE	95 59	60.67	117 40	87.56	0 1106	0.8983	0.2994	0.7860	
MIG	278.30	462.03	482.08	416 41	0.3233	0.8983	0.7229	0.8747	
h-NGE	7 28	7 32	7 37	7 4 3	0.0200	1 0000	0.6269	0.8747	
SCE	96.38	71.02	60.40	71 31	0.2241	0.8083	0.0200	0.8505	
SCGE	1284 13	1230 70	1101 07	1347 08	0.7040	1 0000	0.4000	0.8747	
SDF-12	51 24	46 94	51 00	54 22	1 0000	1 0000	0.0200	0.8505	
	0.32	0.37	0 32	0 33	0.3185	0.8083	0.4000	0.8747	
TRAIL	26.24	34 51	32 7/	20.22	0.0100	0.0903	0.3097	0.8505	
	1101 68	1262 57	1212 30	1172 52	0.1200	0.0000	0.4000	0.8747	
	347.02	270 51	370.03	333 56	1 0000	1 0000	0.0902	0.0747	
	347.UZ	210.01	310.93	00.00 17 40	1.0000	1.0000	0.9000	0.0920	
IFINIZ	17.10	10.11	10.94	17.42	0.9394	1.0000	0.0900	0.0920	

Table S4. Pair-wise Wilcoxon rank-sum tests – Recurrence Status

	Median Conce	entration (pg/mL)	Recurrent Disease vs. Initial Diagnosis			
Cytokine	Initial Diagnosis	Recurrent Disease	Unadjusted	BH		
PDGF-bb	2.5	2.5	0.5778	1.0000		
IL-1b	0.26	0.27	0.6741	1.0000		
IP-10	674.08	777.26	0.2284	1.0000		
IL-1ra	13.46	12.985	0.9137	1.0000		
IL-2	0.13	0.155	0.1160	1.0000		
IL-4	0.35	0.36	0.5151	1.0000		
IL-5	0.5	0.55	0.2221	1.0000		
IL-6	14.91	9.86	0.5976	1.0000		
IL-7	4.49	5.29	0.5606	1.0000		
IL-8	3.76	3.405	0.8817	1.0000		
IL-9	3.11	3.58	0.0782	1.0000		
IL-10	2.3	2.175	1.0000	1.0000		
II -12(p70)	2 62	2 71	0.9784	1 0000		
II -13	0.72	0.685	0.6068	1 0000		
II -15	1 24	1 435	0 5697	1 0000		
II -17	0.76	0.76	0.8477	1 0000		
Fotaxin	89 44	90 645	0.8603	1 0000		
FGFh	0.88	0.96	0.0527	1 0000		
G-CSF	2.03	2 185	0.0027	1 0000		
GM-CSF	0.1	0.1	0.0000	1.0000		
IEN-a	27.51	27 955	0.6549	1 0000		
MCP_1	/3.11	85.08	0.0040	1,0000		
MIP_1a	0.89	00.90	0.1103	1.0000		
MID_1b	1 15	1 22	0.1632	1,0000		
	3.83	2.56	0.1052	1,0000		
TNF-2	1.05	2.50	0.3433	1.0000		
	4.2	17 / 25	0.7376	1,0000		
CTACK	04.18	02.67	0.3300	1,0000		
GROa	94.10 1 35	3645	0.7351	1.0000		
	4.00	845.67	0.2505	1,0000		
	0.12	0.12	0.7330	1,0000		
IL-1a	0.12	43.605	0.4742	1,0000		
IL-2Ra	40.00	43.005	0.9092	1.0000		
IL-3	79.90	212.41	0.1133	1.0000		
IL-12040	223.02	213.41	0.3717	1,0000		
IL-10	5 1	203.023	0.4901	1.0000		
	J.1 1.00	0.00 1.705	0.2973	1.0000		
	1.99	1.790	0.0710	1.0000		
MCP-3	10.37	10.900	0.7452	1.0000		
MI-CSF	0.32	0.33	0.6495	1.0000		
	117.4	92.38	0.0002	1.0000		
	435.18	458.115	0.8817	1.0000		
D-NGF	7.38	7.38	1.0000	1.0000		
SUF	/1.04	/1.09	0.0050	1.0000		
SUGE	1210.32	1230.435	0.0050	1.0000		
SDF-1a	51.09	51.605	0.7970	1.0000		
INFD	0.35	0.32	0.2858	1.0000		
TRAIL	32.01	31.65	0.6165	1.0000		
VCAM-1	1237.57	1123.315	0.8180	1.0000		
HGF	297.14	375.135	0.1553	1.0000		
I⊦Na2	18.98	16.73	0.1593	1.0000		

Table S5. Pair-wise Wilcoxon rank-sum tests – Lesion Distribution163

	Me	dian Concentr	ation (pg/m	L)	Peritoneal vs.	Controls	Ovarian vs. (Controls	Deep vs. Co	ontrols
Cytokine	Controls	Peritoneal	Ovarian	Deep	Unadjusted	BH	Unadjusted	BH	Unadjusted	BH
PDGF-bb	2.43	2.50	1.86	2.31	0.8165	1.0000	0.0343	0.8201	0.7596	0.9786
IL-1b	0.22	0.23	0.21	0.25	0.5203	1.0000	0.3056	0.9257	0.0956	0.4316
IP-10	706.02	736.40	838.86	786.78	1.0000	1.0000	0.5823	0.9751	0.2128	0.6130
IL-1ra	12.63	13.00	11.87	15.06	0.9805	1.0000	0.5970	0.9751	0.1145	0.4316
IL-2	0.14	0.14	0.14	0.13	0.9414	1.0000	0.9297	1.0000	0.7792	0.9786
IL-4	0.31	0.34	0.32	0.31	0.7503	1.0000	0.8945	1.0000	0.7580	0.9786
IL-5	0.51	0.52	0.47	0.53	0.7507	1.0000	0.9649	1.0000	0.8185	0.9786
IL-6	9.72	9.60	6.43	8.98	0.9127	1.0000	0.0989	0.9257	1.0000	1.0000
IL-7	5.15	5.14	5.28	6.37	0.9320	1.0000	0.8430	1.0000	0.2524	0.6130
IL-8	2.25	2.46	2.07	3.36	0.6966	1.0000	0.1724	0.9257	0.0793	0.4316
IL-9	2.81	2.91	3.11	3.21	0.6000	1.0000	0.2079	0.9257	0.0705	0.4316
IL-10	1.83	1.88	1.59	2.65	0.9514	1.0000	0.1525	0.9257	0.8587	0.9786
II -12(p70)	2 41	2 47	2 29	2 47	0 7421	1 0000	0.3906	0 9257	0 9797	1 0000
II -13	0.63	0.64	0.64	0.64	0.8167	1 0000	1 0000	1 0000	0 5083	0.8301
II -15	1 01	0.96	0.98	1 84	0.8169	1 0000	0.3669	0.9257	0.0118	0 2897
II -17	0.70	0.00	0.00	0.76	0.6836	1 0000	0.9294	1 0000	0.0845	0.4316
Fotaxin	46.98	47.26	49 15	105.09	0.9708	1 0000	0.5822	0.9751	0.0394	0.4316
EGEb	0.91	0.94	0.87	1 05	0.3729	1 0000	0.5375	0.9751	0 2627	0.6130
G-CSF	1 69	1.81	1.68	2 11	0.4632	1 0000	0 7914	1 0000	0.0190	0.3102
GM-CSF	0.12	0.12	0.10	0.11	0.4002	1.0000	0.5955	0.9751	0.5568	0.8553
IFN-a	23.03	24 10	24 10	22 74	0.0000	1.0000	0.9649	1 0000	0.0000	1 0000
	23.95 41.01	24.10	50 72	81 55	0.0700	1.0000	0.8776	1.0000	0.0446	0.4316
MIP-1a	0.87	0.80	0.72	01.55	0.5127	1.0000	0.3640	0.0257	0.3868	0.4310
MIP_1b	1 20	1 21	1.05	1 10	0.0010	1.0000	0.3328	0.9257	0.5600	0.7203
	2.24	1.21	2.10	2.93	0.9030	1.0000	0.3320	0.9257	0.1544	0.3042
	2.34	2.34	2.10	2.03	0.0000	1.0000	0.1700	0.9257	0.3390	0.7205
VECE	14.25	15 20	10.64	4.03	0.7 140	1.0000	0.4142	0.9257	0.7404	0.9760
CTACK	14.25	102.00	116.04	75 14	0.7515	1.0000	0.2711	0.9257	0.0004	0.0000
CROS	2 00	2 00	2 20	2 01	0.9320	1.0000	0.4150	0.9257	0.0904	0.4310
	3.00 027 00	3.90 921.64	3.20	026 20	0.0357	1.0000	0.3219	1 0000	0.0109	0.9760
	037.00	031.04	009.34	020.30 57.33	0.9127	1.0000	0.7064	1.0000	0.7410	0.9760
IL-ZRa	49.19	45.49	44.0Z	57.23	0.4574	1.0000	0.0204	0.9751	0.2525	0.0130
IL-3	09.20	07.01	03.10	00.29	0.6934	1.0000	0.9624	1.0000	0.9190	1.0000
IL-12p40	216.89	215.19	215.35	214.53	0.9223	1.0000	0.8430	1.0000	1.0000	1.0000
IL-10	185.07	188.80	137.29	206.36	0.0173	1.0000	0.0209	0.8201	0.3467	0.7285
IL-10	4.77	4.52	3.31	5.3Z	0.9320	1.0000	0.4150	0.9257	0.4305	0.7534
	2.40	2.38	2.54	3.75	1.0000	1.0000	0.6920	1.0000	0.2855	0.0358
MCP-3	13.39	13.41	12.72	12.73	0.7057	1.0000	0.7917	1.0000	0.9594	1.0000
M-CSF	0.33	0.33	0.31	0.38	1.0000	1.0000	0.4540	0.9551	0.1088	0.4316
MIF	70.06	90.30	59.13	98.48	0.7057	1.0000	0.3670	0.9257	0.1472	0.5042
MIG	452.94	451.86	433.61	569.86	0.8742	1.0000	0.4156	0.9257	0.2525	0.6130
D-NGF	7.52	7.48	7.40	8.42	0.9903	1.0000	0.7917	1.0000	0.5933	0.8810
SCF	76.00	79.66	62.09	86.57	0.6522	1.0000	0.3011	0.9257	0.8190	0.9786
SCGF	1261.77	1284.13	1061.32	1430.55	0.8169	1.0000	0.4678	0.9551	0.4014	0.7285
SDF-1a	51.90	57.23	52.74	65.75	0.6260	1.0000	0.8950	1.0000	0.1092	0.4316
TNFb	0.33	0.34	0.34	0.33	0.8153	1.0000	0.7905	1.0000	0.8574	0.9786
TRAIL	36.52	38.69	27.00	43.35	0.7607	1.0000	0.0502	0.8201	0.4014	0.7285
VCAM-1	1081.96	1110.15	1065.03	834.71	0.9127	1.0000	0.7414	1.0000	0.1947	0.5963
HGF	324.22	327.65	246.95	536.20	0.6522	1.0000	0.1657	0.9257	0.0029	0.1436
IFNa2	17.43	17.61	16.70	16.10	0.9223	1.0000	0.9124	1.0000	0.4609	0.7787

Table S6.Pair-wise Wilcoxon rank-sum tests – Primary Indication

	Median Con	centration (pg/mL)	Infertility v	vs. Pain
Cytokine	Pain Only	Infertility -/+ Pain	Unadjusted	BH
PDGF-bb	2.5	2.13	0.4126	0.8618
IL-1b	0.26	0.285	0.4466	0.8618
IP-10	707.89	689.47	0.5569	0.8618
IL-1ra	13.06	13.455	0.5188	0.8618
IL-2	0.14	0.165	0.6566	0.8872
IL-4	0.35	0.445	0.2334	0.8192
IL-5	0.55	0.48	0.9199	0.9738
IL-6	10.97	12.645	0.5007	0.8618
IL-7	5.06	5.145	0.4916	0.8618
IL-8	3.79	3.1	0.7965	0.9738
IL-9	3.11	3.35	0.2174	0.8192
IL-10	2.12	2.62	0.6160	0.8801
IL-12(p70)	2.62	2.96	0.5097	0.8618
II -13	0.72	0.695	1 0000	1 0000
IL -15	1 42	0.985	0.0855	0.8192
IL 10	0.76	0.76	0.0000	0.0738
Fotavin	102.89	67 645	0.1184	0.8192
ECEh	0.04	0.035	0.1104	0.0132
	0.94	1 82	0.9420	0.9730
	2.34	0.00	0.0615	0.0010
GIVI-CSF	0.12	0.09	0.0015	0.0192
IFN-g	27.51	28.54	0.5567	0.8618
MCP-1	51.41	92.495	0.1253	0.8192
MIP-1a	0.89	0.94	0.7955	0.9738
MIP-1b	1.2	1.12	0.4737	0.8618
RANTES	2.66	2.81	0.8075	0.9738
TNF-a	4.2	4.01	0.5006	0.8618
VEGF	15.36	21.44	0.2126	0.8192
CTACK	92.91	100.1	0.6989	0.9196
GROa	4.35	3.2	0.1599	0.8192
ICAM-1	818.72	950.84	0.2233	0.8192
IL-1a	0.12	0.115	0.0249	0.8192
IL-2Ra	45.49	39.33	0.3821	0.8618
IL-3	69.32	72.485	0.8974	0.9738
IL-12p40	219.76	216.585	0.4737	0.8618
IL-16	198.74	167.4	0.2126	0.8192
IL-18	4.89	6.485	0.4307	0.8618
LIF	1 99	1 605	0 2458	0 8192
MCP-3	17 64	16 49	0 4915	0.8618
M-CSF	0.32	0.31	0 2015	0.8192
MIE	114 75	81 015	0.6364	0.8838
MIG	482.08	336.64	0.3517	0.8618
h-NGE	7 38	7 32	0.05/3	0.0010
	7.30	7.5Z	0.9545	0.9730
SOF	11.40	1266 225	0.1200	0.0192
	1202.33	1300.223	0.9007	0.9/30
SUF-1a	57.54	48.245	0.1922	0.8192
INFD	0.32	0.32	0.8487	0.9738
IRAIL	31.65	31.83	0.8298	0.9738
VCAM-1	1091.14	1274.385	0.2956	0.8618
HGF	342.44	412.09	0.5763	0.8618
IFNa2	16.86	18.37	0.2826	0.8618

Table S7. Reported associations between peritoneal cytokines, chemokines, growth factors169and pelvic endometriosis.

		Endometriosis	vs. Controls	
	Increased	No Difference	Decreased	Transient
Interleukins		Kovama 1002		
IL-1 IL-1α IL-1β	Kondera-Anasz 2005 Fakih 1987 Taketani 1992 Ho 1996 Sukhikh 2004 Mier-Cabrerra 2010 Michaud 2011 Sikora 2012	Koyama 1993 Dziunycz 2009 Keenan 1989 Kalu 2007 Bedaiwy 2002 Oku 2004 Milewski 2008		
IL-1Ra	Kondera-Anasz 2005	Ho 1996 Bersinger 2012	Zhang 2007 Mier-Cabrerra 2010	
IL-1 sRII		Ũ	Kondera-Anasz 2005 Michaud 2011	
sIL1RAcP IL-2		Punnonen 1996 Oku 2004 Podgaec 2007 Hassa 2009 Mier-Cabrerra 2010	Michaud 2011 Hsu 1997	
IL-2Ra				
IL-3 IL-4	Hsu 1997	Punnonen 1996 Oku 2004 Podgaec 2007 Hassa 2009 Mier-Cabrerra 2010		
IL-5 IL-6	Koyama 1993 Koyama 1993 Rier 1995 Ho 1996 Punnonen 1996 Harada 1997 Bedaiwy 2002 Khan 2002 Kalu 2007 Milewski 2008 Dziunycz 2009 Mier-Cabrerra 2010 Velasco 2010 Drosdzol-Cop 2012 Bersinger 2012	Punnonen 1996 Keenan 1989 Oku 2004		
IL-6sR IL-7			Rier 1995	
ι <u>μ-9</u> ΙΔ-10	Punnonen 1996 Tabibzadeh 2003 Kondera-Anasz 2004 Podgaec 2007 Mier-Cabrerra 2010	Rana 1996 Hsu 1997 Oku 2004 Hassa 2009 Andreoli 2011 Bersinger 2012		Ho 1997
IL-11 IL-12(p70)	Mazzeo 1998 Gallinelli 2004 Fairbanks 2009	Gazvani 2001 Zeyneloglu 1998 Gazvani 2001 Mier-Cabrerra 2010 Andreoli 2011 Bersinger 2012		Ho 1997
IL-12(p40) IL-13		Mazzeo 1998 Bedaiwy 2002 Mier-Cabrerra 2010 Velasco 2010	McLaren 1997 Gallinelli 2004	
IL-14 IL-15 IL-16	Koga 2005	Bersinger 2012	Mier-Cabrerra 2010	Arici 2003

	IL-17		Velasco 2010 Andreoli 2011		Zhang 2005
	IL-18	Oku 2004 Bersinger 2012	Fairbanks 2009 Glitz 2009	Zhang 2004 Sikora 2012	Arici 2003
	IL-19	5			
	IL-20				
	IL-21				
	IL-22				
	IL-23	Andreoli 2011			
	IL-24				
	IL-25				
	IL-20				
	IL-27 II -28				
	IL-20 II -29				
	IL-30				
	IL-31				
	IL-32				
	IL-33	Santulli 2012			
	IL-35				
	IL-36				
	IL-37				
	IL-30 MIE	Kata 2002			
		Mabutta 2004			
	IFNa2	Manatta 2004	Sukhikh 2004		
	IFNy	Podgaec 2007	Keenan 1989	Ho 1996	
	•	0	Khorram 1993	Hsu 1997	
			Oku 2004	Wu 1998	
			Sukhikh 2004	Mier-Cabrerra 2010	
			Milewski 2008		
			Hassa 2009		
	TNFa	Rana 1996	Keenan 1989		Pizzo 2002
		Ho 1996	Calhaz-Jorge 2000		
		Overton 1996	Oku 2004		
		Overton 1996 Harada 1997	Oku 2004 Kalu 2007		
		Overton 1996 Harada 1997 Bedaiwy 2002	Oku 2004 Kalu 2007 Podgaec 2007		
		Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008		
		Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Dreadad Con 2012	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		
		Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Pomigar 2012		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
 He	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
He	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSE	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012		Harada 2004
 	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012		Harada 2004
 	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012		Harada 2004
 	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF GM-CSF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012	Weinberg 1991	Harada 2004
 	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF CSF1/M-CSF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012 Punnonen 1996 Oku 2004	Weinberg 1991	Harada 2004
 	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF GM-CSF CSF1/M-CSF SCGF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012 Punnonen 1996 Oku 2004	Weinberg 1991	Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF GM-CSF CSF1/M-CSF SCGF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012	Weinberg 1991	Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF GM-CSF CSF1/M-CSF SCGF SCGF SCF SSUE Remodeling	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002 Fukaya 1994 Budrys 2012	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Bersinger 2012 Punnonen 1996 Oku 2004	Weinberg 1991	Harada 2004
He	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF CSF1/M-CSF SCGF SCGF SCF SSUE Remodeling bFGF PDGF-bb	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002 Fukaya 1994 Budrys 2012 Bourlev 2006	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Punnonen 1996 Oku 2004 Bersinger 2012 Overton 1996	Weinberg 1991	Harada 2004
	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF CSF1/M-CSF SCGF SCGF SCF SSUE Remodeling bFGF PDGF-bb VEGF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002 Fukaya 1994 Budrys 2012 Bourlev 2006 McLaren 1996	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Punnonen 1996 Oku 2004 Bersinger 2012 Overton 1996 Kalu 2007	Weinberg 1991	Harada 2004
He	TNFRSF1A/B/sTNFR TNFRSF11B/OPG TNFβ TRAIL sFas sFasL ICAM-1 VCAM-1 TGFβ matopoetic LIF G-CSF GM-CSF CSF1/M-CSF SCGF SCF SSUE Remodeling bFGF PDGF-bb VEGF	Overton 1996 Harada 1997 Bedaiwy 2002 Sukhikh 2004 Mier-Cabrerra 2010 Drosdzol-Cop 2012 Koga 2000 Harada 2004 Bersinger 2006 Oosterlynck 1994 Kupker 1998 Pizzo 2002 Fukaya 1994 Budrys 2012 Bourlev 2006 McLaren 1996 Kupker 1998	Oku 2004 Kalu 2007 Podgaec 2007 Milewski 2008 Dziunycz 2009 Kalu 2007 Kalu 2007 Somigliana 1996 Daniel 2000 Bersinger 2012 Daniel 2000 Bersinger 2012 Punnonen 1996 Oku 2004 Bersinger 2012 Overton 1996 Kalu 2007 Dziunycz 2009	Weinberg 1991	Harada 2004

HGF	Mier-Cabrerra 2010 Osuga 1999 Khan 2002	Bersinger 2012		
b-NGF		Bersinger 2012		
EGF	Sukhikh 2004	De Leon 1986		
Chemokines				
CCL1/TCA-3	Aria: 4007			
CCL2/MCP-1	Arici 1997	Laudanski 2006		
	Pizzo 2002			
	Kalu 2007			
	Mier-Cabrerra 2010			
	Bersinger 2012			
		Laudanski 2006		
	Kh 1000	Laudanski 2006		
CCL5/RANTES	Rhorram 1993	Laudanski 2006		
	Mior Cobrorro 2010	Raiu 2007 Borgingor 2012		
	Mier-Cabrella 2010	Bersinger 2012		
CCL 11/Fotavin	Mier-Cabrerra 2010			
	Rersinger 2012			
CCI 12/MCP-5	Deromyer 2012			
CCI 13/MCP-4				
CCL14/HCC-1				
CCL15/MIP-18		Laudanski 2006		
CCL16/LEC				
CCL17/TARC		Laudanski 2006		
CCL18/PARC				
CCL19/MIP-3β	Laudanski 2006			
CCL20/MIP-3α		Laudanski 2006		
CCL21/SLC				
CCL22/MDC		Laudanski 2006		
CCL23/MPIF-1				
CCL24/MPIF-2				
CCL25/TECK				
CCL26/MIP-4a				
CCL27/CTACK				
CCL28/MEC	0			
CXCL1/GRUa	Szamatowicz 2002			
	Bersinger 2012			
CXCL5/ENA-78	Mueller 2003			
	Suzumori 2004			
CXCL6/GCP-2	Sulumon LUUT			
CXCL7NAP-2				
CXCL8/IL-8	Ryan 1995	Oku 2004		Gazvani 2001
· -	Rana 1996	Velasco 2010		
	Arici 1996	Bersinger 2012		
	lwabe 1998	-		
	Bedaiwy 2002			
	Pizzo 2002			
	Bersinger 2005			
	Kalu 2007			
	Mier-Cabrerra 2010			
	Malhotra 2012			
		Dersianan 0040	Varbing 0000	
CXCL10/IP-10		Bersinger 2012	YOSNINO 2003	
			Galleri 2009	
CXCI 13/BCA-1				
CXCI 14/BRAK				
CXCL15/Lungkine				
CXCL16/SRPSOX				
CXCL17/DMC				
XCL1/Lymphotactin a				

XCL2/Lymphotactin b CX3CL1/Fractalkine

Shimoya 2005

171 172 173 Table S8. Over-representation of transcriptional binding sites among macrophage secreted

cytokines.

			Co-expression	Profile P-Value	Co-expression	n Profile FDR
Transcription Factor	All Motifs	Consensus Sequence(s)	IRIS	HICT	IRIS	HICT
C/EBPbeta	<0.0001	V\$CEBPB 01	0.0000	0.0000	0.1330	0.0645
		V\$CEBPB_02	0.0022	0.0000	0.1448	0.0392
		V\$CEBP Q2 01	0.0129	0.1626	0.2820	0.4249
		V\$CEBP_Q3_	0.2298	0.3982	0.6020	0.7252
		V\$CEBPB Q6	NA	NA	NA	NA
RelA-n65-isoform1	0.0026	V\$NEKAPPAB65_01	0.0021	0.0000	0 0749	0.0078
	0.0020	V\$NEKAPPAB 01	0.0000	0.0000	0.0371	0.0015
		V\$NEKB O6 01	0.0000	0.0000	0.0456	0 0089
			NA	NA	NIA	NA
CDEP1	0.0047		0.0017	0.8568	0.0857	1 0000
CREBT	0.0047		0.9017	0.0000	0.9007	0.3007
			0.0900	0.1100	1,0000	1 0000
			0.7707	0.0409	0.4422	1.0000
		VOCKED_UZ	0.0095	0.7000	0.4423	0.2401
			0.0093	0.1147	0.9997	0.3401
			0.4003	0.2200	0.7197	0.3037
			0.0710	0.7511	0.9015	0.9336
		V\$CREB_Q4_01	0.2041	0.3401	0.5608	0.6951
		V\$CREB_Q3	0.2981	0.1549	0.7330	0.7430
		V\$CREBATF_Q6	NA	NA	NA	NA
		V\$CREB1_01	NA	NA	NA	NA
		V\$CREB1_Q6	NA	NA	NA	NA
NF-kappaB1-p50:RelA-p65	0.0095	V\$P50RELAP65 Q5 01	NA	NA	NA	NA
ATF-2	0.0186	V\$CREBP1 01	0.6869	0.9660	0.9999	1.0000
		V\$CREBP1CJUN_01	0.7810	0.6883	NA	NA
		V\$CREBP1_Q2	0.8366	0.4664	0.9642	0.7473
		V\$CREB_Q3	0.2981	0.1549	NA	NA
		V\$CREBATF_Q6	NA	NA	NA	NA
		V\$ATF2_Q5	NA	NA	NA	NA
NF-kappaB1-p50	0.0198	V\$NFKAPPAB50 01	NA	NA	NA	NA
		V\$NFKAPPAB_01	0.0000	0.0000	0.0371	0.0015
		V\$NFKB_Q6	0.0000	0.0000	0.0300	0.0064
		V\$NFKB C	0.0022	0.0000	0.0982	0.0128
		V\$NFKB_Q6_01	0.0000	0.0000	0.0456	0.0089
		V\$P50 Q6	NA	NA	NA	NA
c-Fos:c-Jun	0.0274	V\$CFOSCJUN Q5	NA	NA	NA	NA
c-Ets-1	0.0286	V\$CETS1P54 01	0.2140	0.7336	0.6859	0.9423
		V\$CETS1P54 02	NA	NA	NA	NA
		V\$ETS1 B	0.0712	0.0319	0.4129	0.3434
		V\$ETS B	NA	NA	NA	NA
		V\$ETS_Q6	NA	NA	NA	NA
		V\$ETS_Q4	0.0000	0.0000	0.0035	0.0131
		V\$CETS1P54_03	NA	NA	NA	NA
		V\$CETS1 Q6	NA	NA	NA	NA
		V\$CETS1_02	NA	NA	NA	NA
		V\$FTS1 02	NA	NA	NA	NA
AP-1	0 0417	V\$AP1FJ_Q2	0 0044	0.0000	0 1437	0 1090
· · · ·	0.0111	V\$AP1 Q2	0.0713	0.0050	0.3912	0.1115
		V\$AP1_Q6	0,0000	0.0041	0.0835	0 1088
		V\$AP1_Q4	0.0000	0.0000	0.1027	0.1030
		V\$AP1_C	0,0000	0 4241	0 1214	0 7488
		V\$AP1_01	0,0000	0,0000	0.0159	0.0796
		V\$AP1 Q2 01	0.0109	0.0807	0 2366	0 3499
		V\$AP1_06_01	0.0066	0 0449	0 1453	0 2619
		V\$AP1 04 01	0.0000	0 0000	0 0488	0 0730
		V\$AP1 06 02	NA	NA	NA	NA
STAT1	0.0444	V¢STAT1 01	0.3/10	0 /350	0 7201	1 0000
SIATI	0.0444		0.0410	0.4359	0.7381	0.0385
		V¢STAT1 02	0.5580	0.0000	0.1400	0.0305
		V¢STAT1_02	0.0000	0.1002	0.0404	1 0000
			0.0090	0.1139	0.5531	0.0000
			0.0152		CCCO.U	0.9000
		VƏSIALI_QO	NA	NA	INA	NA

17<mark>4</mark> 175

NA – Not Annotated in MSigDB v4.0

176	Table S9. Luminex Targets and Assay Performance Characteristics
177	

Panel	Analyte	HUGO Gene Symbol	xMAP Region	LoD, pg/mL	Intra-Assay CV, %	Inter-Assay CV, %
Group I - 27-plex	IL-1b	IL1B	39	0.02	0.7	2.5
	IL-1ra	IL1RA	25	1.28	0.9	5.7
	IL-2	IL2	38	0.34	0.8	3.6
	IL-4	IL4	52	0.02	2	3.5
	IL-5	IL5	33	0.03	1.7	4.5
	IL-6	IL6	19	0.13	0.7	3.2
	IL-7	IL7	74	0.07	1.4	3.2
	IL-8	IL8	54	0.06	2.4	2.9
	IL-9	IL9	77	0.83	1	4.3
	IL-10	IL10	56	0.12	0.4	6.4
	IL-12 (p70)	IL12A,B	75	3.10	2.2	1.8
	IL-13	IL13	51	0.05	1.2	4.4
	IL-15	IL15	73	0.62	0.4	4.5
	IL-17	IL17	76	0.59	0.8	7.5
	Eotaxin	CCL11	43	0.52	1.2	8
	bFGF	FGFB	44	0.47	0.7	6.1
	G-CSF	CSF3	57	0.21	1.5	3.7
	GM-CSF	CSF2	34	0.65	0.4	3.4
	IFNg	IFNG	21	0.52	1.3	2.9
	IP-10	CXCL10	48	0.63	1.1	3.8
	MCP-1	CCL2	53	0.23	0.5	4
	MIP-1a	CCL3	55	0.22	0.6	5.3
	MIP-1b	CCL4	18	0.21	0.5	2.5
	PDGF	PDGF	47	0.45	2	3.8
	RANIES	CCL5	37	0.46	1	6.5
	INFa	INF	36	1.55	1.4	3.6
Croup II - 21 play	VEGF	VEGF	45	0.47	1.1	4.1
Group II - 21-piex	IFINAZ		20	0.93	1.7	9
	IL-1a II_2ra		13	0.15	1.1	5.5 11 1
	IL-21a II_3	ILZINA II 3	64	1.64	0.0	64
	IL-3 II -12 (n40)	II 12B	28	0.40	14	7.6
	IL-12 (p+0) II -16	II 16	20	0.51	1.4	6.8
	II -18	IL 18	42	0.09	6	8.6
	CTACK	CCL27	72	1.10	2.5	6.1
	GRO-a	CXCL1	61	1.87	1	5.6
	HGF	HGF	62	0.74	0.9	6
	LIF	LIF	29	0.54	0.9	2.9
	MCP-3	CCL7	26	0.31	1.5	10.9
	M-CSF	CSF1	67	0.53	1	4.8
	MIF	MIF	35	1.38	4.6	7.9
	MIG	CXCL9	14	1.50	1.3	9.7
	b-NGF	NGFB	46	0.21	0.9	5
	SCF	SCF	65	0.38	1.3	3.8
	SCGF-b	CLEC11A	78	5.72	1.5	5.8
	SDF-1a	CXCL12	22	1.19	1.3	12.3
	TNFb	TNFB	30	0.51	0.4	3.8
	TRAIL	TNFSF10	66	0.79	1.5	6.3
ICAM-1 singleplex VCAM-1 singleplex	ICAM-1 VCAM-1	ICAM1 VCAM1	12 15	0.95 0.70	1.3 1.8	5.4 9.4

178 179 Table S10. Leukocyte Sub-populations Among Peritoneal Aspirates

				Peritoneal As	pirate
Population	Surface Staining	Peripheral Blood ¹	Total	Adherent	Non-adherent
Leukocytes	CD45+	85%	98	98	98
Granulocytes	CD14+ CD68- CD10+	59 ± 20	<1	<1	<1
Monocytes/Macrophages	CD14+ CD68+ CD10-	6 ± 2	64 ± 7 74 ± 8 ^{**}	96 ± 7	41 ± 6
Lymphocytes	CD14- CD68- CD10-	34 ± 8	20 ± 6	<5	60 ± 13

180

181 Values are mean \pm s.d. percent composition of three donors.

182 ¹Peripheral blood values are reference ranges for healthy adults (Reichert et al. 1991, Bain

183 1996)

Table S11. Kinase Inhibitor Treatments

Inhibitor	Primary Target(s)	IC50 (nM)	Experimental Dose (uM)
LY294002	ΡΙ3Κβ	310	10
	ΡΙ3Κα	730	
	ΡΙ3Κδ	1,060	
	ΡΙ3Κγ	6,600	
PD98059	MEK1	4,000	50
	MEK2	50,000	
SB203580	p38α/MAPK14	50	10
	p38β/MAPK11	500	
SP600125	JNK1	40	10
	JNK2	40	
	JNK3	90	
BMS-345541	IKK2	300	10
	IKK1	4,000	
SU6656	SRC	280	10
	Fyn	170	
	Yes	20	
	Lyn	130	
JAK Inhibitor I	JAK1	15 (murine)	10
	JAK2	1	
	JAK3	5 (Ki50)	
	Tyk2	1	
Gö6983	ΡΚCα	7	10
	ΡΚCβ	7	
	PKCγ	6	
	ΡΚϹδ	10	
	ΡΚϹζ	60	