Supporting Material:

Using Liquid Crystals to Reveal How Mechanical Anisotropy Changes Interfacial Behaviors of Motile Bacteria

Peter C. Mushenheim,[†] Rishi R. Trivedi,[‡] Douglas B. Weibel[‡]* & Nicholas L. Abbott[†]*

[†]Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. Fax: +1 608-262-5434; Tel: +1 608-265-5278; [‡]Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA. Fax: +1 608-265-0764; Tel: +1 608-890-1342

*Correspondence: weibel@biochem.wisc.edu and abbott@engr.wisc.edu

Mylar

Figure S1. Experimental setup. A schematic illustration depicting imaging chambers used to analyze bacterial cells in LC solutions. The LC director profile of nematic DSCG at 25°C (in a region of the sample exhibiting uniform polar and azimuthal alignment) is indicated by the dotted lines.

Figure S2. Additional examples of LC elasticity-induced guided motility of cells adsorbed to nematic tactoids. Two examples (A-C and D-F) of the motility of P. *mirabilis* cells adsorbed to the interface of nematic tactoids. (A and D) Bright field micrographs of nematic tactoids on which the trajectories of motile P. *mirabilis* cells (indicated by arrows) adsorbed to the N-I interface are indicated. (B and E) Corresponding crossed polars images. (C and F) Schematic representations of the LC director profiles of the tactoids in B and E, respectively. Scale bars are 10 μ m.

Figure S3. Orientations of non-motile bacteria adsorbed to nematic tactoids. (*A*) Bright field and (*B*) crossed polars images, respectively, of non-motile *P. mirabilis* cells adsorbed at the interface of nematic tactoids that formed on a glass substrate following cooling of an isotropic phase of DSCG (15 wt%) from 40°C to 33°C. The scale bar is 10 μ m.

Figure S4. Trapping of non-motile cells at the boojum associated with an isotropic tactoid. (*A*) Bright field and (*B*) crossed polars micrographs of non-motile *P. mirabilis* cells adsorbed at the N-I interface of an isotropic tactoid. Scale bars are 10 μ m.

Figure S5. Escape of an adsorbed motile cell into the interior of an isotropic tactoid. Sequence of bright field micrographs that depicts the trajectory of a motile *P. mirabilis* cell, initially adsorbed to the interface of an isotropic tactoid, which escapes into the interior of the tactoid. The trajectory of the cell (indicated by a red dot) is depicted in the images. The random motion of the cell suggests that it is not adsorbed to the N-I interface. The scale bar is 10 μ m.

Figure S6. Temporal accumulation of motile bacteria at the interface of isotropic tactoids. (*A* and *B*) Bright field and crossed polars images, respectively of motile *P. mirabilis* cells dispersed in DSCG solution quenched to 33°C that contains nematic tactoids encompassed by isotropic phase solution. (*C* and *D*) Bright field and crossed polars images, respectively of motile *P. mirabilis* cells dispersed in DSCG solution heated to 30°C that contains isotropic tactoids surrounded by a continuous nematic phase. All images were obtained following 15 min of equilibration at the specified temperatures. Scale bars are 20 μ m.

Supplementary Movie Captions

Movie S1 Bright field optical microscopy movie in which the trajectories of motile *P. mirabilis* cells adsorbed to the N-I interface of a nematic tactoid largely map out the interfacial director profile of the tactoid. Additionally, bacteria can be observed escaping the interface at the cusped poles of the tactoids where a boojum is present. Scale bar = $10 \mu m$.

Movie S2 Bright field optical microscopy movie in which a single motile *P. mirabilis* cell adsorbed to the N-I interface of an isotropic tactoid escapes into the continuous nematic phase at the cusped pole of the tactoid, which is adjacent to a boojum defect in the nematic phase. Scale bar = $10 \mu m$.

Movie S3 Bright field optical microscopy movie that shows accumulation of motile *P. mirabilis* adsorbed to the N-I interface of an isotropic tactoid at the cusp-shaped pole. The large aggregate of cells collectively escape into the continuous nematic phase. Scale bar = $10 \mu m$.

Movie S4 Bright field optical microscopy movie that shows the accumulation of motile *P*. *mirabilis* within and at the N-I interface of a large isotropic domain that spans the entire thickness of the experimental cell. This isotropic domain formed by quenching the 15 wt% DSCG solution from 40°C to 30°C. Scale bar = $20 \mu m$.