

Supplementary Figure 1. ¹H NMR spectrum of L1.

Supplementary Figure 2. ¹³C NMR spectrum of L1.

Supplementary Figure 3. ³¹P NMR spectrum of L1.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 3843 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 P: 0-2 Na: 0-1

Wang/Zhang ZHA102213	g, wyzL1, mw 497; E MA1 142 (2.700) Cr	SI+ n (Cen,4, 60.00, A	r); Sm (SG, 4x	3.00); Cm (83:151)					ι	JCSB CHE	M BIOCHEM Q TOF MS	TOF2 ES+
100-					520.3088							1	.01e3
%		2010-041-00			521.	3118					646 A 45 (102) - 1		
508	3.0666 510.1236	512.0236 ^{515.1}	104 516.0192	518.64	431	522.3132	525.0	0972 52	7.1021	528.1	240 531	.1313 532.0577	
5	08.0 510.0	512.0 514.0	516.0	518.0	520.0	522.0 5	24.0	526.0	528	3.0	530.0	532.0	⊤ m/z
Minimum:				-1.5									
Maximum:		3.0	10.0	50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula						
520.3088	520.3085	0.3	0.6	4.5	13.8	C27	H49	N O	3 P2	Na			
	520.3093	-0.5	-1.0	12.5	3.1	C31	H43	N3 (02 P				
	520.3083	0.5	1.0	8.5	15.8	C25	H44	N7 () P2				
	520.3095	-0.7	-1.3	4.5	25.6	C21	H42	N7 (28				
	520.3098	-1.0	-1.9	0.5	23.6	C23	H47	N O	10 Na	1			
	520.3076	1.2	2.3	17.5	0.6	C33	H38	N5 0)				
	520.3101	-1.3	-2.5	1.5	40.9	C18	H44	N9 (05 P	Na			
	520.3071	1.7	3.3	1.5	35.5	C19	H43	N7 (08 Na	1			
	520.3069	1.9	3.7	9.5	7.1	C29	H44	N3 (2 P	Na			
	520.3069	1.9	3.7	3.5	20.8	C24	H48	N3 (05 P2	0			
	520.3109	-2.1	-4.0	13.5	1.0	C34	H44	N P	Na				
	520.3109	-2.1	-4.0	7.5	8.0	C29	H48	N O	3 P2				
	520.3066	2.2	4.2	13.5	8.7	C27	H39	N9 1	2				
	520.3111	-2.3	-4.4	-0.5	37.8	C19	H47	N5 (9 P				
	520.3111	-2.3	-4.4	5.5	17.7	C24	H43	N5 (06 Na	1			
	520.3063	2.5	4.8	12.5	1.8	C32	H42	N O	5				
	520,3059	2.9	5.6	5.5	23.9	C23	H45	N7 () P2	Na			

Supplementary Figure 4. HRMS of L1.

Supplementary Figure 5. ¹H NMR spectrum of L1AuCl.

Supplementary Figure 6. ¹³C NMR spectrum of L1AuCl.

Parameter	Value	
Title	wyz8-L1AuCI-P31	
Solvent	cddB	
Spectrometer Frequency	/ 161.90	P(Ad)
Nucleus	31P	AuCI
		Me Me
		N N N N
		Me

Supplementary Figure 7. ³¹P NMR spectrum of L1AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 3887 formula(e) evaluated with 10 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 Na: 0-1 P: 0-2 CI: 0-2 Au: 0-4

100-

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.78e3

Wang/Zhang, wyzL1AuCl, mw 729; ESI+ ZHA102213MI 1277 (23.685) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (1176:1294) 752.2451

%	8 	751.4969751.5	752.53	752.5354.752.6100					753.0193						
750.75	751.00 751.25	751.50	751.75	752.00	752.25 75	52.50	752.75	5	753.0	0	753.25	753.50	753.75		
Minimum: Maximum:		3.0	10.0	$^{-1.5}_{50.0}$											
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	For	nula								
752.2451	752.2453 752.2445 752.2458 752.2440 752.2463 752.2438 752.2438 752.2434 752.2431 752.2431 752.2477	-0.2 0.6 -0.7 1.1 -1.2 1.3 1.7 -1.8 2.0 -2.6	-0.3 0.8 -0.9 1.5 -1.6 1.7 2.3 -2.4 2.7 -3.5	24.5 18.5 32.5 37.5 13.5 8.5 29.5 21.5 2.5 27.5	5547413 C 5547409 S 5547412 C 5547411 C 5547412 S 5547412 S 5547412 C 5547412 C 5547412 C 5547410 C 5547401 C	$ \begin{array}{c} C43 \\ C35 \\ C46 \\ C47 \\ C26 \\ C26 \\ C44 \\ C37 \\ C18 \\ C45 \\ \end{array} $	H42 H39 H36 H31 H44 H37 H38 H41 H41	N5 N3 N7 N9 N7 N7 N3 N5	Na P P P Na P Na P P P P P	P P Cl P Cl2 P Au Au2 Cl2	Cl2 Au Cl Au Au Cl				

Supplementary Figure 8. HRMS of L1AuCl.

Supplementary Figure 9. ¹H NMR spectrum of L2.

Supplementary Figure 10. ¹³C NMR spectrum of L2.

Supplementary Figure 11. ³¹P NMR spectrum of L2.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 557 100 3 496.3119

%			197.3211							499.3	3292			
0 [±]	496.	7214496.8307		497.98	35,498.1037	498.	7155.49	9.0185.	499.	1579			499.9806	m/z
496.00	496.50	497.00	497.50	erf ei	498.00	498.	50	499	9.00	e l t	499.5	50	500.00	111111102
Minimum: Maximum:		3.0	10.0	-1.5 50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT		Form	ula						
498.3280	498.3281 498.3281 498.3278 498.3290 498.3290 498.3290 498.3268 498.3266 498.3266 498.3266 498.3297 498.3257 498.305 498.3005 498.3308 498.3308	-0.1 -0.2 -1.0 -1.2 1.2 1.4 1.4 -1.7 2.3 -2.8 -2.8 -2.8	-0.2 -0.2 -2.0 -2.4 2.8 2.8 2.8 -3.4 4.6 -5.0 -5.6 5.8	$\begin{array}{c} 7.5 \\ 1.5 \\ 0.5 \\ 13.5 \\ 5.5 \\ 2.5 \\ 10.5 \\ 2.5 \\ -1.5 \\ 10.5 \\ 0.5 \\ 0.5 \\ 1.5 \end{array}$	277318 277316 277325 277325 277321 277319 277324 277316 277316 277310 277319 277329	7.3 1.8 8.5 5.8 0.5 7.0 8 5.8 0.5 7.3 8 9.3 0 9.3 0 9.3	C23 C18 C23 C24 C24 C22 C27 C32 C21 C16 C25 C22 C27 C19	H41 H45 H48 H45 H44 H45 H50 H46 H46 H46 H46 H49 H45 H45	N9 N9 N5 N5 N7 N9 N3 N3	02 05 010 P 06 03 Na 03 05 02 07 04 08	Na P P2 P Na Pa Na	P P		

Supplementary Figure 12. HRMS of L2.

Supplementary Figure 13. ¹H NMR spectrum of L2AuCl.

Supplementary Figure 14. ¹³C NMR spectrum of L2AuCl.

Supplementary Figure 15. ³¹P NMR spectrum of L2AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 3887 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-100 N: 0-10 Na: 0-1 P: 0-2 CI: 0-2 Au: 0-4

Wang/Zhang, v ZHA102213M 100-	wyzL2AuCl, mw 729; J 260 (4.937) Cn (Ce	ESI+ n,4, 60.00, Ar)); Sm (SG, 4x3.	00); Cm (252:3 752	306) 2.2448							UCS	B CHEM BIOCH	HEM QTOF2 OF MS ES+ 3.39e3
% 7	48.4775		751.53	70 752.0585		753.	2512	7	54.24	33	75	55.2477	756.2173	
748.00	749.00	750.00	751.00	752.0	0	753.00		754	00		755.	00	756.00	757.00
Minimum: Maximum:		3.0	10.0	-1.5 50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT		Form	ula						
752.2448	752.2445 752.2453 752.2440 752.2458 752.2438 752.2438 752.2434 752.2431 752.2431	0.3 -0.5 0.8 -1.0 1.0 1.4 -1.5 1.7 -2.1	0.4 -0.7 1.1 -1.3 1.3 1.9 -2.0 2.3 -2.8	18.5 24.5 37.5 32.5 8.5 29.5 13.5 2.5 21.5	423.1 239.3 346.4 52.4 255.1 39.0 0.3 697.6 405.0		C35 C43 C47 C46 C26 C44 C34 C18 C37	H39 H42 H31 H36 H44 H37 H44 H41 H38	N3 N5 N9 N7 N7 N7 N7 N5 N3	Na P P Na Na P P	P P Cl Cl2 P P Au2 Au2	Au Cl2 Au Cl Cl Au		

Supplementary Figure 16. HRMS of L2AuCl.

Supplementary Figure 17. ¹H NMR spectrum of L3.

Supplementary Figure 18. ¹³C NMR spectrum of L3.

Supplementary Figure 19. ³¹P NMR spectrum of L3.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron lons 4441 formula(e) evaluated with 18 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-2 Wang/Zhang, wyzL3, mw 565; ESI+ ZHA102213MC 453 (8.406) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (436:519) UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 395 1.25e4 100 589.3428 % 588.1242 590.3453 591.3487 594.1473 m/z 582.5936 0 582.0 593.0 4..... 584.0 585.0 586.0 τŢ 591.0 583.0 587.0 588.0 589.0 590.0 592.0 594.0 -1.5 Minimum: 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 588.3395 588.3397 588.3390 588.3387 12.5 57.5 203.9 74.7 352.4 227.9 149.2 0.0 -0.2 0.5 0.8 0.0 $\begin{array}{c} 18.5\\ 10.5\\ 2.5\\ 12.5\\ 1.5\\ 5.5\\ 14.5\\ -1.5\\ 23.5\\ 11.5\\ 5.5\\ 1.5\\ 5.5\\ 1.5\\ 5.5\\ 2.5\\ 2.5\end{array}$ 588.3395 C40 C30 C26 C29 C22 C24 C31 C20 C42 C33 C28 C23 C28 C23 C28 C23 C28 C33 H47 N N5 N9 N7 N9 N7 N3 N3 N3 N5 N5 N5 N5 N5 O P 5 07 3 08 9 03 7 07 9 06 7 04 5 P2 9 03 7 07 H4 6 H52 H43 H52 H47 H48 H42 H53 H42 H53 H42 H51 H51 H51 H52 $\begin{array}{c} -0.3\\ 0.8\\ 1.4\\ -1.4\\ 1.4\\ -1.4\\ 1.7\\ -2.7\\ 2.7\\ 2.7\\ -3.1\\ -3.2\\ 3.6\\ 3.7\\ 3.9\\ 4.1\\ -4.2\end{array}$ Na Ρ Na P2 588.3387 588.3403 588.3387 588.3403 588.3385 588.3379 588.3379 588.3379 588.3414 588.3374 588.3374 588.3374 588.3372 588.3372 588.3372 -0.8 0.8 -0.8 1.0 -1.6 1.6 -1.8 -1.9 2.1 2.2 2.3 Na P 20.1 32.0 478.0 Na P2 478.0 46.9 22.7 126.1 298.8 113.4 36.7 3.0 251.9 05 1 08 010 07 04 F Na N P P P Na P2 Na O5 22 <mark>a P</mark> Na P2 2.4 -2.5 C38 C25 H48 H53 588.3420

Supplementary Figure 20. HRMS of L3.

Supplementary Figure 21. ¹H NMR spectrum of L3AuCl.

Supplementary Figure 22. ¹³C NMR spectrum of L3AuCl.

Supplementary Figure 23. ³¹P NMR spectrum of L3AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19911 formula(e) evaluated with 62 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL3AuCl, mw 797; ESI+ ZHA102213MK 89 (1.688) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (84:102) 100 -820.2709

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 768

%									821.2	2709				
0		819.5554	819.7086	819.9994	820.4777 820.5992	2	821.0	000						- m/z
0111	819.00	819.50		820.00	820.50		821.	.00	0.01	1.1	821.50		822.	00
Minimum:				-1.5										
Maximum:		3.0	10.0	50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula							
820.2709	820.2709	0.0	0.0	12.5	2773436.0	C29	H42	N7	07	Na	Au			
	820.2709	0.0	0.0	20.5	2773564.3	C40	H43	N3	Na	Cl	Au			
	820.2709	0.0	0.0	14.5	2773564.3	C35	H47	N3	03	P	Cl Au			
	820.2709	0.0	0.0	6.5	2773410.8	C24	H4 6	N7	010) P	Au			
	820.2707	0.2	0.2	20.5	2773475.0	C39	H43	N3	0	Na	P Au			
	820.2711	-0.2	-0.2	6.5	2773564.5	C25	Н4 б	N7	09	Cl	Au			
	820.2707	0.2	0.2	29.5	2773565.3	C4 9	H44	N3	05	P	C1			
	820 2707	0 2	0 2	35 5	2773565 5	C54	H4 0	N3	02	Na	Cl			
	820 2707	0.2	0.2	27.5	2773515 8	C43	H30	N7	09	Na	01			
	820 2711	-0.2	-0.2	-0.5	2773563 8	C21	H50	N3	0	D	C1 A112			
	820 2705	0 1	. 0.5	35 5	2773531 0	C53	H/ 0	N3	03	Ma	D AUZ			
	020.2703	0.1	0.5	12 5	2772520 5	C57	1120	ME	02	na	L			
	020.2713	-0.4	-0.5	43.J	2772565 2	CE 2	1125	NO	C1					
	020.2704	0.5	0.0	1 5	2773561 5	002	ILE O	N S	010	N M	D C	1 7		
	020.2704	0.5	0.0	-1.5	2773304.3	C21	TTAA	MU	02	77	a r c	I AU		
	020.2703	0.0	- 0.7	0.0	2773407 5	C20	1127	N	02	Auz				
	820.2715	-0.0	-0.7	28.5	2773497.5	C43	H37	NS	Au	17	D (7)			
	820.2715	-0.0	-0.7	18.5	2773564.8	036	H4 5	N9	08	Na	P CI			
	820.2702	0.7	0.9	39.5	2773529.3	051	H35	N9	0	P	D C			
	820.2717	-0.8	5 -1.0	3.5	2773564.3	CZZ	H48	N9	06	Na	P CI	Au		
	820.2701	0.8	1.0	23.5	2773495.8	C42	H41	N	04	Au				
	820.2699	1.0	1.2	38.5	2773537.5	C56	H38	N	06	-				
	820.2721	-1.2	-1.5	34.5	2773565.3	C50	H4 U	N/	0	P	UL al			
	820.2696	1.3	1.0	31.5	2773565.0	C48	H4 1	N/	0	Na	P CI			
	820.2695	1.4	1.7	4.5	2773563.8	C23	H45	NS	CI	Au.	2			
	820.2723	-1.4	-1./	30.5	2773565.3	C52	H45	N	03	Na	P CI			
	820.2724	-1.5	-1.8	22.5	2773509.0	C41	H44	N5	010) N.	a P			
	820.2725	-1.0	-2.0	15.5	2773564.3	C38	H48	N	0 1	la .	P CL .	Au		
	820.2725	-1.0	-2.0	22.5	2773565.0	C42	H44	N5	09	Na	CI			
	820.2693	1.6	2.0	19.5	2773564.3	C3.1	H42	N5	02	CT	Au			
	820.2693	1.6	2.0	11.5	2773427.5	C26	H41	N9	09	Au				
	820.2693	1.6	2.0	4.5	2773278.0	C22	H45	N5	0	Ρ.	Au2			
	820.2726	-1.7	/ -2.1	7.5	2773418.8	C27	H47	N5	08	Na	P Au			
	820.2727	-1.8	3 -2.2	7.5	2773564.3	C28	H47	N5	07	Na	Cl A	u		
	820.2691	1.8	2.2	34.5	2773565.5	C51	H39	N5	04	Cl				
	820.2691	1.8	2.2	19.5	2773466.5	C36	H42	N5	03	P	Au			
	820.2691	1.8	2.2	25.5	2773487.5	C41	H38	N5	Na	Au				
	820.2728	-1.9	9 -2.3	1.5	2773564.5	C23	H51	N5	010) P	Cl A	u		
	820.2689	2.0	2.4	34.5	2773527.8	C50	H39	N5	05	P				
	820.2729	-2.0) -2.4	44.5	2773541.0	C60	H35	N3	Na					
	820.2729	-2.0) -2.4	38.5	2773534.8	C55	H39	N3	03	P				
	820.2688	2.1	2.6	40.5	2773535.3	C55	H35	N5	02	Na				
	820.2731	-2.2	2 -2.7	30.5	2773521.5	C45	H38	N7	09					
	820.2731	-2.2	-2.7	23.5	2773486.8	C41	H42	N3	0	P.	Au			
	820.2687	2.2	2.7	3.5	2773564.5	C23	H47	N7	09	Na	Cl A	u		
	820.2731	-2.2	2 -2.7	38.5	2773565.8	C56	H39	N3	02	Cl				
	820.2685	2.4	2.9	3.5	2773391.5	C22	H47	N7	010) N.	a P A	u		
	820.2733	-2.4	-2.9	23.5	2773564.5	C42	H42	N3	Cl	Au				
	820.2685	2.4	2.9	11.5	2773564.0	C33	H48	N3	03	Na	P Cl	Au		
	820.2733	-2.4	-2.9	15.5	2773452.0	C31	H41	N7	07	Au				
	820.2735	-2.0	5 -3.2	0.5	2773268.8	C17	H44	N7	05	Au.	2			
	820.2683	2.6	3.2	26.5	2773565.0	C47	H45	N3	05	Na	P Cl			
	820.2736	-2.5	-3.3	11.5	2773461.0	C33	H46	N	09	Na	Au			
	820.2682	2.7	3.3	15.5	2773564.0	C31	H43	N9	0	P	Cl Au			

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19911 formula(e) evaluated with 62 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL3AuCl, mw 797; ESI+ ZHA102213MK 89 (1.688) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (84:102) 820,2709

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 768

100-				820	0.2709										768
%		819.5554	819.7086 8	819.9994	820.4777 820.5992	2	821.00	00	821.:	2709					m/7
•	819.00	819.50	111111	820.00	820.50		821.0	0	1		821.5	0	1.1.1.1	822.00	1102
Minimum: Maximum:		3.0	10.0	$-1.5 \\ 50.0$											
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula								
	820.2681 820.2737 820.2680 820.2680 820.2680 820.2679 820.2679 820.2739 820.2739	2.8 -2.8 2.9 2.9 2.9 3.0 3.0 -3.0 -3.0	3.4 -3.4 3.5 3.5 3.5 3.7 3.7 -3.7 -3.7	-0.5 27.5 36.5 -0.5 30.5 5.5 14.5 27.5 12.5	2773564.0 2773510.3 2773565.3 2773565.0 2773565.0 2773565.0 2773565.0 2773565.0 2773565.0 2773565.0 2773414.5	C22 C42 C50 C21 C45 C26 C36 C43 C28	H49 H40 H36 H49 H40 H45 H46 H40 H43	N C N9 N9 N9 N9 N9 N9 N9 N9)4 06 Na)5 03)2)6 05 04	Cl Na Cl P Na Cl Na Na	Au2 P Au2 C1 Au2 Au C1 P	Au			

Supplementary Figure 24. HRMS of L3AuCl.

Supplementary Figure 25. ¹H NMR spectrum of L4.

Supplementary Figure 26. ¹³C NMR spectrum of L4.

Supplementary Figure 27. ³¹P NMR spectrum of L4.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

 Monoisotopic Mass, Even Electron Ions

 4463 formula(e) evaluated with 20 results within limits (all results (up to 1000) for each mass)

 Elements Used:

 C: 0-100
 H: 0-100
 N: 0-10
 O: 0-10
 Na: 0-1
 P: 0-2

 WangZhang, wyzL4, mv 567; ESI+

 ZHA102213MD
 431 (7.997) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (387:439)

 Circle
 590;3174

Wang/Zhang ZHA102213N	, wyzL4, mw 567; ESI MD 431 (7.997) Cn (C	+ en,4, 60.00, A	Ar); Sm (SG, -	4x3.00); Cm (3	87:439)						UC	SB CHEM BI	OCHEM QT TOF MS F	OF2 ES+
100 %578 0	.6481 582.0 580.0 582.0	5034	585.6783	587.6507 58	8.6561 590.0	3236 592.3207 592.0	593.342	8 59	5.7246	596.	6824	600.87	¹² 601.7071 602.0	m/z
Minimum.				-15										
Maximum:		3.0	10.0	50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Fori	nula							
590.3174	590.3172 590.3171 590.3178 590.3179 590.3180 590.3166 590.3162 590.3164	0.2 0.3 -0.4 -0.5 -0.6 0.8 -0.8 1.0	$\begin{array}{c} 0.3 \\ 0.5 \\ -0.7 \\ -0.8 \\ -1.0 \\ 1.4 \\ -1.4 \\ 1.7 \end{array}$	-1.5 23.5 14.5 12.5 6.5 7.5 2.5 9.5	83.5 6.1 4.0 14.2 41.0 21.3 37.1 7.4	C19 C41 C33 C28 C23 C27 C25 C32	H51 H40 H46 H41 H45 H45 H50 H50	N7 N3 N9 N9 N5 N3 N	08 0 04 07 08 09 05	Na P2 Na Na Na P2	P2 P			
	590.3164 590.3161 590.3188 590.3156 590.3154 590.3154 590.3196 590.3196 590.3196 590.3150 590.3147 590.3147	1.0 1.3 -1.4 -1.6 1.8 2.0 -2.2 -2.2 2.4 2.6 2.7 -2.9	$ \begin{array}{r} 1.7\\ 2.2\\ -2.4\\ -2.7\\ 3.0\\ 3.4\\ -3.7\\ -3.7\\ 4.1\\ 4.4\\ 4.6\\ -4.9\end{array} $	15.5 19.5 18.5 10.5 3.5 11.5 7.5 1.5 6.5 14.5 20.5 15.5	0.3 0.8 1.3 11.5 58.6 10.3 27.3 62.3 34.1 1.9 2.1 6.6	C37 C35 C29 C21 C31 C26 C21 C24 C34 C39 C30	H46 H41 H45 H44 H46 H47 H46 H50 H44 H45 H41 H40	N N N5 N5 N5 N7 N7 N7 N3 N3 N3	02 P 02 08 07 0 05 08 010 04 0 04 0	Na P Na Na P2 P Na	P P2 P			

Supplementary Figure 28. HRMS of L4.

Supplementary Figure 29. ¹H NMR spectrum of L4AuCl.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10

Supplementary Figure 30. ¹³C NMR spectrum of L4AuCl.

Supplementary Figure 31. ³¹P NMR spectrum of L4AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 20027 formula(e) evaluated with 63 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL4AuCl, mw 799; ESI+ ZHA102213ML 195 (3.698) Cn (Cen, 4, 60.00, Ar); Sm (SG, 4x3.00); Cm (181:229) 822.2507

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.99e3

100-	,, ,	.,		8	22.2507				2.99e3
%			821 693	30		823.2	2574	824.2549	
0 [±] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	820.2518			822.004	2	823.0118			m/z
819.50	820.00 820.50	821.00	821.50	822.00	822.50	823.00	823.50	824.00 82	24.50 825.00
Minimum: Maximum:		3.0	10.0	$^{-1.5}_{50.0}$					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
822.2507	822.2507 822.2508 822.2505 822.2504 822.2510 822.2510 822.2510 822.2512 822.2502 822.2502 822.2503 822.2500 822.2500 822.2500 822.2500 822.2500 822.2500 822.2500 822.2516 822.2499 822.2516 822.2497 822.2518 822.2518 822.2518 822.2518 822.2518 822.2518 822.2518 822.2518 822.2518 822.2518 822.2528 822.2529 822.2520 822.2520 822.2520 822.2521 822.2494 822.2520 822.2522 822.2524 822.2524 822.2524 822.2524 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2526 822.2528 822.2529 822.2529 822.2529 822.2530 822.2531 822.2531 822.2483 822.2531 822.2483 822.2483 822.2483 822.2483 822.2483	$\begin{array}{c} 0 & 0 \\ -0 & 1 \\ 0 & 2 \\ 0 & 2 \\ 0 & 3 \\ -0 & 3 \\ -0 & 4 \\ 0 & 5 \\ 0 & 5 \\ 0 & 5 \\ 0 & 5 \\ 0 & 5 \\ 0 & 6 \\ 0 & 7 \\ 0 & $	$\begin{array}{c} 0.0\\ -0.1\\ 0.2\\ 0.2\\ 0.4\\ -0.5\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.7\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9$	$\begin{array}{c} 28.5\\ 18.5\\ -0.5\\ -0.5\\ 10.5\\ 5.5\\ -0.5\\ 12.5\\ 14.5\\ 20.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ $	$\begin{array}{c} 293.8\\ 4.1\\ 73.4\\ 245.7\\ 113.1\\ 50.2\\ 73.4\\ 255.7\\ 392.9\\ 530.6\\ 5.0\\ 25.7\\ 392.9\\ 530.6\\ 5.0\\ 252.0\\ 62.5\\ 1.4\\ 245.1\\ 2.5\\ 1.4\\ 246.1\\ 469.5\\ 426.6\\ 334.9\\ 1.8\\ 11.6\\ 426.6\\ 252.8\\ 291.5\\ 82.9\\ 2291.5\\ 82.9\\$	$\begin{array}{ccccc} C42 & H35 \\ C35 & H43 \\ C56 & H23 \\ C20 & H48 \\ C21 & H46 \\ C53 & H34 \\ C21 & H46 \\ C33 & H34 \\ C24 & H44 \\ C34 & H45 \\ C49 & H36 \\ C39 & H41 \\ C38 & H41 \\ C38 & H42 \\ C42 & H37 \\ C35 & H38 \\ H41 \\ C52 & H38 \\ H41 \\ C52 & H38 \\ C31 & H36 \\ C31 & H36 \\ C31 & H42 \\ C22 & H38 \\ C31 & H36 \\ C31 & H42 \\ C26 & H45 \\ C33 & H49 \\ C27 & H45 \\ C33 & H49 \\ C27 & H46 \\ C33 & H49 \\ C27 & H46 \\ C33 & H49 \\ C27 & H46 \\ C33 & H49 \\ C33 & H49 \\ C27 & H46 \\ C41 & H42 \\ C44 & H36 \\ C41 & H39 \\ C22 & H43 \\ C41 & H40 \\ C41 & H40 \\ C41 & H40 \\ C42 & H38 \\ C35 & H39 \\ C22 & H43 \\ C16 & H42 \\ C25 & H39 \\ C36 & H40 \\ C41 & H40 \\ C52 & H39 \\ C32 & H48 \\ C51 & H39 \\ C35 & H40 \\ C41 & H40 \\ C42 & H38 \\ C35 & H40 \\ C41 & H38 \\ C35 & H40 \\ C40 & H38 \\ C35 & H40 \\ C40 & H36 \\ C40 & H36 \\ C50 & H37 \\ C37 & H42 \\ C37 & H$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au Na P Cl P Cl Au2 Cl Au Na P Cl A P Au2 P Cl Au P Cl Au P Cl Au P Cl Au Na Cl Au Na P Cl Cl Au Na P Cl Cl Au P Cl Au Na Cl Au P Cl Au Na P Cl Au P Cl Au Na P Cl Au Na P Cl Au Na P Cl Au Na P Cl Au Na Cl Au Na P Cl Au Cl Au Na P Cl Au Cl Au Na P Cl Au Cl Au Na P Cl Au Cl Au	

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 20027 formula(e) evaluated with 63 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL4AuCl, mw 799; ESI+ ZHA102213ML 195 (3.698) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (181:229) 822.2507

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.99e3

100-					22.2001							2.0000
%	820.2518	3	821.69	822.004	12	823.	823.2 0118	574		1	m/z	
819.50	820.00 8	20.50 821.00	821.5	0 822.00	822.50	823	.00	823	.50	824.0	824.50	825.00
Minimum: Maximum:		3.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula					
	822.2532 822.2481 822.2533 822.2533 822.2534 822.2534 822.2535 822.2478 822.2477	-2.5 2.6 2.6 -2.7 -2.7 -2.7 -2.8 2.9 -3.0 3.0	-3.0 3.2 -3.2 3.3 -3.3 -3.4 3.5 -3.6 3.6	12.5 40.5 34.5 12.5 3.5 6.5 43.5 11.5 2.5 0.5	414.9 246.6 244.3 18.8 69.7 53.4 254.4 10.6 52.4 147.0	C27 C54 C49 C28 C22 C23 C55 C32 C25 C25 C16	H41 H33 H37 H41 H45 H33 H46 H50 H50 H44	N9 N5 N9 N7 N3 N3 N9	05 03 06 04 010 07 P 04 09 P	Na P P Na CI Na (P Cl Na P Na P Cl Au2	Au Au Ll Au Au Cl Au Cl Au	

Supplementary Figure 32. HRMS of L4AuCl.

Supplementary Figure 33. ¹H NMR spectrum of L5.

Supplementary Figure 34. ¹³C NMR spectrum of L5.

Supplementary Figure 35. ³¹P NMR spectrum of L5.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4336 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.92e3 100-574.6437 577.3440 % .3440 577.6733 578.00 579.00 579.00 579.00 579.00 579.00 579.00 573.6358 574.0099 576.6488 575.6479 577.00 575.00 0I 574.00 576.00 580.00 -1.5 50.0 Minimum: Maximum: 3.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 0.0 -0.2 0.5 0.8 -0.8 0.8 -0.8 1.0 N O P N5 07 N3 08 N9 06 N7 07 N9 03 N7 04 N5 P2 N9 03 576.3395 576.3397 576.3390 576.3387 $\begin{array}{c} 0.0 \\ -0.3 \\ 0.9 \\ 1.4 \\ -1.4 \\ 1.4 \\ -1.4 \\ 1.7 \\ -2.8 \\ 2.8 \end{array}$ 576.3395 $\begin{array}{c} 17.5\\ 9.5\\ 1.5\\ 5.5\\ 0.5\\ 11.5\\ 6.5\\ 13.5\\ 14.5\\ 22.5\\ 10.5\\ 4.5\\ 0.5\\ 6.5\\ 8.5\\ 14.5\\ 1.5\end{array}$ H47 H46 H52 H47 H52 H43 H48 H48 H48 H42 H42 H47 H51 H51 H47 H52 H48 H53 $\begin{array}{c} 1.2 \\ 11.3 \\ 36.0 \\ 39.8 \\ 60.3 \\ 13.6 \\ 26.3 \\ 3.5 \\ 6.1 \\ 6.1 \\ 4.8 \\ 23.1 \\ 52.0 \\ 20.8 \\ 7.2 \\ 0.2 \\ 43.4 \end{array}$ C39 C25 C23 C21 C28 C26 C33 C30 C41 C32 C27 C22 C27 C32 Na P P P2 576.3387 576.3403 576.347 576.3403 576.3413 576.3413 576.3413 576.3414 576.3373 576.3373 576.3372 576.3371 576.3371 576.3420Na Na P N5 P2 N9 03 N3 N3 05 Na N3 08 P N5 010 P N5 07 Na N 04 P2 N 0 Na P N5 05 Na P2 -1.6 1.6 -1.8 -1.9 2.1 2.2 2.3 2.4 -2.5 -3.1 -3.3 3.6 3.8 4.0 4.2 -4.3 C24

Supplementary Figure 36. HRMS of L5.

Page 1

– m/z

Supplementary Figure 37. ¹H NMR spectrum of L5AuCl.

Supplementary Figure 38. ¹³C NMR spectrum of L5AuCl.

Supplementary Figure 39. ³¹P NMR spectrum of L5AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19398 formula(e) evaluated with 61 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zha ZHA1022

100-

%

ang, wyzL5AuCl, mw 785; ESI+ 213MM_224 (4.248) Cn (Cen.4, 60.00, Ar); Sm (SG, 4x3.00); Cm (194;	:257)		
4	808.2	700	
		808 6948	

0.1	806.247	6		808.06	581 000.0040	809.1277	809.5911	m/z
805.50	806.00	806.50 807.00	807.50	808.00	808.50	809.00	809.50 810.00	810.50 811.00
Minimum:				-1.5				
Maximum:		3.0	10.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
808.2700	808.2729	-2.9	-3.6	37.5	454.0	C54 H39	N3 O3 P	
	808.2729	-2.9	-3.6	43.5	471.7	C59 H35	N3 Na	
	808.2728	-2.8	-3.5	0.5	91.9	C22 H51	N5 010 P Cl /	Au
	808.2727	-2.7	-3.3	6.5	31.9	C27 H47	N5 07 Na Cl A	Au
	808.2726	-2.6	-3.2	6.5	696.0	C26 H47	N5 O8 Na P A	1
	808.2725	-2.5	-3.1	14.5	0.7	C37 H48	N O Na P CL	Au
	000.2725	-2.5	-3.1	21.5	22.2	C41 H44	N5 09 Na CI	
	808 2723	-2.4	-3.0	21.5	403.1	C40 H44 C51 H/5	N O3 Na P Cl	
	808 2721	-2.5	-2.6	33 5	89 0	CA9 HA0	N7 O P CI	
	808.2717	-1.7	-2.1	2.5	89.7	C21 H48	N9 OG Na P C	A
	808.2715	-1.5	-1.9	17.5	3.0	C35 H45	N9 08 Na P C	L
	808.2715	-1.5	-1.9	27.5	516.2	C42 H37	N5 Au	
	808.2713	-1.3	-1.6	42.5	459.4	C56 H34	N5 02	
	808.2711	-1.1	-1.4	-1.5	149.5	C20 H50	N3 O P Cl Au2	2
	808.2711	-1.1	-1.4	5.5	55.9	C24 H46	N7 09 Cl Au	
	808.2709	-0.9	-1.1	5.5	735.2	C23 H46	N7 010 P Au	
	808.2709	-0.9	-1.1	13.5	0.9	C34 H47	N3 03 P C1 Au	1
	808.2709	-0.9	-1.1	11.5	647.2	C28 H42	N/ O/ Na Au	
	808.2709	-0.9	-1.1	19.5	6.1	C39 H43	N3 NA CI AU	
	000.2707	-0.7	-0.9	20.0	66.9 556 1	C40 H44	N3 O5 P C1	
	808 2707	-0.7	-0.9	26.5	450.9	C12 H39	N7 09 Na	
	808 2707	-0.7	-0.9	34 5	119 0	C53 H40	N3 02 Na C1	
	808.2705	-0.5	-0.6	34.5	454.7	C52 H40	N3 O3 Na P	
	808.2704	-0.4	-0.5	38.5	116.5	C51 H35	N9 Cl	
	808.2703	-0.3	-0.4	7.5	762.8	C27 H44	N O2 Au2	
	808.2702	-0.2	-0.2	38.5	465.0	C50 H35	N9 O P	
	808.2701	-0.1	-0.1	22.5	508.3	C41 H41	N O4 Au	
	808.2699	0.1	0.1	37.5	438.9	C55 H38	N_06	
	808.2696	0.4	0.5	30.5	69.0	C47 H41	N7 O Na P Cl	
	808.2695	0.5	0.6	3.5	100.9	C22 H45	N5 CI Au2	
	000.2093	0.7	0.9	3.0	904.0	C21 H45	NO OD AUZ	
	808 2693	0.7	0.9	18.5	1 0	C25 H41	N5 02 Cl Au	
	808.2691	0.9	1.1	18.5	571.3	C35 H42	N5 03 P Au	
	808.2691	0.9	1.1	33.5	94.5	C50 H39	N5 04 C1	
	808.2691	0.9	1.1	24.5	534.4	C40 H38	N5 Na Au	
	808.2689	1.1	1.4	33.5	448.1	C49 H39	N5 O5 P	
	808.2688	1.2	1.5	39.5	458.1	C54 H35	N5 O2 Na	
	808.2687	1.3	1.6	2.5	83.1	C22 H47	N7 09 Na Cl A	Au
	808.2685	1.5	1.9	2.5	790.1	C21 H47	N7 010 Na P 7	Au
	808.2685	1.5	1.9	10.5	6.0	C32 H48	N3 03 Na P C.	L Au
	808.2683	1.7	2.1	25.5	51.3	C46 H45	N3 O5 NA P C.	-
	000.2002 808 2681	1.0	2.2	14.0	130 6	C30 H43	NO CLAU	
	808 2680	2 0	2.4	29 5	199.0	CAA HAO	N9 03 P C1	
	808.2680	2.0	2.5	35.5	94.8	C19 H36	N9 Na Cl	
	808.2680	2.0	2.5	-1.5	934.9	C20 H49	N O5 P Au2	
	808.2679	2.1	2.6	13.5	1.2	C35 H46	N OG CL Au	
	808.2679	2.1	2.6	4.5	815.2	C25 H45	N O2 Na Au2	
	808.2678	2.2	2.7	35.5	469.4	C48 H36	N9 O Na P	
	808.2678	2.2	2.7	13.5	573.1	C34 H46	N O7 P Au	

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 4.75e3

810.2706

809.2755

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19398 formula(e) evaluated with 61 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 CI: 0-1 Au: 0-4

Wang/Zhang, wyzL5AuCl, mw 785; ESI+ ZHA102213MM 224 (4.248) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (194:257) 808.2700

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 4.75e3

100-3					808.2700						4.75e3
%					000 00 40		809.	2755	81	0.2706	
e la	806.247	6		808	8.0681 808.6948	809.12	77	809.59	11		m/z
805.50	806.00	806.50 807	.00 807	.50 808	.00 808.50	809	.00	809.50	810.00	810.50	811.00
Minimum:				-1.5							
Maximum:		3.0	10.0	50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula				
	808.2677	2.3	2.8	28.5	74.6	C49	H43	N O8	Cl		
	808.2677	2.3	2.8	19.5	529.3	C39	H42	N 04	Na Au		
	808.2676	2.4	3.0	8.5	837.7	C23	H40	N7 Au	12		
	808.2675	2.5	3.1	28.5	432.2	C48	H43	N 09	P		
	808.2675	2.5	3.1	34.5	439.2	C53	H39	N 06	Na		
	808.2674	2.6	3.2	23.5	545.3	C37	H37	N7 02	Au		
	808.2672	2.8	3.5	38.5	449.5	C51	H34	N7 04			
	808.2671	2.9	3.6	0.5	138.5	C20	Н4 б	N5 Na	Cl Au2		

Supplementary Figure 40. HRMS of L5AuCl.

Supplementary Figure 41. ¹H NMR spectrum of L6.

Supplementary Figure 42. ¹³C NMR spectrum of L6.

40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Supplementary Figure 43. ³¹P NMR spectrum of L6.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4578 formula(e) evaluated with 19 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-2 Wang/Zhang, wyzL6, mw 581; ESI+ ZHA102213MF 106 (1.972) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (96:166) 604,3694 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.32e3 100 605.3747 605.1839 605.5146 % 602.6976 603.2012 co 603.00 603.50 604.6008 606 3788 603.6995 604.1473 605.50 ----- m/z 1.1 605.00 606.50 604.00 604.50 606.00 Minimum: -1.5 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 0.3 -0.7 -1.0 1.2 1.3 604.3692 604.3700 604.3700 604.3700 604.3687 604.3686 604.3703 604.3685 604.3684 604.3708 604.3710 604.3674 604.3716 604.3716 604.3716 604.3716 604.3674 604.3668 604.3668 604.3668 $\begin{array}{c} 0.2 \\ -0.4 \\ -0.6 \\ 0.7 \\ 0.8 \\ -0.9 \\ 0.9 \\ 1.0 \\ -1.4 \\ -1.6 \\ 1.8 \\ 2.0 \\ -2.2 \\ 2.4 \\ 2.6 \\ -3.0 \end{array}$ 3.3 8.1 22.6 56.6 71.5 31.8 H46 H52 H47 H51 H55 H51 604.3694 $\begin{array}{c} 22.5\\ 13.5\\ 11.5\\ 5.5\\ 0.5\\ 1.5\\ 8.5\\ 14.5\\ 9.5\\ 2.5\\ 10.5\\ 5.5\\ 5.5\\ 5.5\\ 13.5\\ 19.5\\ 14.5\\ 14.5\\ \end{array}$ C43 C35 C30 C25 C24 C29 C27 C34 N3 N5 N9 N5 N5 P2 03 06 010 07 08 04 1 0 2 N Na P P P Na -1.5 1.5 1.7 -2.3 -2.6 3.0 Na P H56 H56 N3 N N N5 N9 51.6 13.3 1.0 0.2 18.9 78.1 17.2 82.5 39.5 47.8 P2 Na P P H52 H51 H50 H52 H53 H56 H52 H50 H51 H47 H46 00 C39 C41 C31 C23 C23 C23 C28 C26 C36 C36 C41 C32 0 P 07 06 Na P Na P2 07 P2 04 Na P 09 03 P Na 03 3.0 3.3 -3.6 4.0 4.3 4.3 -5.0 N5 N7 N7 N3 N3 N9 4.8 0.8 12.1

Supplementary Figure 44. HRMS of L6.

Supplementary Figure 45. ¹H NMR spectrum of L6AuCl.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10

Supplementary Figure 46. ¹³C NMR spectrum of L6AuCl.

120 110 100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120

Supplementary Figure 47. ³¹P NMR spectrum of L6AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 20565 formula(e) evaluated with 60 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL6AuCl, mw 813; ESI+ ZHA102213MN 188 (3.567) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (117:228) 836.1021

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.40e4

100-		,,,	836	3021					1.40e4
% 832.4181				837	3063	838	.3013 839.3035	840.44	44
832.00 833.00	834.00	835.00	836.00	837.00		838.00	839.00	840.00	841.00
Minimum: Maximum:	3.0	10.0	$^{-1.5}_{50.0}$						
Mass Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula			
836.3021 836.3049 836.3048 836.3048 836.3046 836.3044 836.3044 836.3044 836.3044 836.3042 836.3042 836.3042 836.3038 836.3038 836.3038 836.3038 836.3038 836.3038 836.3038 836.3038 836.3038 836.3028 836.3028 836.3028 836.3028 836.3022 836.3020 836.3020 836.3020 836.3020 836.3020 836.3012 836.3015 836.3015 836.3014 836.3014 836.3014 836.3004 836.2998 836.29	$\begin{array}{c} -2.9\\ -2.8\\ -2.7\\ -2.5\\ -2.5\\ -2.3\\ -2.3\\ -2.1\\ -2.1\\ -2.1\\ -2.1\\ -1.9\\ -1.6\\ -1.7\\ -1.6\\ -1.3\\ -0.7\\ -0.5\\ -0.3\\ -0.1\\ -0.1\\ -0.1\\ -0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ $	$\begin{array}{c} -3.5 \\ -3.3 \\ -3.0 \\ -2.8 \\ -2.8 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.3 \\ -2.0 \\ -1.8 \\ -0.8 \\ -0.4 \\ -0.1 \\ -0.1 \\ -0.1 \\ -0.1 \\ 0.1 \\$	26.5 10.5 14.5 22.5 29.5 37.5 43.5 0.5 6.5 6.5 14.5 21.5 21.5 2.5 21.5 5.5 13.5 14.5 2.5 5.5 13.5 13.5 19.5 34.5 32.5 34.5 32.5 34.5 32.5 32.5 34.5 32.5 32.5 34.5 32.5 32.5 32.5 34.5 32.5 32.5 34.5 32.5 32.5 32.5 32.5 34.5 32.	1314.9 1690.3 2925.3 1743.8 36.3 1500.4 1214.8 388.2 1267.9 265.4 95.8 2006.7 1.3 59.7 1294.2 246.2 238.8 259.2 9.1 1441.1 1238.0 426.1 164.0 2125.3 4.4 1860.0 14.4 185.6 1571.3 1250.8 322.2 1236.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 2202.0 1266.2 314.8 220.0 1265.4 1570.3 1290.4 220.0 1265.4 106.0 255.7 1500.0 1223.4 1239.6 240.6 2287.5 20.0 31.7 321.7 321.7 321.7 321.7 322.4 323.6 240.6 2287.5 20.0 31.7 321.7 321.7 321.7 321.7 322.4 323.6 220.0 323.4 323.6 225.7 323.6 225.7 325.7 325.6 325.7 325.6 325.7 325.7 325.6 325.7 325.7 325.6 325.7 323.6 227.7 323.4 323.6 227.7 323.6 227.7 323.6 227.7 3	$\begin{array}{c} {\rm C43}\\ {\rm C34}\\ {\rm C32}\\ {\rm C43}\\ {\rm C42}\\ {\rm C42}\\ {\rm C46}\\ {\rm C56}\\ {\rm C56}\\ {\rm C24}\\ {\rm C29}\\ {\rm C43}\\ {\rm C42}\\ {\rm C29}\\ {\rm C43}\\ {\rm C43}\\ {\rm C51}\\ {\rm C37}\\ {\rm C44}\\ {\rm C29}\\ {\rm C43}\\ {\rm C37}\\ {\rm C44}\\ {\rm C25}\\ {\rm C36}\\ {\rm C22}\\ {\rm C26}\\ {\rm C27}\\ {\rm C27}\\ {\rm C23}\\ {\rm C23}\\ {\rm C27}\\ {\rm C23}\\ {\rm C33}\\ {\rm C37}\\ {\rm C33}\\ {\rm C33}\\ {\rm C37}\\ {\rm C33}\\ {\rm C3$	$\begin{array}{l} \rm H44\\ \rm H50\\ \rm H445\\ \rm H446\\ \rm H445\\ \rm H446\\ \rm H442\\ \rm H443\\ \rm H551\\ \rm H51\\ \rm H51\\ \rm H44\\ \rm H449\\ \rm H442\\ \rm H448\\ \rm H449\\ \rm H442\\ \rm H448\\ \rm H449\\ \rm H442\\ \rm H448\\ \rm H488\\ \rm H4$	N9 O6 Na P N7 O5 Au2 N7 O7 Au N3 O P Au N3 O P Au N3 O P Au N3 O P Au N3 O2 Cl N3 N3 O3 P N3 N5 O10 P Cl N5 O10 Na Cl N5 O10 Na Cl N6 O Na P N7 O7 Na P N9 O6 Na P N1 O3 Na P N3 O2 Cl Au N3 O3 P Cl N3 O3 Na P N3 O3 Na P N3 O3 Na P	L Au Au Au Cl Au Cl Au Cl Au Au Au L Cl Au Cl Au Cl Au Cl Au Cl Au	

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 20565 formula(e) evaluated with 60 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 CI: 0-1 Au: 0-4

Wang/Zhang, wyzL6AuCl, mw 813; ESI+ ZHA102213MN 188 (3.567) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (117:228) 836.3021

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.40e4

100					836	.3021								1.	40e4
% 0	832.4181					837	3063	838	.3013	3	839	9.3035	840	4444	m/z
	832.00	833.00	834.00	835.00	836.00	837.00		838.00		8.	39.00		840.00	841.00	
Minimu Maximu	im : im :		3.0	10.0	-1.5 50.0										
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Form	nula							
	836.2 836.2 836.2 836.2 836.2 836.2 836.2 836.2	994 993 993 993 992 992 992	2.7 2.8 2.8 2.8 2.9 2.9 3.0	3.2 3.3 3.3 3.5 3.5 3.6	-1.5 29.5 35.5 -1.5 13.5 4.5 35.5	398.8 131.5 254.9 2713.0 5.4 2358.3 1284.5	C23 C46 C51 C22 C37 C27 C50	H53 H44 H40 H53 H50 H49 H40	N N9 N N N N N9	04 03 Na 05 06 02 0	Cl P Cl Na Na	Au2 Cl Au2 Au Au2 P			

Supplementary Figure 48. HRMS of L6AuCl.

Page 2

Supplementary Figure 49. ¹H NMR spectrum of L7.

Supplementary Figure 50. ¹³C NMR spectrum of L7.

120 110 100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120

Supplementary Figure 51. ³¹P NMR spectrum of L7.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4441 formula(e) evaluated with 22 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-2 Wang/Zhang, wyzL7, mw 565; ESI+ ZHA102213MG 632 (11.730) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (629:675) 588.3361

		587.6605	587.9380	588.1727	588.4501	588.639	6 5	88.98	396 58	9.067	7		
0-1-1-	587.25 587.5	50 587.75	588.00	588.25	588.50		588.75	1. 1	589.0	00	589.25	589.50	1102
Minimum:				-1.5									
Maximum:		3.0	10.0	50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	nula						
588.3361	588.3361	0.0	0.0	11.5	5546549.0	C32	H49	N5	Na	P2			
	588.3363	-0.2	-0.3	3.5	5546545.5	C22	H48	N9	06	Na	P		
	588.3357	0.4	0.7	6.5	5546547.0	C25	H4 6	N7	09				
	588.3355	0.6	1.0	14.5	5546549.5	C35	H47	N3	03	P			
	588.3355	0.6	1.0	20.5	5546550.5	C40	H43	N3	Na				
	588.3371	-1.0	-1.7	15.5	5546550.0	C38	H48	N	ON	la I	2		
	588.3350	1.1	1.9	-1.5	5546544.0	C21	H52	N5	010) Na	a P		
	588.3372	-1.1	-1.9	9.5	5546549.0	C33	H52	Ν	04	P2			
	588.3373	-1.2	-2.0	7.5	5546548.0	C28	H47	N5	07	Na			
	588.3374	-1.3	-2.2	1.5	5546545.5	C23	H51	N5	010) P			
	588.3348	1.3	2.2	6.5	5546548.5	C31	H53	Ν	04	Na	P2		
	588.3345	1.6	2.7	10.5	5546548.5	C29	H48	N7	02	P2			
	588.3379	-1.8	-3.1	-1.5	5546544.0	C20	H53	N7	07	Na	P2		
	588.3379	-1.8	-3.1	23.5	5546551.0	C42	H42	N3					
	588.3339	2.2	3.7	19.5	5546550.0	C37	H42	N5	02				
	588.3385	-2.4	-4.1	14.5	5546549.5	C34	H48	N5	P2				
	588.3387	-2.6	-4.4	6.5	5546546.5	C24	H47	N9	06	P			
	588.3387	-2.6	-4.4	12.5	5546548.5	C29	H43	N9	03	Na			
	588.3333	2.8	4.8	3.5	5546546.0	C23	H47	N7	09	Na			
	588.3390	-2.9	-4.9	2.5	5546546.5	C26	H52	N3	08	Na	P		
	588.3331	3.0	5.1	5.5	5546547.5	C28	H52	N3	06	P2			
	588.3331	3.0	5.1	11.5	5546549.0	C33	H48	N3	03	Na	P		

Supplementary Figure 52. HRMS of L7.

Page 1

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.06e3

Supplementary Figure 53. ¹H NMR spectrum of L7AuCl.

Supplementary Figure 54. ¹³C NMR spectrum of L7AuCl.

120 110 100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120

Supplementary Figure 55. ³¹P NMR spectrum of L7AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19910 formula(e) evaluated with 59 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL7AuCl, mw 797; ESI+ ZHA102213MO 146 (2.772) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (73:150) 820.2717

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 974

%		010 7100			822.2729	823 2696			
814	.2862 815.6804	816.7123	819.6185			(825.6732 827.31	49	829.7275 m/z
814.	0 816.0	818.0	820.	0 0	322.0	824.0	826.0	828.0	830.0
Minimum:			-	-1.5					
Maximum:		3.0	10.0 5	50.0					
Mass	Calc. Mass	mDa	PPM I)BE :	L-FIT	Formula			
820.2717	820.2717	0.0	0.0 3	.5 .5	19.1	C22 H48	N9 O6 Na P	Cl Au	
	820.2715	0.2	0.2 2	28.5	122.5	C43 H37	N5 Au		
	820.2715	0.2	0.2 1	.8.5 (0.9	C36 H45	N9 O8 Na P	Cl	
	820.2713	0.4	0.5 4	3.5	108.3	C57 H34	N5 02		
	820.2721	-0.4	-0.5 3	4.5	18.4	C50 H40	N7 O P Cl		
	820.2711	0.6	0.7 -	-0.5	32.0	C21 H50	N3 O P Cl	Au2	
	820.2723	-0.6	-0.7 3	10.5	18.6	C52 H45	N O3 Na P	Cl	
	820 2711	0.6	076	5 5	11.8	C25 H46	N7 09 C1 A1	0	
	820.2724	-0.7	-0.9	2.5	111.4	C41 H44	N5 010 Na 1	P	
	820 2709	0.8	1.0 2	0.5	2 6	CAO HAS	N3 Na Cl Ai		
	820 2709	0.8	1 0 1	2.5	150 1	C29 H/2	N7 O7 Na A		
	820.2725	-0.8	-1 0 1	5 5	1 5	C38 H/8	N O No D (C1 711	
	820 2725	-0.8	-1.0 5	025	1 1	CA2 UAA	NE OQ Na C	1 Au	
	820 2700	0.0	1.0 4	5 5 7	169 0	C21 U16	N7 010 D M	1	
	820.2709	0.0	1.0 1	15	1 /	C25 U/7	N3 O3 P C1	711	
	020.2709	0.0	1 1 5	.4.J .	160 0	COT 147	NE OR No D	Au	
	020.2720	1 0	1 2 3		24 1	CEA 1140	NO OO NA F	Mu	
	020.2707	1.0	1.2	00.0 Z	100 6	C12 H20	NO 02 Na C.	L	
	020.2707	1.0	1.2 2	1.J	100.0	C45 H59	N7 O9 Na N2 O Ne D	7	
	020.2707	1.0	1.2 2	.0.5	131.1	C10 114.0	NO OF D CI	Au	
	020.2707	1.0	1.6 2	.9.0	14.0	C49 H44	NS US P CI	1 7	
	020.2727	-1.0	-1.2 /	- 5 E	1.2	C20 H47	NS O/ NA C.	L AU	
	020.2720	-1.1	-1.0 1		100.9	CE2 HAD	NO OIU P C.	I AU	
	020.2700	1.2	1.0 0		100.3	C55 H40	NS OS NA P		
	020.2729	-1.2	-1.5 3		110 5	C55 H39	NS US P		
	020.2729	-1.2	-1.5 4	14.0	110.5	C60 H35	NS Na		
	820.2704	1.3	1.0 3	1 5	23.8	C5Z H35	N9 CI	0 01 1.	
	820.2704	1.3	1.0 -	-1.5 4	20.0	CZ1 H5Z	N5 OIU NA I	2 CI AU	
	820.2731	-1.4	-1./ 3	.5	100.2	C45 H38	N7 09		
	820.2703	1.4	1./ 8	5.5	173.8	C28 H44	N OZ AUZ		
	820.2731	-1.4	-1./ 2	3.5	120.3	C41 H42	N3 O P Au		
	820.2731	-1.4	-1.7 3	0.5	28.7	C56 H39	N3 02 CI		
	820.2702	1.5	1.8 3	.9.5	110.5	C51 H35	N9 O P		
	820.2701	1.6	2.0 2	3.5	121.0	C4Z H41	N 04 Au		
	820.2733	-1.0	-2.0 2	3.5 4	1.2	C42 H42	N3 CI AU		
	820.2733	-1.0	-2.0	.5.5	142.2	C31 H41	N/ O/ Au		
	820.2735	-1.8	-2.2 0	.5	223.4	CI7 H44	N/ 05 AUZ		
	820.2699	1.8	2.2 3		104.4	C56 H38	N 06		
	820.2736	-1.9	-2.3 1	1.5	138.4	C33 H46	N 09 Na Au		
	820.2737	-2.0	-2.4 2	1.5	113.3	C4Z H40	N9 06 Na P		
	820.2696	2.1	2.6 3	1.5	14.5	C48 H41	N/ O Na P	Cl	
	820.2739	-2.2	-2.7 2	1.5	2.0	C38 H44	N9 08 P CI	200	
	820.2739	-2.2	-2.7 1	2.5	157.3	C28 H43	N9 04 Na P	Au	
	820.2739	-2.2	-2.7 2	27.5	/.4	C43 H40	N9 05 Na C.	L	
	820.2695	2.2	2.7 4	.5	22.3	C23 H45	N5 C1 Au2		
	820.2693	2.4	2.9 1	1.5	156.8	C26 H41	N9 O9 Au		
	820.2741	-2.4	-2.9 6	.5	13.4	C24 H47	N9 06 P Cl	Au	
	820.2693	2.4	2.9 4	.5	202.6	C22 H45	N5 O P Au2		
	820.2741	-2.4	-2.9 1	.2.5	1.6	C29 H43	N9 03 Na C	L Au	
	820.2693	2.4	2.9 1	.9.5 .	1.4	C37 H42	N5 02 C1 A1	L	
	820.2742	-2.5	-3.0 1	.7.5 2	2.1	C40 H49	N3 010 Na I	5 Cl	
	820.2691	2.6	3.2 3	34.5	19.1	C51 H39	N5 04 Cl		
	820.2691	2.6	3.2 1	.9.5 .	134.4	C36 H42	N5 O3 P Au		
	820.2691	2.6	3.2 2	25.5	126.4	C41 H38	N5 Na Au		

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19910 formula(e) evaluated with 59 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 CI: 0-1 Au: 0-4

Wang/Zhang, wyzL7AuCl, mw 797; ESI+ ZHA102213MO 146 (2.772) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (73:150) 100 -

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 974

%	814.2862 815.6804	816.7123	819	.6185	822.2729	823.2696	825.6732 827	.3149	829.7275
8	14.0 816.0	818.	0	820.0	822.0	824.0	826.0	828.0	830.0
Minimum: Maximum:		3.0	10.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
	820.2744 820.2745 820.2689 820.2688 820.2688 820.2747 820.2687	-2.7 -2.8 2.8 2.9 -3.0 3.0	-3.3 -3.4 3.4 3.5 -3.7 3.7	2.5 39.5 34.5 40.5 39.5 3.5	12.7 109.5 107.2 108.5 34.4 17.3	C26 H52 C58 H40 C50 H39 C55 H35 C59 H40 C23 H47	N3 08 Na N 0 Na P N5 05 P N5 02 Na N Na Cl N7 09 Na	P Cl Au Cl Au	

Supplementary Figure 56. HRMS of L7AuCl.

Page 2

Supplementary Figure 57. ¹H NMR spectrum of L8.

Supplementary Figure 58. ¹³C NMR spectrum of L8.

то то со со со со то то то со со со со со со то то

Supplementary Figure 59. ³¹P NMR spectrum of L8.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4323 formula(e) evaluated with 20 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-2 Wang/Zhang, wyzL8, mw 551; ESI+ ZHA102213MH 451 (8:367) Cn (Cen,4, 60:00, Ar); Sm (SG, 4x3:00); Cm (451:519) 574.3214 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 9.53e3 100-% 575.3246 573.3445 573.7610 574.5731 572.9803 573.9557 575.2244 03 573.50 575.50 572.50 573.00 574.00 574.50 575.00 Minimum: -1.5 Maximum: 3.0 10.0 PPM Mass Calc. Mass mDa DBE i-FIT Formula 574.3215 574.3217 574.3217 574.3217 574.3206 574.3204 574.3204 574.3204 574.3208 574.3208 574.3208 574.3208 574.3199 574.3198
 2779574.0
 C32
 H50
 N
 O4
 P2

 2779617.8
 C37
 H46
 N
 O
 Na
 P

 2779490.3
 C22
 H49
 N5
 O10
 P

 2779543.8
 C27
 H45
 N5
 O7
 Na

 2779556.3
 C41
 H40
 N3
 2779408.0
 C21
 H46
 N9
 O6
 Na
-0.1 574.3214 -0.2 $\begin{array}{c} 9.5\\ 15.5\\ 1.5\\ 7.5\\ 23.5\\ -1.5\\ 3.5\\ -1.5\\ 14.5\\ 20.5\\ 14.5\\ 2.5\\ -1.5\\ 6.5\\ 10.5\\ 10.5\end{array}$ -0.2 -0.2 -0.5 -0.5 -1.4 1.4 $\begin{array}{c} -0.1 \\ -0.3 \\ -0.8 \\ 0.8 \\ -0.9 \\ 1.0 \\ 1.3 \\ -1.4 \\ 1.5 \\ 1.6 \end{array}$ C37 C22 C27 C41 C19 C31 C24 C33 C34 C39 C28 C23 C25 C20 C30 C39 C28 C29 Ρ 2779408.0 2779343.8 2779534.0 2779527.5 2779572.5 2779603.0 2779639.8 2779536.5 2779468.5 2779468.5 2779507.0 2779538.0 -1.6 1.7 2.3 -2.4 2.6 2.8 H51 H47 H44 N7 N5 07 Na Na P2 P2 N7 N5 N3 N3 09 P2 03 Na H4 6 H4 5 H4 1 Ρ -1.6 -1.6 -1.9 2.1 2.3 -2.5 2.6 -2.7 2.8 -2.8 -3.3 3.7 4.0 -4.4 4.5 -4.7 H41 H45 H50 H50 H51 H45 H46 574.3230 574.3230 574.3233 574.3233 574.3193 N9 N9 N3 N5 03 Na 06 P 08 Na P 010 Na 1 P N 04 Na P2 N 0 P N7 02 P2 N5 07 2779539.0 2779639.3 2779509.0 2779577.3 574.3191 574.3239 574.3188

H44

Supplementary Figure 60. HRMS of L8.

574.3241

Page 1

Supplementary Figure 61. ¹H NMR spectrum of L8AuCl.

Supplementary Figure 62. ¹³C NMR spectrum of L8AuCl.

Supplementary Figure 63. ³¹P NMR spectrum of L8AuCl.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19330 formula(e) evaluated with 62 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL8AuCl, mw 783; ESI+ ZHA102213MP 12 (0.234) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (1:195) 806.2565

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.24e3

100-		9-4-1 - 6-1 - 6	s. s c	806.	2565					2.24€	e3
%	804 5557	805 0991	805.5355	805 9140	806.5791	807.:	2573 807.5585	808.2	526 808 4894		
0 	804.50	805.00	805.50	806.00	806.50	807.00	807.50	808.00	808.50	809.00	/z
Minimum: Maximum:		3.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula				
Mass 806.2565	Calc. Mass 806.2564 806.2567 806.2567 806.2569 806.2569 806.2569 806.2551 806.2571 806.2571 806.2573 806.2572 806.2573 806.2573 806.2575 806.2575 806.2575 806.2575 806.2555 806.2555 806.2555 806.2553 806.2554 806.2549 806.2549 806.2547 806.2543 806.	mDa 0.1 -0.2 -0.4 -0.4 -0.4 -0.6 -0.7 -0.7 -0.9 -0.9 -0.0 -1.0 -1.0 -1.0 -1.2 1.2 -1.2 1.2 -1.2 1.3 1.4 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.8 -1.8 -1.8 -2.0 -2.2 -2.2 -2.2 -2.5 -2.6 -2.7 -2.6 -2.7 -2.8 -2.6 -2.7 -1.7 -1.7 -1.8 -1.8 -1.8 -2.5 -2.6 -2.7 -2.6 -2.7 -1.7 -1.7 -1.8 -2.6 -1.7 -1.7 -1.8 -2.6 -1.7 -1.7 -1.8 -2.6 -2.7 -2.6 -1.7 -1.7 -1.8 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.6 -2.6 -2.6 -2.7 -2.6 -2.6 -2.6 -2.6 -2.6 -2.7 -2.6	PPM 0.1 -0.2 -0.5 -0.5 0.5 0.7 -0.7 -0.7 0.9 -0.7 -0.7 0.9 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -1.2 1.2 -1.2 1.2 -1.2 1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -2.2 -2.2 2.2 2.2 2.2 -2.2 2.2	DBE 34.5 22.5 30.5 7.5 22.5 3.5 7.5 18.5 28.5 38.5 23.5 14.5 23.5 23.5 14.5 23.5 14.5 23.5 14.5 23.5 14.5 23.5 14.5 23.5 14.5 23.5 15.5 23.5 14.5 23.5 15.5 23.5 14.5 23.5 15.5 23.5 14.5 23.5 15.5 23.5 15.5 23.5 25.5 23.5 25.5 23.5 25.5 23.5 25.5 23.5 25.5	i-FIT 25.1 208.4 26.3 1.8 345.2 4.6 65.5 66.9 30.6 2.3 183.7 183.1 46.0 45.7 244.2 189.9 98.2 1.6 367.9 5.7 317.4 255.2 258.4 18.5 508.5 266.5 286.5 286.5 286.5 286.4 192.0 19.5 49.0 2.3 192.0 19.5 49.0 2.3 192.0 19.5 49.0 2.3 192.0 19.5 49.0 2.3 192.0 19.5 49.0 2.3 192.0 19.5 49.0 2.3 19.5 49.0 2.3 19.5 49.0 2.3 19.5 49.0 2.3 19.5 49.0 2.3 19.5 49.0 2.3 1.6 3.3 1.6 3.4 1.9 5.7 3.17.4 3.6.7 2.9.5 5.8.4 192.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 2.1.2 2.8 48.0 19.5 49.0 19.5 49.0 19.5 40.0 10.5 40.5 10.5	Form C49 C40 C51 C27 C26 C41 C21 C27 C35 C42 C42 C44 C40 C44 C40 C44 C44 C23 C34 C44 C44 C44 C44 C44 C44 C4	ula H38 N7 H42 N H43 N H45 N5 H466 N H45 N5 H46 N9 H43 N9 H45 N5 H46 N9 H45 N5 H43 N9 H33 N3 H35 N5 H37 N3 H40 N3 H40 N3 H40 N3 H41 N3 H42 N7 H38 N3 H42 N7 H38 N3 H41 N3 H42 N7 H38 N9 H38 N3 H41 N3 H42 N H50 N5 H33 N9 H33 N9 H33 N9 H34 <td>O P Cl O10 Na O3 Na P O Na P O9 Na P O9 Na P O10 P Cl O10 P</td> <td>P Cl Au Cl Au P Cl Au P Cl Au P Cl Au P Cl Au Au Au Au Au Au Au Au Au Au</td> <td></td> <td></td>	O P Cl O10 Na O3 Na P O Na P O9 Na P O9 Na P O10 P Cl O10 P	P Cl Au Cl Au P Cl Au P Cl Au P Cl Au P Cl Au Au Au Au Au Au Au Au Au Au		

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 19330 formula(e) evaluated with 62 results within limits (all results (up to 1000) for each mass)

Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 P: 0-1 Cl: 0-1 Au: 0-4

Wang/Zhang, wyzL8AuCl, mw 783; ESI+ ZHA102213MP 12 (0.234) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (1:195) 806.2565

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.24e3

100-						806.	2565					2.24e3
%								807.	2573	808.	2526	
0		8	804.5557	805.0991	805.5355	805.9140	806.5791		807.558	5	808.4894	m/7
0 [11	804.00	8	304.50	805.00	805.50	806.00	806.50	807.00	807.50	808.00	808.50	809.00
Minimu Maximu	m: m:			3.0	10.0	$^{-1.5}_{50.0}$						
Mass	C	Calc.	Mass	mDa	PPM	DBE	i-FIT	Form	ula			
	888888888888888888888888888888888888888	106.2 106.2 106.2 106.2 106.2 106.2 106.2 106.2	593 593 593 593 536 536 536 536 595	-2.8 -2.8 -2.8 2.9 2.9 2.9 2.9 -3.0 -3.0	-3.5 -3.5 -3.5 3.6 3.6 3.6 -3.7 -3.7	16.5 10.5 25.5 19.5 4.5 11.5 1.5 10.5	280.5 0.9 320.7 8.4 1.7 453.3 337.2 477.1 20.6	C33 C39 C28 C43 C36 C21 C25 C19 C29	H40 N5 H45 N H44 N5 H41 N5 H40 N5 H43 N5 H39 N9 H43 N5 H44 N5	05 Na 0 P Cl 08 P A 09 Cl 02 Cl 0 P Au 09 Au 03 Na 07 Cl	Au Au Au Au Au Au2 Au	

Supplementary Figure 64. HRMS of L8AuCl.

Supplementary Figure 65. ¹H NMR spectrum of L8AuNTf₂.

Supplementary Figure 66. ¹³C NMR spectrum of L8AuNTf₂.

Supplementary Figure 67. ³¹P NMR spectrum of L8AuNTf₂.

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4563 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-100 N: 0-10 O: 0-10 P: 0-1 Au: 0-4

Wang/Zhang, v ZHA103113ME	vyxL8AuNTF2, mw 1 0 91 (1.732) Cn (Cer	1028; ESI+ 1,4, 60.00, Ar); Sm (SG, 4)	(3.00); Cm (748.297	76:93) 5				UCSE	B CHEM BIC	CHEM QTOF2 TOF MS ES+ 2.08e3
% 735.57	42 737.6273	743.1092	745.1160		749.2968	.6873	758.	5427 760.2	835	765.3103	767.9983
735.0	737.5 740.0	742.5	745.0	747.5	750.0 752.5	755.0	757.5	760.0	762.5	765.0	767.5
Minimum: Maximum:		3.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula				
748.2975	$\begin{array}{c} 748.2974\\ 748.2972\\ 748.2983\\ 748.2983\\ 748.2983\\ 748.2985\\ 748.2985\\ 748.2961\\ 748.2961\\ 748.2954\\ 748.2998\\ 748.2998\\ 748.2998\\ 748.2998\\ 748.3001\\ 748.3001\\ 748.3004 \end{array}$	$\begin{array}{c} 0.1 \\ 0.3 \\ -0.6 \\ -0.8 \\ \hline 0.9 \\ -1.0 \\ 1.1 \\ 1.4 \\ 2.1 \\ -2.3 \\ -2.4 \\ -2.5 \\ -2.6 \\ -2.9 \end{array}$	$\begin{array}{c} 0.1 \\ 0.4 \\ -0.8 \\ -1.1 \\ -1.1 \\ 1.2 \\ -1.3 \\ 1.5 \\ 1.9 \\ 2.8 \\ -2.8 \\ -3.1 \\ -3.2 \\ -3.3 \\ -3.5 \\ -3.9 \end{array}$	4.5 19.5 23.5 23.5 21.5 8.5 -0.5 32.5 28.5 13.5 18.5 -1.5 40.5	58.6 3.2 70.6 20.8 0.2 2.4 20.7 92.3 73.6 49.3 27.0 13.6 11.1 166.1 37.0 132.5	C21 C35 C51 C41 C39 C27 C53 C20 C47 C42 C28 C38 C34 C25 C58	$\begin{array}{ccc} {\rm H46} & {\rm N} \\ {\rm H43} & {\rm N} \\ {\rm H43} & {\rm N} \\ {\rm H42} & {\rm N} \\ {\rm H42} & {\rm N} \\ {\rm H42} & {\rm N} \\ {\rm H41} & {\rm N} \\ {\rm H45} & {\rm N} \\ {\rm H38} & {\rm N} \\ {\rm H38} & {\rm N} \\ {\rm H38} & {\rm N} \\ {\rm H41} & {\rm N} \\ {\rm H41} & {\rm N} \\ {\rm H44} & {\rm N} \\ {\rm H44} & {\rm N} \\ {\rm H44} & {\rm N} \\ {\rm H438} & {\rm N} \\ {\rm H38} & {\rm N} \end{array}$	9 06 P 9 08 P 5 09 5 07 5 07 5 07 5 07 8 0 5 07 Au 3 02 5 010 P 7 0 P 9 05 9 03 Au 3 010 P 9 0 Au 2 08 P	Au 1 Au Au		

(b)

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 4960 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 S: 0-4 F: 0-10

Wang/Zhang, wyxL8AuNTF2, mw 1028; ESI-ZHA103113MD1 881 (16.516) AM (Cen,4, 50.00, Ar,8000.0,0.00,0.70); Cm (881:998) UCSB CHEM BIOCHEM OTOF2 TOF MS ES-5 32e3 100-% %[−] 0[−]277.9430278.0691278.3899 279.1511 279.4583 279.8511 280.0406 278.00 278.50 279.00 279.50 280.00 280.50 281.6983 281.9106 280.9148 281.50 282.00 111 281.00 282.50 -1.5 50.0 Minimum: 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula Mass Calc. Mass 279.9159 279.9159 279.9157 279.9157 279.9154 279.9166 279.9168 279.9168 279.9172 279.9172 279.9173 279.9173 279.9144 279.9143 279.9184 279.9184 279.9132 0.0 $\begin{array}{c} 0.5\\ 11.5\\ 6.5\\ 2.5\\ -1.5\\ 3.5\\ 7.5\\ 0.5\\ -0.5\\ 2.5\\ 3.5\\ 3.5\\ 3.5\end{array}$ 29.7 0.0 C3 C11 C5 C3 H5 C2 C2 C2 C8 Н Ν S3 F7 0.0 -0.2 0.5 -0.7 -0.9 1.3 -1.3 -1.4 -0.7 0.7 1.8 -2.5 -3.2 4.6 453.6 137.6 149.0 113.2 42.9 F2 4.5 253.6 2.8 29.6 -4.6 <mark>-5.0</mark> 5.4 5.7 -1.4 1.5 C2 H2 C6 C5 C9 C3 C7 C7 268.5 1.9 99.5 1.6 -2.3 -2.5 2.7 2.7 -2.7 2.9 -8.2 -8.9 H∠ H2 H N H3 9.6 9.6 -9.6 10.4 10.5 3.5 7.5 -0.5 441.1 55.4 161.0 101.4 279.9132 279.9132 279.9186 279.9130

Supplementary Figure 68. HRMS of (a) [L8Au], (b) [NTf₂].

(a)

Page 1

Supplementary Figure 69. ¹H NMR spectrum of 1a.

Supplementary Figure 70. ¹³C NMR spectrum of 1a.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 2040 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Si: 0-2 C: 0-100 H: 0-100 H: 0-10 C: 0.0 L Wang/Zhang, wyz1a, mw 288, ESI+ ZHA101413MA 1554 (28.809) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (1402:1564) 311.1981 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.62e4 % ⁴ 249.1822259.1871 282.8029 ^{290.9857} 311.1237 ^{312.2028} 322.7828 <u>380.7422</u> 390.7679 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 m/z % -1.5 50.0 Minimum: Maximum: 3.0 10.0 mDa PPM Calc. Mass i-FIT Mass DBE Formula 311.1981 311.1984 311.1975 311.1987 311.1975 311.1975 311.1971 311.1992 311.2002 311.1960 9.5 0.5 5.5 3.5 4.5 1.5 -0.5 6.518.7 192.5 6.2 1138.4 15.5 150.4 256.5 50.6 C17 H23 N6 C8 H27 N8 O3 Si C19 H28 O2 Na C15 H31 N2 O Si2 C16 H27 N2 O4 C11 H28 N6 O Na Si C12 H31 N2 O5 Si C15 H24 N6 Na -0.3 -1.0 -0.3 0.6 -0.6 0.6 1.0 -1.1 -2.1 2.1 -1.0 1.9 -1.9 3.2 -3.5 -6.7 6.7

Supplementary Figure 71. HRMS of 1a.

Supplementary Figure 72. ¹H NMR spectrum of 1b.

Supplementary Figure 73. ¹³C NMR spectrum of 1b.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 558 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1b, mw 232, ESI+ ZHA101413MB1 365 (6.773) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (269:370) 255,1342 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 8.02e3 100-
 231.0613
 239.1607
 240.8712
 245.0775
 249.1803
 255.0716
 256.1371
 261.1083
 263.1693

 235.0
 240.0
 245.0
 250.0
 255.0
 260.0
 265.0
 2
 % 271.1273 273.1760 279.7549 m/z 270.0 275.0 280.0 01 270.0 -1.5 50.0 Minimum: 3.0 10.0 Maximum: PPM Mass Calc. Mass mDa DBE i-FIT Formula -1.2 3.1 -6.3 -7.4 8.2 9.4 255.1345 255.1334 255.1358 255.1361 255.1321 255.1318 -0.3 0.8 -1.6 <mark>-1.9</mark> 2.1 2.4 4.5 9.5 5.5 1.5 5.5 15.5 24.7 4.5 2.0 54.1 66.3 C12 H19 N2 O4 C11 H16 N6 Na C13 H15 N6 C15 H20 O2 Na C10 H20 N2 O4 Na C8 H15 N8 O2 255.1342

Supplementary Figure 74. HRMS of 1b.

Supplementary Figure 75. ¹H NMR spectrum of 1c.

Supplementary Figure 76. ¹³C NMR spectrum of 1c.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron lons 505 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1c, mw 218, ESI+ ZHA101413MC 240 (4.456) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (41:243) 241,1199 Elements Used: UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.10e4 100-3 219.1349 221.1511 229.1405 231.0627 233.1365 240.8731 242.1225 % 249.1818 257.1130 259.1881 261.1108 265.1553 250.0 255.0 260.0 265.0 m/z 249.1010 245.0 250.0 220.0 225.0 230.0 235.0 240.0 Minimum: Maximum: -1.5 3.0 10.0 50.0 mDa PPM Calc. Mass DBE i-FIT Mass Formula $\begin{array}{ccc} -0.3 & -1.2 \\ -0.5 & -2.1 \\ 1.1 & 4.6 \\ 2.1 & 8.7 \\ -3.0 & -12.4 \end{array}$ 9.5 5.5 4.5 6.5 8.5 241.1202 241.1204 241.1188 241.1178 130.5 C12 H13 N6 241.1199 130.5 82.3 111.0 209.7 91.7
 C12
 H13
 N6

 C14
 H18
 O2
 Na

 C11
 H17
 N2
 O4

 C10
 H14
 N6
 Na

 C16
 H17
 O2
 O2
 241.1229

Supplementary Figure 77. HRMS of 1c.

Supplementary Figure 78. ¹H NMR spectrum of 1d.

Supplementary Figure 79. ¹³C NMR spectrum of 1d.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 63 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-10 Na: 0-1 C: 0-100 H: 0-100 O: 0-10 H: 0-10 Wang/Zhang, wyz1d, mw 234, ESI+ ZHA101413MD2 210 (3.900) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (183:212) 257.1151 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.09e3 % 239.0974 240.8824 244.9205 249.1827.250.1866 257.0551 258.1192 261.1167 265.1112 269.1519 271.1797 275.1294 277.0905 0 240.0 245.0 250.0 255.0 260.0 265.0 270.0 275.0 -1.5 3.0 10.0 50.0 Minimum: Maximum: Calc. Mass mDa PPM DBE i-FIT Mass Formula -0.3 -2.7 257.1151 257.1154 257.1178 <mark>-1.2</mark> -10.5 5.5 1.9 C14 H18 O3 Na C16 H17 O3

Supplementary Figure 80. HRMS of 1d.

Supplementary Figure 81. ¹H NMR spectrum of 1e.

Supplementary Figure 82. ¹³C NMR spectrum of 1e.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron lons 1334 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Br: 0-2

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.77e3

Wang/Zhang, v ZHA101413M 100-3	wyz1e, mw 282, E E 1038 (19.245) C		UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.77e3						
% 287.22	98 290.9831	298.778	3 301.1407		308.0160 311.	2038 317.0992	322.7783	327.2301	329.2409
0-4++++++++-	290.0	295.0	300.0	305.0	310.0	315.0 320	0.0 32	25.0	330.0
Minimum: Maximum:		3.0	10.0	$-1.5 \\ 50.0$					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
305.0144	305.0148 305.0140 305.0150 305.0137 305.0137 305.0134 305.0131 305.0138 305.0126 305.0128 305.0118	-0.4 0.4 -0.6 0.7 -0.9 1.0 1.3 -1.4 1.8 2.6 -2.8	-1.3 1.3 -2.0 2.3 -3.0 3.3 4.3 -4.6 5.9 8.5 -9.2	13.524.59.54.55.58.512.56.57.516.57.5	1834.2 1877.2 5.8 14.3 5.2 1826.8 1842.2 1809.7 14.8 1847.5 1827.8		03 Na Br 04 Br Na Br Na 07 Ja Br		

Supplementary Figure 83. HRMS of 1e.

Supplementary Figure 84. ¹H NMR spectrum of 1f.

Supplementary Figure 85. ¹³C NMR spectrum of 1f.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 1803 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Cl: 0-2 Wang/Zhang, wyz1F, mw 283; ESI+ ZHA101513MJ 285 (5.294) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (284:309) 100-

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 4.84e3

% 30	4.2619	305.20	305.92	202 306.2	2752	307.0538 307.2692	308.0485	308.8641 309.0523
304.00	304.50	305.00	305.50	306.00	306.50	307.00 307.50	308.00	308.50 309.00
Minimum: Maximum:		3.0	10.0	-1.5 50.0				
Mass (Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
306.0508	306.0509 306.0506 306.0501 306.0501 306.0501 306.0522 306.0493 306.0523 306.0523 306.0523 306.0528 306.0491 306.0531 306.0488 306.0531 306.0533	$\begin{array}{c} -0.1\\ 0.2\\ -0.3\\ 0.4\\ 0.7\\ -1.4\\ 1.5\\ -1.5\\ -1.7\\ 1.7\\ -2.0\\ 2.0\\ -2.3\\ 2.4\\ -2.5\\ 2.6\end{array}$	-0.3 0.7 -1.0 1.3 -2.3 -4.6 4.9 -4.9 -5.6 5.6 -6.5 6.5 -7.5 7.8 2.8 2.5	$\begin{array}{c} 6.5\\ 10.5\\ 0.5\\ 16.5\\ 2.5\\ 14.5\\ 5.5\\ 5.5\\ 5.5\\ 19.5\\ 15.5\\ 15.5\\ 1.5\\ 1.5\\ 1.5\\ 9.5\\ 7.5\end{array}$	$\begin{array}{c} 0.7\\ 0.8\\ 422.7\\ 744.9\\ 407.3\\ 710.4\\ 4.6\\ 15.0\\ 844.0\\ 377.8\\ 711.4\\ 754.2\\ 729.7\\ 739.7\\ 739.7\\ 460.8\\ 4.8\\ 4.8\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4 Na O2 Cl 06 Cl2 Na O2 O2 04 Na O2 Na O2 04 S O6 Cl O7 Na 07 Na O2 O2 O4 Na 02 O2 Na O2 O2 Na 02 O2 Na O2 Na O2 O4 Cl2 04 Cl2 O4 Cl2	51

Supplementary Figure 86. HRMS of 1f.

Supplementary Figure 87. ¹H NMR spectrum of 1g.

Supplementary Figure 88. ¹³C NMR spectrum of 1g.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 1685 formula(e) evaluated with 18 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 CI: 0-2 UCSB CHEM BIOCHEM QTOF2 Wang/Zhang, wyz1G, mw 272; ESI+ ZHA101513MA 262 (4.864) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (190:335) TOF MS ES+ 5.06e3 295.0256 100 297.0227 % 284.9387 287.8984 289.1531 290.9839 291.9954 294.9558 296.0289 299.0203 300.9392 302.0827 304.2600 306.2753 286.0 288.0 290.0 292.0 294.0 296.0 298.0 300.0 302.0 304.0 306.0 284.9387 287.8984 289.1531 290.9839 291.9954 294.9558 296.0289 0ª m/z -1.5 50.0 Minimum: 3.0 10.0 Maximum: Calc. Mass mDa PPM Mass DBE i-FIT Formula Mass Calc. Mass 295.0256 295.0256 295.0250 295.0250 295.0264 295.0264 295.0264 295.0266 295.0266 295.0266 295.0269 295.0269 295.0269 295.0272 295.0274 295.0274 295.0275 295.0275 295.0232 295.0232
 C17
 H3
 N4
 O2

 C10
 H13
 N2
 O4
 C12

 C14
 H9
 N2
 O2
 Na
 C1

 C3
 H8
 N6
 O9
 Na
 C1

 C3
 H8
 N6
 O9
 Na
 C1

 C14
 H9
 N6
 C12
 Na
 C1

 C12
 H4
 N10
 O5
 Na
 C1

 C11
 H9
 N6
 C12
 H8
 N10
 O7
 C1

 C16
 H7
 O6
 C12
 C2
 H10
 N6
 Na
 C12

 C20
 H14
 O2
 Na
 C12
 C2
 H4
 N2
 O2
 C1

 C5
 H7
 N6
 O9
 C11
 H8
 N4
 O4
 C1

 C15
 H4
 N4
 O2
 Na
 C1
 C3
 H9
 N8
 O5
 Na
 C1

 C5
 H14
 1675.0 14.0 413.0 1781.6 $\begin{array}{c} 18.5\\ 4.5\\ 10.5\\ 7.5\\ 14.5\\ 9.5\\ 13.5\\ 5.5\\ 13.5\\ 5.5\\ 13.5\\ 5.5\\ 13.5\\ 5.5\\ 13.5\\ 5.5\\ 15.5\\ 15.5\\ 15.5\\ 1.5\\ 1.5\end{array}$ 1752.6 422.1 3.9 579.3 1627.6 3.3 3.3 14.3 1718.0 439.5 1719.1 393.6 1665.3 499.0 -2.6 C3 H9 C8 H14 N8 N2 Na Na -8.8 9.5 499.0 44.2 295.0282 295.0228 04

Supplementary Figure 89. HRMS of 1g.

Supplementary Figure 90. ¹H NMR spectrum of 1h.

Supplementary Figure 91. ¹³C NMR spectrum of 1h.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron lons 1729 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 10B: 0-1

Wang/Zhang, wyz1H, mw 330; ESI+ ZHA101513MI 505 (9.370) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (488:527) 353.1887

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.07e3

100 3					353.1887				1.07e3
% 349.	1796 350.173	38 351.12	214	352.1935	353.0943	354.1881	355.1924	356.2231	357.0521 m/z
349.00	350.00	351.00	66137	352.00	353.00	354.00	355.00	356.00	357.00
Minimum: Maximum:		3.0	10.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
352.1935	352.1934 352.1936 352.1945 352.1947 352.1921 352.1920 352.1920 352.1920 352.1910 352.1910 352.1910	$\begin{array}{c} 0.1 \\ -0.1 \\ -1.0 \\ -1.2 \\ 1.4 \\ -1.5 \\ 1.5 \\ 2.2 \\ -2.5 \\ 2.5 \\ -2.6 \end{array}$	$\begin{array}{c} 0.3 \\ -0.3 \\ -2.8 \\ -3.4 \\ 4.0 \\ -4.3 \\ 4.3 \\ 6.2 \\ -7.1 \\ 7.1 \\ -7.4 \end{array}$	$10.5 \\ 6.5 \\ 2.5 \\ -1.5 \\ 10.5 \\ 5.5 \\ 10.5 \\ 9.5 \\ 7.5 \\ 3.5 \\ 3.5 \\ 10.5 \\ $	4.1 4.4 588.4 597.1 595.8 7.2 3.7 548.8 7.5 3.7 581.1	C17 H22 C19 H27 C11 H26 C13 H31 C9 H27 C20 H23 C16 H26 C22 H26 C21 H26 C15 H23 C14 H27	N6 O2 11 04 Na 11 N7 O6 Na N7 O6 Na N7 O6 Na N2 O6 Na N2 O6 10 N2 O6 1 N4 N3 10 N4 10B N6 02 N5 04 N3	DB DB DB a 10B a	

Supplementary Figure 92. HRMS of 1h.

Supplementary Figure 93. ¹H NMR spectrum of 1i.

Supplementary Figure 94. ¹³C NMR spectrum of 1i.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 1078 formula(e) evaluated with 15 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 S: 0-2 C: U-100 Fi. 0-100 10: 0-10 Si. 0-10 Wang/Zhang, wyz11, mw 210; ESI+ ZHA101513MH 497 (9.219) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (491:529) 233.0605 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.30e3 100 % 231.9821 232.1400 232.9979 233.1360 233.5207 234.000 0 232.00 232.50 233.00 233.50 234.00 234.8702 235.0568 234.50 235.00 m/z 231.1338 231.00 231.50 03 -1.5 Minimum: 3.0 10.0 50.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 233.0605 233.0603 233.0603 233.0609 233.0610 233.0610 233.0610 233.0612 233.0596 233.0594 233.0619 233.0619 $\begin{array}{c} 0.9 \\ 0.9 \\ -1.7 \\ -2.1 \\ -3.0 \\ 3.9 \\ 4.7 \\ -6.0 \\ -6.9 \\ -8.2 \\ 8.6 \\ -10.7 \end{array}$ $\begin{array}{c} 0.2 \\ 0.2 \\ -0.4 \\ -0.5 \\ \hline -0.7 \\ 0.9 \\ 1.1 \\ -1.4 \\ -1.6 \\ -1.9 \\ 2.0 \\ -2.5 \\ 2.7 \\ 2.9 \\ -2.9 \end{array}$ $12.5 \\ -0.5 \\ 8.5 \\ 1.5 \\ 3.5 \\ 0.5 \\ -0.5 \\ 5.5 \\ -1.5 \\ -1.5 \\ \end{array}$ 33.6 34.8 4.8 66.0 3.2 7.3 85.8 17.6 59.0 58.4 10.0 21.6 233.0619 233.0621 233.0624 233.0585 233.0630 233.0578 233.0576 233.0634 11.6 12.4 -12.4 9.5 13.5 4.5 32.8 37.1 50.5

Supplementary Figure 95. HRMS of 1i.

Supplementary Figure 96. ¹H NMR spectrum of 1j.

Supplementary Figure 97. ¹³C NMR spectrum of 1j.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Odd and Even Electron lons 719 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.90e3 100 % 300.9414 301.9279 ^{303.1602} 0 301.0 302.0 303.0 304.0 304.2389 298.7686
 305.2516
 306.2757
 307.0226
 308.1527

 305.0
 306.0
 307.0
 308.0
 308.0
 309.2040 309.0 m/z 299.0 0-300.0 303.0 -1.5 50.0 Minimum: 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 303.2311 303.2300 303.2297 303.2324 303.2287 303.2284 -0.4 0.7 1.0 -1.7 2.0 2.3 -1.3 2.3 3.3 -5.6 6.6 7.6 73.3 84.3 97.3 53.1 110.3 119.9
 C18
 H29
 N3
 O

 C16
 H32
 O2
 Na

 C16
 H27
 N6
 N2

 C10
 H31
 O2
 C

 C16
 H30
 N3
 O

 C15
 H31
 N2
 O4
 6.0 2.5 6.5 5.5 3.0 1.5 303.2307

Supplementary Figure 98. HRMS of 1j.

Supplementary Figure 99. ¹H NMR spectrum of 1k.

Supplementary Figure 100. ¹³C NMR spectrum of 1k.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 669 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 C: 0-100 H: 0-100 H: 0-10 C: 0.0.0 H: 0-10 Wang/Zhang, wyz1K, mw 266; ESI+ ZHA102413MB 325 (6.147) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (325:405) 289,2138 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.94e3 100-% 289.1513 289.3577 289.4809 289.8853 290.1541 290.2169 290.3193 288.7443 288.8830 288.1533 288.3594 01 ---- m/z 288.50 288.75 289.50 289.75 290.00 290.25 290.50 288.00 288.25 289.00 289.25 Minimum: -1.5 50.0 Maximum: 3.0 10.0 PPM DBE Mass Calc. Mass mDa i-FIT Formula 289.2141 289.2144 289.2130 289.2127 289.2154 289.2117 289.2114 289.2168 -1.0 -2.1 2.8 3.8 -5.5 7.3 8.3 -10.4 2773376.5 C15 2773492.5 C17 2773384.0 C15 2773493.8 C14 2773488.3 C17 2773248.3 C17 2773271.3 C13 2773394.3 C12 2773589.0 C19 -0.3 -0.6 0.8 1.1 -1.6 2.1 2.4 -3.0 289.2138 $\begin{array}{r}
 6.5 \\
 2.5 \\
 3.0 \\
 1.5 \\
 6.0 \\
 3.5 \\
 2.0 \\
 5.5 \\
\end{array}$ H25 NG N6 O2 Na N3 O Na N2 O4 N3 O N6 Na N5 O3 O2 C15 C15 C14 C17 C13 C13 C12 C19 H29 H28 H29 H27 H26 H27 H29

Supplementary Figure 101. HRMS of 1k.

Supplementary Figure 102. ¹H NMR spectrum of 11.

Supplementary Figure 103. ¹³C NMR spectrum of 11.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 412 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1L, mw 194; ESI+ ZHA102413MC 507 (9.641) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (505:556) 217.1205 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.62e3 % 217.8804 218.1242 218.9626 219.1278 219.8734 m/z 217.0524 0 215.1113 216.1212 215.00 215.50 216.00 216.50 217.05 24 217.50 218.00 218.50 219.00 Minimum: Maximum: -1.5 3.0 10.0 mDa PPM Mass Calc. Mass DBE i-FIT Formula 0.1 0.3 -1.0 1.4 1.7 -2.4 2.7 0.5 1.4 -4.6 6.4 7.8 -11.1 12.4 217.1204 217.1202 217.1215 217.1191 217.1188 217.1229 217.1178
 C12
 H18
 O2
 Na

 C10
 H13
 N6

 C12
 H15
 N3
 O

 C10
 H16
 N3
 O
 Na

 C9
 H17
 N2
 O4
 C14
 H17
 O2

 C8
 H14
 N6
 Na
 <t 3.57.54.02.56.54.512.8 22.0 15.3 22.5 19.7 14.3 38.0 217.1205

Supplementary Figure 104. HRMS of 11.

Supplementary Figure 105. ¹H NMR spectrum of 1m.

Supplementary Figure 106. ¹³C NMR spectrum of 1m.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 624 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.01e4 Wang/Zhang, wyz1M, mw 252; ESI+ ZHA101513MD 527 (9.775) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (508:578) 275.1971 100-% 273.1608 274.0390 275.1295 276,2008 277.2045 277.8978 279.1368 280.1351 281.0641 m/z 277.0 278.0 279.0 280.0 281.0 0¹ 270.1413 271.1827 273.1608 274.0390 270.0 271.0 272.0 273.0 274.0 276.0 275.0 277.0 Minimum: -1.5 50.0 Maximum: 3.0 10.0 PPM DBE Mass Calc. Mass mDa i-FIT Formula $\begin{array}{c} 0.0 \\ -0.3 \\ 1.1 \\ -1.3 \\ 1.4 \\ \hline -1.6 \\ 2.4 \\ -2.7 \\ 2.7 \end{array}$ 275.1971 275.1974 275.1960 275.1984 275.1984 275.1987 275.1987 275.1947 275.1944
 C13
 H27
 N2

 C14
 H26
 N3

 C12
 H24
 N6

 C14
 H23
 N6

 C14
 H28
 O2

 C16
 H28
 O2

 C16
 H25
 N3

 C9
 H23
 N8
0.0 -1.1 4.0 -4.7 5.1 -5.8 8.7 -9.8 N2 04 N3 0 Na N6 Na N5 03 02 Na N2 04 Na N3 0 N8 02 21.5 25.1 53.1 25.4 52.0 11.2 71.8 17.9 275.1971 1.53.03.56.52.02.5<math>-1.56.0 2.5 03 Na 04 0 02 Na 9.8 275.1944 96.6

Supplementary Figure 107. HRMS of 1m.

Supplementary Figure 108. ¹H NMR spectrum of 1n.

Supplementary Figure 109. ¹³C NMR spectrum of 1n.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 655 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1N, mw 262; ESI+ ZHA101513MG 195 (3.622) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (192:227) UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.65e3 100-282.8011 %
 281.1432
 282.1477
 282.9285
 285.1074

 280.0
 281.0
 282.0
 283.0
 284.0
 285.0

 286.1840
 287.1877
 289.1562
 290.1410
 290.9857

 286.0
 287.0
 288.0
 289.0
 290.0
 291.0
111 Minimum: Maximum: -1.5 50.0 3.0 10.0 mDa PPM Mass Calc. Mass DBE i-FIT Formula 285.1817 285.1814 285.1828 285.1831 285.1804 285.1841 285.1801 $0.4 \\ 0.7 \\ -0.7 \\ -1.0 \\ 1.7 \\ -2.0 \\ 2.0$
 C15
 H24
 N3
 O
 Na

 C14
 H25
 N2
 O4

 C15
 H21
 N6

 C17
 H26
 O2
 Na

 C13
 H22
 N6
 Na

 C17
 H23
 N3
 O

 C12
 H23
 N5
 O3
1.4 2.5 -2.5 -3.5 6.0 -7.0 7.0 285.1821 5.03.58.54.55.58.04.02.7 5.0 1.4 0.6 7.2 0.4 9.6

Supplementary Figure 110. HRMS of 1n.

Supplementary Figure 111. ¹H NMR spectrum of 10.

Supplementary Figure 112. ¹³C NMR spectrum of 10.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 624 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz10, mw 252; ESI+ ZHA101513MF 287 (5.327) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (287:314) 275,1971 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.74e3 100 273.0941 273.4245 274.625 273.00 274.00 % 274.6257,275.1306 275.3247 276.2015 74.00 275.00 276.00 277.2025 277.8975 278.2515 278.8995 277.00 278.00 279.00 m/z 271.1921_271.4598 OI 273.00 276.00 277.00 271.00 272.00 278.00 Minimum: -1.5 50.0 10.0 3.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula C13 H27 N2 O4 C14 H26 N3 O Na C12 H24 N6 Na C14 H23 N6 C11 H25 N5 O3 C16 H25 N5 O3 C11 H28 N2 O4 Na C16 H25 N3 O C9 H23 N8 O2 $\begin{array}{c} 0.0 \\ -0.3 \\ 1.1 \\ -1.3 \\ 1.4 \\ -1.6 \\ 2.4 \\ -2.7 \\ 2.7 \end{array}$ 0.0 -1.1 4.0 -4.7 5.1 -5.8 8.7 -9.8 9.8 275.1971 275.1974 275.1960 275.1984 275.1987 275.1987 275.1971 1.53.03.56.52.02.5<math>-1.56.0 2.5 9.9 11.4 20.3 11.2 19.6 6.2 25.2 7.7 32.9 275.1947 275.1998 275.1944 Na

Supplementary Figure 113. HRMS of 1o.

Supplementary Figure 114. ¹H NMR spectrum of 1p.

Supplementary Figure 115. ¹³C NMR spectrum of 1p.

Supplementary Figure 116. ¹⁹F NMR of 1p.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 200.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 1458 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-200 N: 0-10 O: 0-10 F: 0-5

Wang/Zhang, wyz pr 5 1p CF3, mw 280, FI+ ZHA060613PA 435 (7.250) Cn (Cen,3, 80.00, Ar); Sm (SG, 4x3.00); Cm (435:483)

UCSB Chem _Biochem GCT Premier TOF MS FI+ 5.04e+003

100-						280.166	i5									
% 265.1	338	270.0885		275.0892	279.146	7	281.1691	283.1561.2	85.419	6 288	8.5537	290.6	812.2	92.9961		
265.0	267.5	270.0	272.5	275.0	277.5	280.0	282.5	285.0	28	7.5	290.0	2	92.5	295.0	297.5	300.0
Minimum:						-1.5										
Maximum:			3.0	3	0.0	200.0										
Mass	Cal	c. Mass	mDa	I	PM	DBE	i-F	IT	For	mula						
280.1665	280.	.1661	0.4	1	. 4	5.5	406	.1	C14	H22	N3	03				
	280.	.1659	0.6	2	.1	2.0	197	.7	C9	H21	NG	03	F			
	280.	.1657	0.8	2	.9	-1.5	138	.9	C4	H20	N9	03	F2			
	280.	.1673	-0.	8 -	2.9	1.5	307	. 0	C11	H23	N3	04	F			
	280.	.1675	-1.	0 -	3.6	5.0	557	.9	C16	H24	04					
	280.	.1650	1.5	5	. 4	2.0	270	.6	C14	H23	02	F3				
	280.	.1648	1.7	6	5.1	6.0	270	.1	C12	H20	Nб	02				
	280.	.1648	1.7	6	5.1	-1.5	114	. 6	C9	H22	N3	02	F4			
	280.	.1684	-1.	9 -	6.8	3.0	41.	5	C7	H18	N10	F2				
	280.	.1646	1.9	6	.8	2.5	115	.7	C7	H19	N9	02	F			
	280.	.1686	-2.	1 -	7.5	1.0	437	.0	C13	H25	05	F				
	280.	.1686	-2.	1 -	7.5	-1.0	41.	2	C9	H21	N4	F5				
	280.	.1686	-2.	1 -	.7.5	6.5	163	. 6	C12	H19	N7	F				
	280.	.1688	-2.	3 -	.8.2	10.0	441	.5	C17	H20	N4					
	280.	.1688	-2.	3 -	8.2	2.5	164	.7	C14	H22	N	F4				
	280.	.1639	2.6	9	.3	6.0	406	.1	C17	H22	0	F2				
	280.	.1637	2.8	1	.0.0	2.5	157	.6	C12	H21	N3	0	F3			

280.1665

Supplementary Figure 117. HRMS of 1p.

Supplementary Figure 118. ¹H NMR spectrum of 1q.

Supplementary Figure 119. ¹³C NMR spectrum of 1q.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 2711 formula(e) evaluated with 26 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 CI: 0-3 Wang/Zhang, wyz10, mw 328; ESI+ ZHA102413MD 1080 (20.436) Cn (Cen.4, 60.00, Ar); Sm (SG, 4x3.00); Cm (1016:1154) 100-

-														
%	350.1890	350,4834	350.7251	350.8375		351.1932	351.34	195		351.74	63 35	51.8500	351.9502	
0-1	350.00 350.20	350.40 3	350.60	350.80	351.00	351.20	35	51.40	351	1.60	351	.80	352.00 m	Z
Minimum:				-1.5										
Maximum:	l.	3.0	10.0	50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-	FIT	For	mula						
351.0650	351.0649	0.1	0.3	6.5	55	646647.5	C7	H11	N8	09				
	351.0649	0.1	0.3	14.5	55	46686.5	C18	H12	N4	02	Cl			
	351.0647	0.3	0.9	20.5	55	646682.0	C22	H8	N4	Na				
	351.0645	0.5	1.4	0.5	55	646691.5	C11	H22	N2	04	C13			
	351.0657	-0.7	-2.0	3.5	55	646685.5	C5	H13	N10	05	Na	Cl		
	351.0643	0.7	2.0	6.5	55	46690.5	C15	H18	N2	02	Na	C12		
	351.0643	0.7	2.0	-1.5	55	46686.0	C4	H17	NG	09	Na	C1		
	351.0657	-0.7	-2.0	18.5	55	46682.0	C23	H11	04					
	351.0659	-0.9	-2.6	5.5	55	46691.5	C12	H18	NG	CL	3			
	351.0640	1.0	2.8	10.5	55	46690.5	C13	H13	N8	Cli	2			
	351.0661	-1.1	-3.1	1.5	55	46691.5	C14	H23	02	Na	C13			
	351.0635	1.5	4.3	9.5	55	46686.5	C17	H16	06	Cl	(and			
	351.0665	-1.5	-4.3	15.5	50	46687.0	C21	H13	N2	Na	Cl			
	351 0665	-1.5	-4 3	7 5	50	46660 5	C10	H12	NG	07	Na			
	351 0634	1 6	4 6	2 5	50	46691 5	C10	H19	NG	Na	CL3	8		
	351.0667	-1.7	-4.8	9.5	55	46690.5	C17	H17	N2	02	C12			
	351.0667	-1.7	-4.8	1.5	50	46686.0	CG	H16	NG	09	Cl			
	351.0633	1.7	4 8	15.5	50	46680.0	C21	H12	04	Na	01			
	351 0630	2 0	5 7	19.5	50	46680 0	C19	u7	NG	02				
	351.0671	-2 1	-6 0	23 5	55	46683 5	C2A	н7	NA	02				
	351 0627	2 3	6 6	5 5	5.0	16600 5	C12	u17	NA	01	C1 2			
	351.0625	2.5	7 1	11 5	50	16686 5	C16	U13	NA	02	Ma	C1		
	251 0675	-2 5	7 1	1.5	50	40000.5	CA	U10	NO	05	Ma	C12		
	351.0675	2.5	7 1	-1.J	00	16629 0	CE	U1 2	NO	00	Ma	012		
	251.0622	2.0	0.0	16 6	U.	16606 E	C1.0	1112	M10	09	14 Cl			
	351 0679	_2 0	_9 3	12.5	50	16668 5	C11	10	N10	03	Ma			
		6	1. A A A A	+ 6 + + +		/ T V V V V . J	No. 1	110	14 1 0		19.01			

Supplementary Figure 120. HRMS of 1q.

Page 1

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.34e3

Supplementary Figure 121. ¹H NMR spectrum of 1r.

Supplementary Figure 122. ¹³C NMR spectrum of 1r.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 561 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass) Elements Used:

Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 WangZhang, wyz1R, mw 232; ESI+ ZHA101513ML 198 (3.677) Cn (Cen, 4, 60.00, Ar); Sm (SG, 4x3.00); Cm (151:218) 255,0988 100-

% 251.11	64 252.1164	2.1164 253.1166		254.1313 255.0342		256.1031	257.1369	257.865	258.9035 259.1841
251.00	252.00	253.00	25	54.00	255.00	256.00	257.00	258	.00 259.00
Minimum: Maximum:		3.0	10.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
255.0988	255.0984 255.0994 255.0981 255.0981 255.0997 255.0997 255.1008 255.1008 255.1016	0.4 -0.6 0.7 0.7 -0.9 1.8 -2.0 2.0 -2.8	1.6 -2.4 2.7 2.7 -3.5 7.1 -7.8 7.8 -11.0	7.0 10.5 5.5 11.0 6.5 7.5 10.0 6.0 -1.0	57.4 55.1 55.9 67.7 46.1 71.6 45.6 71.6 174.7	C12 H14 C12 H11 C11 H15 C10 H9 C14 H16 C10 H12 C14 H13 C9 H13 C H14	N3 02 N6 0 N2 05 N9 03 Na N6 0 N3 02 N5 04 N9 05 N	Na Na	

Supplementary Figure 123. HRMS of 1r.

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.53e3

Supplementary Figure 124. ¹H NMR spectrum of 1s.

Supplementary Figure 125. ¹³C NMR spectrum of 1s.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 564 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1
 Oc. 0-100
 H. 0-100
 N. 0-100
 N. 0-10
 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 3.61e4 -1.5 3.0 10.0 50.0 Minimum: Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 31.0 7.1 43.5 96.8 257.1151 257.1154 257.1137 257.1127 C12 H13 N6 O C14 H18 O3 Na C11 H17 N2 O5 C10 H14 N6 O Na -0.5 -0.8 0.9 1.9 -1.9 -3.1 3.5 7.4 9.5 5.5 4.5 6.5 257.1146

Supplementary Figure 126. HRMS of 1s.

Supplementary Figure 127. ¹H NMR spectrum of 1t.

Supplementary Figure 128. ¹³C NMR spectrum of 1t.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons 774 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used:

Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1T, mw 297; ESI+ ZHA101513MN 437 (8.110) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (432:490) 320.1834

C: 0-100 Wang/Zha ZHA10151 100	I H: U-10 ng, wyz1T, n I3MN 437 (8	U N:U nw 297; E .110) Cn (-10 O: 0-10 SI+ (Cen,4, 60.00, Ar); {	INA: U-1 Sm (SG, 4x3.	00); Cm	(432:490) <mark>320.1834</mark>						UCSB CHEM BIOCH	IEM QTOF2 DF MS ES+ 2.25e3
% 0 	318.1147 18.00	318.50	318.8127_318.944 319.00	319.5 319.50	781319	8729 320.00	320.50	320.9894 321	321.18	348 • •	321.50	322.0685.322.1902	2 322.50
Minimum Maximum	:		3.0	10.0	-1.5 50.0								
Mass	Calc	. Mass	mDa	PPM	DBE	i-FIT	For	rmula					
320.183	4 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320. 320.	1835 1835 1838 1824 1822 1822 1848 1851 1851 1811 1811 1811 1808 1862	$\begin{array}{c} -0.1 \\ -0.1 \\ -0.4 \\ 1.0 \\ 1.2 \\ -1.4 \\ -1.7 \\ 2.3 \\ 2.3 \\ 2.6 \\ -2.8 \end{array}$	-0.3 -0.3 -1.2 3.1 3.7 -4.4 -5.3 7.2 7.2 8.1 -8.7	$\begin{array}{c} 2.0\\ 7.5\\ 3.5\\ 4.0\\ 2.5\\ 8.0\\ 7.0\\ 8.5\\ 4.5\\ -1.0\\ 3.0\\ 6.5 \end{array}$	2.1 7.6 4.2 7.5 6.2 12.3 5.6 11.6 13.5 8.9 13.0 6.3	C14 C14 C14 C14 C14 C14 C14 C14 C14 C14	5 H28 4 H22 6 H27 4 H25 3 H26 2 H20 6 H24 7 H23 2 H23 3 H29 1 H24 8 H26	07 N7 N4 N3 N10 N4 N5 N7 07 N6 N	02 03 06 03 Na 02 Na 05 4	<mark>Na</mark> Na Na		

Supplementary Figure 129. HRMS of 1t.

Supplementary Figure 130. ¹H NMR spectrum of 1u.

Supplementary Figure 131. ¹³C NMR spectrum of 1u.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron lons 1010 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1u, 377, ESI+/TOF ZHA101613MC 793 (15.017) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (677:920) 392.7195 Elements Used: UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.25e4 390.7697 400.1515
 350.7 b97
 401.1551
 413.2667
 418.7790

 0
 360.0
 365.0
 370.0
 375.0
 380.0
 385.0
 390.0
 395.0
 400.0
 405.0
 410.0
 415.0
 420.0
432.8079 m/z 425.0 430.0 435.0 Minimum: Maximum: -1.5 50.0 3.0 10.0 mDa PPM Mass Calc. Mass DBE i-FIT Formula
 C7
 H23
 N9
 O9
 Na

 C20
 H22
 N3
 O6

 C21
 H18
 N7
 O2

 C23
 H23
 N
 O4
 Na

 C19
 H19
 N7
 O2
 Na

 C24
 H19
 N5
 Na

 C29
 H22
 N9
 O9
400.1515 400.1516 400.1509 400.1522 400.1525 0.5 11.5 16.5 12.5 13.5 17.5 3.5 -0.1 -0.2 294.4 -0.1 0.6 -0.7 -1.0 1.7 -2.3 -2.5 -0.2 1.5 -1.7 -2.5 4.2 -5.7 -6.2 294.4 9.7 9.4 4.0 23.3 15.6 208.6 400.1525 400.1498 400.1538 400.1540

Supplementary Figure 132. HRMS of 1u.

Supplementary Figure 133. ¹H NMR spectrum of 1v.

Supplementary Figure 134. ¹³C NMR spectrum of 1v.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Odd and Even Electron lons 549 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 C: U-100 Fi. U-100 Fi. U-10 C: U-100 Fi. U-100 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 955 100-%
 251,1870
 251.8776
 252,1533
 252.7648
 253.0398
 253.3015
 253.8814
 254.1238
 254.9028
 255.1327
 m/z

 00
 251.50
 252.00
 252.50
 253.00
 253.50
 254.00
 254.50
 255.00
여북 251.00 Minimum: -1.5 50.0 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 0.4 0.6 -0.7 -1.5 1.7 2.0 -2.1 -2.8 1.6 2.4 -2.8 -5.9 6.7 7.9 -8.3 -11.1
 C15
 H18
 O2
 Na

 C13
 H13
 N6

 C15
 H15
 N3
 O

 C2
 H16
 N9
 O4
 Na

 C13
 H16
 N3
 O
 Na

 C12
 H17
 N2
 O4

 C17
 H17
 O2
 C4

 C4
 H18
 N6
 O5
 Na
253.1204 253.1202 253.1215 253.1223 253.1191 253.1188 $\begin{array}{c} 6.5 \\ 10.5 \\ 10.0 \\ -1.0 \\ 7.0 \\ 5.5 \\ 9.5 \\ -1.5 \end{array}$ 3.2 5.1 2.3 52.0 6.7 8.2 0.8 42.8 253.1208 253.1229 253.1236

Supplementary Figure 135. HRMS of 1v.

Supplementary Figure 136. ¹H NMR spectrum of 1w.

Supplementary Figure 137. ¹³C NMR spectrum of 1w.

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 1320 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used:

Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Cl: 0-2 WangZhang, wyz1W, mw 238; ESI+ ZHA101513MM 226 (4.200) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (206:241) 261.0654

C: 0-10 Wang/Zh ZHA1015 100	U H:U ang,wyz 513MM 2	0-100 N :1W, mw 238 226 (4.200) 0	: U-10 O: U 3; ESI+ Cn (Cen,4, 60.00	-10 Na: 0), Ar); Sm (SG	UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 4.37e3									
% 	259.878 259.75	260.0641	260.1895 260.25	260.5618	260.7966 260.8	261.00 261.20 261.00 261.25		261.53 261.50	10	261 261.75	.9089	262.0695	262.209 262.25	6
Minimu Maximu	m : m :		3.0	10.0	$^{-1.5}_{50.0}$									
Mass	C	alc. Mas	s mDa	PPM	DBE	i-FIT	For	mula						
261.06	54 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61.0655 61.0656 61.0658 61.0660 61.0664 61.0642 61.0642 61.0672 61.0672 61.0674 61.0634 61.0634 61.0634 61.0683	$\begin{array}{c} -0.1\\ -0.2\\ 0.4\\ -0.6\\ -1.0\\ 1.2\\ 1.4\\ 1.7\\ -1.8\\ -2.0\\ 2.0\\ 2.3\\ -2.6\\ -2.8\\ -2.9\end{array}$	-0.4 -0.8 1.5 -2.3 -3.8 4.6 5.4 6.5 -6.9 -7.7 7.7 8.8 -10. -10.	$\begin{array}{c} 9.5\\ 1.5\\ 5.5\\ -0.5\\ 13.5\\ 4.5\\ 10.5\\ 2.5\\ 4.5\\ 2.5\\ 6.5\\ 0.5\\ 6.5\\ 0.14.5\\ 71\\ 0.5\end{array}$	2775524.3 2774297.5 2775524.3 2775524.3 2775525.3 2774498.3 277525.3 2774267.8 277400.0 277400.0 2775531.3 2775531.3 2775525.8 2774530.0 2774530.0	C11 H9 C8 C13 C9 C16 C10 C14 C12 C3 C10 C5 C9 C19 C15 C4	H10 N10 H16 H19 H14 H10 H5 H10 H15 H11 H10 H14 H13	N6 07 N4 02 04 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2	C1 Na C12 O2 O4 O2 O5 C12 O2 Na C1 O9	Cl2 Cl Na Na Cl2 Cl2 Cl			

Supplementary Figure 138. HRMS of 1w.

Supplementary Figure 139. ¹H NMR spectrum of 1x.

Supplementary Figure 140. ¹³C NMR spectrum of 1x.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 2628 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass)

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 5.30e3

% 0 369.50	369.8027 370.00	37	0.7865	371.1129	37	1.7772	372.00	72.205	9	372.50		373.0090	m/z
Minimum: Maximum:		3.0	10.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula						
371.2020	371.2019 371.2018 371.2016 371.2016 371.2010 371.2030 371.2030 371.2032 371.2034 371.2034 371.2034 371.2042 371.2042 371.2046 371.2046 371.2047 371.2050	$\begin{array}{c} 0.1\\ \hline 0.2\\ -0.3\\ 0.4\\ 0.9\\ -1.0\\ -1.2\\ 1.3\\ -1.4\\ 1.7\\ 1.8\\ -2.2\\ -2.3\\ -2.6\\ -2.7\\ 2.8\\ -3.0 \end{array}$	$\begin{array}{c} 0.3 \\ 0.5 \\ -0.8 \\ 1.1 \\ 2.4 \\ -2.7 \\ -3.2 \\ 3.5 \\ -3.8 \\ 4.6 \\ 4.8 \\ -5.9 \\ -6.2 \\ -7.0 \\ -7.3 \\ 7.5 \\ -8.1 \end{array}$	2.5 5.5 1.5 0.5 7.5 -0.5 1.5 4.5 5.5 1.5 4.5 5.5 4.5 5.5 4.5 5.5	2775492.0 2776246.5 2776312.3 2776230.0 2775806.0 2775223.0 2775223.0 2776312.5 2776323.0 2775530.8 2776243.3 2776243.3 2775651.8 2776318.8 2775318.8 2776324.3	C13 C20 C12 C18 C26 C14 C14 C9 C13 C10 C17 C22 C15 C17 C14 C16 C16	H28 H32 H27 H27 H31 H24 H31 H35 H27 H31 H31 H27 H31 H27 H31 H27 H32 H31 H28 H36	N6 N6 N6 N2 N2 N8 N2 N8 N2 N8 N2 N8 N2 N6 O7 N6 N6 O4	05 Na 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Na Si Na Si2 Si2 Si2 Si Si2 Si2	Si2		

Supplementary Figure 141. HRMS of 1x.

Supplementary Figure 142. ¹H NMR spectrum of 1y.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 815 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 C: 0-100 H: 0-100 H: 0-10 H: 0-10 Wang/Zhang, wyz1y, 282, ESI+/TOF ZHA101613MD 911 (17.313) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (654:919) 333.1453 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.40e4 % 301.1407 308.8586 334.1485 333.0745 322.7815 380.7412 m/z <u>]</u>[___ 320.0 ------330.0 1111 1111 1 1 1 310.0 340.0 350.0 360.0 370.0 380.0 Minimum: $^{-1.5}_{50.0}$ 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 0.3 -1.1 1.3 -1.4 2.7 2.9 -2.9 C17 H21 N2 C18 H17 N6 C16 H18 N6 C20 H22 O3 C15 H22 N2 C13 H17 N8 C6 H21 N8 N2 05 N6 0 N6 0 Na 03 Na N2 05 Na N8 03 N8 08 333.1450 333.1464 333.1440 333.1467 333.1426 333.1426 0.9 -3.3 3.9 -4.2 8.1 8.7 8.5 13.5 10.5 9.5 5.5 9.5 0.5 63.4 53.4 124.5 25.3 176.1 227.5 911.5 333.1453 Na -8.7 333.1482

Supplementary Figure 144. HRMS of 1y.

Supplementary Figure 145. ¹H NMR spectrum of 1z.

Supplementary Figure 146. ¹³C NMR spectrum of 1z.

 Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 200.0 Element prediction: Off

 Monoisotopic Mass, Odd and Even Electron Ions 179 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-200 N: 0-10 O: 0-10 WangZhang, wyz12, mw 188, El+ ZHA102913PA 274 (4.570) Cn (Cen,3, 80.00, Ar); Sm (SG, 4x3.00); Cm (274:389)
 UCSB Chem_Biochem GCT Premier TOF MS El+ 6.83e+0035

 100 % 181.9916
 183.1145 185.0682
 186.0670 185.0
 189.0777 190.0682
 191.0789 192.0831
 192.0831 192.0831
 192.9885 194.0716 m/z

 Minimum: Maximum:
 3.0
 10.0
 200.0
 186.0
 187.0
 186.0
 189.0
 190.0
 191.0
 192.0
 193.0
 194.0

 188.0835
 188.0837
 -1.5 82.0
 188.0837
 192.0
 193.0
 194.0
 194.0

 Minimum: Maximum:
 3.0
 10.0
 200.0
 187.0
 182.0
 193.0
 194.0
 194.0

 188.0835
 188.0837
 -2.5
 13.3
 8.0
 153.9
 C12
 H12
 02 H10
 193.0
 194.0

Supplementary Figure 147. HRMS of 1z.

Supplementary Figure 148. ¹H NMR spectrum of 1aa.

Supplementary Figure 149. ¹³C NMR spectrum of 1aa.

Supplementary Figure 150. ¹H-¹H NOESY spectrum of 1aa.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Odd and Even Electron lons 746 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 Wang/Zhang, wyz1aa, mw 288; ESI+ ZHA102413ME 472 (8.988) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (450:481) 311.1977 Elements Used: UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 2.60e3 100 %
 310.8422
 310.9138310.9931
 311.1292
 311.3315
 311.3754
 311.5008

 310.60
 310.70
 310.80
 310.00
 311.10
 311.20
 311.30
 311.40
 311.50
 311.60
 311.70
 311.80
 0-1---m/z Minimum: Maximum: -1.5 50.0 3.0 10.0 mDa PPM Calc. Mass i-FIT Mass DBE Formula $\begin{array}{cccccc} 0.3 & 1.0 \\ 0.6 & 1.9 \\ -0.7 & -2.2 \\ \hline -1.0 & -3.2 \\ 1.7 & 5.5 \\ 2.0 & 6.4 \\ -2.1 & -6.7 \end{array}$ 311.1974 311.1971 311.1984 311.1987 311.1960 311.1957 311.1998
 5547309.5
 C17
 H26
 N3
 O
 Na

 5547307.5
 C16
 H27
 N2
 O4

 5547310.5
 C17
 H23
 N6

 5547311.0
 C19
 H28
 O2
 Na

 5547307.5
 C15
 H24
 N6
 Na

 5547305.5
 C14
 H25
 N5
 O3

 5547312.5
 C19
 H25
 N3
 O
 6.0 4.5 5.5 6.0 9.0 311.1977

Supplementary Figure 151. HRMS of 1aa.

Supplementary Figure 152. ¹H NMR spectrum of mixture of 1ab and 1ab'.

Supplementary Figure 153. ¹³C NMR spectrum of mixture of 1ab and 1ab'.

Supplementary Figure 154. ¹H-¹H NOESY of mixture of 1ab and 1ab'.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Odd and Even Electron Ions 777 formula(e) evaluated with 13 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 C: U-10U Fi. U-10C Fi. U-1 UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 743 100-%
 320.1345
 321.1797
 322.7818
 324.0369
 324.9642
 325.8855
 m/z

 320.0
 321.0
 322.0
 323.0
 324.0
 325.0
 326.0
 318.9153 0 314.8815 317.1049 318.9153 317.1049 318.9153 317.1049 318.9153 318.9153 318.9153 317.1049 318.9153 318.9153 318.9153 318.9153 Minimum: -1.5 50.0 3.0 10.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula
 C19
 H20
 O3
 Na

 C17
 H15
 N6
 O

 C19
 H17
 N3
 O2

 C5
 H19
 N8
 O8

 C6
 H18
 N9
 O5

 C17
 H18
 N3
 O2

 C15
 H13
 N9
 C15

 C16
 H19
 N2
 O5

 C21
 H19
 O3

 C22
 H18
 N

 C7
 H21
 N5

 C7
 H21
 N5

 C7
 H21
 N6

 C15
 H16
 N6
 319.1313 319.1310 319.1307 319.1321 319.1326 319.1329 319.1329 319.1297 0.3 0.6 -0.8 -1.3 -1.6 1.6 1.9 1.9 -2.1 -2.4 -2.6 -2.9 3.0 $\begin{array}{c} 0.9 \\ -2.5 \\ -4.1 \\ -5.0 \\ 5.0 \\ 6.0 \\ -6.6 \\ -7.5 \\ -8.1 \\ -9.1 \\ 9.4 \end{array}$ $\begin{array}{c} 9.5\\ 13.5\\ 13.0\\ 0.5\\ 2.0\\ 10.0\\ 14.0\\ 8.5\\ 12.5\\ 14.0\\ 0.0\\ 1.5\\ 10.5\\ \end{array}$ $\begin{array}{c} 0.6\\ 1.3\\ 0.3\\ 32.5\\ 28.2\\ 2.0\\ 3.2\\ 2.8\\ 0.2\\ 0.7\\ 26.6\\ 22.5 \end{array}$ 319.1294 319.1294 319.1334 319.1337 319.1339 319.1342 319.1283 4.3

Supplementary Figure 155. HRMS of mixture of 1ab and 1ab'.

Supplementary Figure 156. ¹H NMR spectrum of 1ac.

Supplementary Figure 157. ¹³C NMR spectrum of 1ac.

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions 779 formula(e) evaluated with 13 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Na: 0-1 WangZhang, wyz1AC, mw 296; ESI+ ZHA101513MQ 662 (12.279) Cn (Cen,4, 60.00, Ar); Sm (SG, 4x3.00); Cm (650:668) 319.0943 320.0963 D0 0005

315.1618	316.81	99_317.1009	318.1125	310.9790	319.8351	32	1.0955	32	2.1769 322.7834	323.8315 m/z
315.00	316.00	317.00	318.00	319.0	00 320.00	32	.00	322	.00 323.00	324.00
Minimum: Maximum:		3.0	10.0	$^{-1.5}_{50.0}$						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula				
319.0943	319.0943 319.0946 319.0938 319.0933 319.0930 319.0930 319.0957 319.0965 319.0965 319.0965 319.0917 319.0917	0.0 -0.3 0.5 1.0 1.3 -1.4 -1.7 -1.9 -2.2 2.4 2.6 -2.7	$\begin{array}{c} 0.0 \\ \hline -0.9 \\ 1.6 \\ 3.1 \\ 4.1 \\ 4.1 \\ -4.4 \\ -5.3 \\ -6.0 \\ -6.9 \\ 7.5 \\ 8.1 \\ -8.5 \end{array}$	$\begin{array}{c} 14.5\\ 10.5\\ -1.5\\ 11.0\\ 15.0\\ 9.5\\ 14.0\\ 15.5\\ 1.5\\ 3.0\\ 11.5\\ 10.0\\ 13.5 \end{array}$	2.0 1.5 76.4 3.4 4.8 5.9 0.7 0.4 57.2 48.9 7.0 9.6 0.9	C16 H1 C2 H16 C16 H1 C14 H9 C15 H1 C18 H1 C18 H1 C18 H1 C4 H15 C5 H14 C14 H1 C13 H1 C13 H1 C20 H1	1 N6 04 N8 4 N3 5 N2 3 N3 2 N4 N8 N9 2 N6 3 N5 5 O4	02 Na 09 N 03 06 03 Na 09 06 N 02 05	a Na a Na	

Supplementary Figure 158. HRMS of 1ac.

Page 1

UCSB CHEM BIOCHEM QTOF2 TOF MS ES+ 1.18e3

Supplementary Figure 159. The optimized NTf_2^- activated transition states $(TS-NTf_2 \text{ and } TS-NTf_2')$ and the amide group activated transition states (TS-Amide and TS-Amide'). The selected bond lengths are in angstroms, the relative energies ΔE_{sol} and free energies ΔG_{sol} (in italic, 298K) in dichloroethane are in kcal/mol.

Supplementary Table 1. Crystal data and structure refinement for 12202013_0m.

Identification code	12202013_0m						
Empirical formula	C37 H46 Au Cl N O P						
Formula weight	784.13						
Temperature	106(2) K						
Wavelength	0.71073 Å						
Crystal system	Monoclinic						
Space group	P2(1)/n						
Unit cell dimensions	a = 10.0233(5) Å	a= 90°					
	b = 18.3727(8) Å	b=100.317(3)°					
	c = 17.3365(9) Å	$g = 90^{\circ}$					
Volume	3141.0(3) Å ³						
Z	4						
Density (calculated)	1.658 Mg/m ³						
Absorption coefficient	4.851 mm ⁻¹						
F(000)	1576						
Crystal size	$0.15 \ge 0.15 \ge 0.10 \text{ mm}^3$						
Theta range for data collection	1.63 to 28.28°						
Index ranges	-12<=h<=13, -23<=k<=24, -23<=l<=23						
Reflections collected	21308						
Independent reflections	7773 [R(int) = 0.0372]						
Completeness to theta = 28.28°	99.6 %						
Absorption correction	Semi-empirical from equivalents						
Max. and min. transmission	0.7469 and 0.5890						
Refinement method	Full-matrix least-squares on F ²						
Data / restraints / parameters	7773 / 0 / 379						
Goodness-of-fit on F ²	1.018						

Final R indices [I>2sigma(I)]	R1 = 0.0248, wR2 = 0.0513
R indices (all data)	R1 = 0.0376, wR2 = 0.0549
Largest diff. peak and hole	0.884 and -0.597 e.Å ⁻³

Supplementary Methods

General

Ethyl acetate (ACS grade), hexanes (ACS grade), diethyl ether (ACS grade), were purchased from Fisher Scientific and used without further purification. Anhydrous 1,2-dichloroethane were bought from Acros and used directly. Fluorobenzene was purchased from Synquest Labs, Inc and distilled over P2O5 before use. Most commercially available carboxylic acids below 99.5% purify were recrystallized from distilled Fluorobenzene, and all commercially available alkynes were distilled over NaBH₄ before use. NaBAr^F₄ was purchased from Synquest Labs and dried by heating to 100 °C under high vacuum for overnight. Reactions were monitored by thin layer chromatography (TLC) using Silicycle precoated silica gel plates. Flash column chromatography was performed over Silicycle silica gel (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Varian 500/600 MHz Unity plus spectrometer and a Varian 400 MHz spectrometer using residue solvent peaks as internal standards (CDCl₃, ¹H: 7.26 ppm; ¹³C: 77.00 ppm). Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter (cm-1). Mass spectra were recorded Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer by electrospray method.

General Procedure A: Synthesis of Ligands and Catalysts

Step1:

To a dispersion of 10 mmol 3-iodobenzoic acid (1 equiv) in 50 mL dry CH_2Cl_2 was added 25 mmol oxalyl chloride (2.5 equiv) and three drops of DMF, and the mixture was stirred for 2 - 4 h at room temperature. The reaction mixture was evaporated under reduced pressure and dried under vacuum to yield 3-iodobenzoyl chloride, which was dissolved in 50 mL dry CH_2Cl_2 again and cooled in an ice bath. A 10 mL CH_2Cl_2 solution containing 15 mmol amine (1.5 equiv) and 20 mmol Et_3N (2 equiv) was then added and the reaction mixture was stirred at room temperature under a nitrogen atmosphere. After 1 h, the solution was treated with 50 mL water and 100 mL DCM, and the organic phase was separated, dried, evaporated, and then purified by column chromatography to yield compound **A** in 90 - 95% yield.

Step2:

A mixture of 8 mmol **A** (1 equiv), 8.8 mmol 2-bromophenylboronic acid (1.1 equiv) and 24 mmol Et₃N (3 equiv) in 40 mL DMF was stirred and bubbled with N₂ gas for 15 minutes, and then 0.4 mmol Pd(PPh₃)₄ (5 mol %) was added; the reaction mixture was heated at 90 °C for 4 - 8 h under nitrogen atmosphere. Once TLC indicated **A** was completely consumed, the reaction was diluted with 500 mL Et₂O and washed with water to remove DMF. Then the organic layer was dried over MgSO4, filtrated, evaporated, and then purified by column chromatography to yield product **B** in 85 - 92% yield.

Step 3:

Under nitrogen atmosphere 2 mmol **B** (1 equiv), 0.1 mmol Pd(OAc)₂ (5 mol%), 0.12 mmol DiPPF (1,1'-bis(diisopropylphosphino)ferrocene, 6 mol%), 2.4 mmol NaOt-Bu (1.2 equiv) and 5 mL dry Toluene were added to a flamed dried Schlenk flask and the resulting suspension was stirred until apparently homogeneous (around 15 min). Added 2.2 mmol di(1-adamantyl)phosphine (1.1 equiv), the flask was heated at 110 $^{\circ}$ C in oil bath for 12 h, which then was cooled to room temperature, and purified by column chromatography without work-up to yield the final ligand **L** in 60 – 80% yield.

Step 4:

To a suspension of 1 mmol ligand **L** in 5 mL anhydrous DCM was added chloro(dimethylsulfide)gold(I) (294.5 mg, 1 mmol). The mixture was stirred for 30 min at room temperature and the solvent was evaporated off under reduced pressure to give the desired gold complex **L**AuCl in quantitative yield.

2'-(diadamantylphosphino)-N,N-dimethylbiphenyl-3-amine L1

3-Bromo-*N*,*N*-dimethylaniline **L1b** was prepared according to the literature procedure^[47] and biaryl compound **L1c** was obtained by using same literature procedure^[48]. Ligand **L1** was then synthesized in 67% yield through general procedure A, step 3. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.27 (m, 3H), 7.24 – 7.18 (m, 1H), 6.74 – 6.67 (m, 1H), 6.62 – 6.55 (m, 2H), 2.95 (s, 6H), 1.90 (q, *J* = 12.2 Hz, 18H), 1.65 (s, 12H).). ¹³C NMR (125 MHz, CDCl₃) δ 152.63 (d, *J* = 32.5 Hz), 149.27, 144.77 (d, *J* = 7.5 Hz), 136.45 (*J* = 3.8 Hz), 133.10 (d, *J* = 26.3 Hz), 130.41 (d, *J* = 6.2 Hz), 127.96, 127.70, 125.08, 119.16 (d, *J* = 3.0 Hz), 115.72 (d, *J* = 3.6 Hz), 110.65, 42.00, 41.95 (d, *J* = 13.1 Hz), 37.18 (d, *J* = 26.0 Hz), 36.98, 28.87 (d, *J* = 8.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.26. IR (neat): 2901,

2847, 1602, 1584, 1498, 1449, 1343, 1301, 1047, 991, 955, 762, 743; HRMS ESI (*m/z*): [MNa]⁺ calcd. for C₃₄H₄₄NPNa, 520.3109; found, 520.3088.

L1AuCl

Au complex **L1AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (t, *J* = 7.6 Hz, 1H), 7.48 (dt, *J* = 21.5, 7.4 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.28 (bs, 1H), 6.93 (bs, 1H), 6.60 – 6.30 (m, 2H), 3.01 (s, 6H), 2.27 – 2.05 (m, 12H), 1.98 (d, *J* = 21.1 Hz, 6H), 1.67 (d, *J* = 20.9 Hz, 12H).¹³C NMR (125 MHz, CDCl₃) δ 151.42, 142.81, 134.24 (d, *J* = 2.3 Hz), 133.12 (d, *J* = 7.3 Hz), 130.17, 129.14, 125.95 (d, *J* = 6.2 Hz), 123.90, 123.55, 117.48, 113.95, 112.69, 42.31 (d, *J* = 45.5, 45 Hz), 42.14 (dd, *J* = 45.5, 2.7 Hz), 40.84, 36.28 (d, *J* = 8.2 Hz), 28.58 (dd, *J*₁ = *J*₂ = 9.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 62.61. IR (neat): 2904, 2849, 2803, 1600, 1585, 1500, 1450, 1431, 1355, 1344, 1301, 1260, 1178, 1163, 1124, 1045, 990, 972, 842, 770, 733; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₃₄H₄₄AuClNPNa, 754.2463; found, 754.2451.

2'-(diadamantylphosphino)-N,N-dimethylbiphenyl-4-amine L2

Ligand L2 was obtained in the same way to L1. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.75 – 6.70 (m, 2H), 3.00 (s, 6H), 1.90 (q, *J* = 12.2 Hz, 18H), 1.66 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 152.00 (d, *J* = 32.1 Hz), 148.83, 136.62 (d, *J* = 2.9 Hz), 133.19 (d, *J* = 26.3 Hz), 132.23 (d, *J* = 7.1 Hz), 131.29 (d, *J* = 3.9 Hz), 131.06 (d, *J* =

6.0 Hz), 128.08, 124.62, 111.21, 41.88 (d, J = 13.1 Hz), 40.52, 37.28 (d, J = 25.9 Hz), 36.97, 28.86 (d, J = 8.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.35 IR (neat): 3047, 2902, 2847, 1612, 1522, 1450, 1343, 1301, 1224, 1194, 1166, 1047, 970, 947, 814, 768, 743; HRMS ESI (m/z): [MH]⁺ calcd. for C₃₄H₄₅NP, 498.3290; found, 498.3280.

L2AuCl

Au complex **L2AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) 7.83 (t, J = 7.5 Hz, 1H), 7.46 (dt, J = 23.5, 7.6 Hz, 2H), 7.36 – 7.29 (m, 1H), 6.97 (d, J = 8.1 Hz, 2H), 6.87 (s, 2H), 3.05 (s, 6H), 2.24 – 2.05 (m, 12H), 1.98 (s, 6H), 1.67 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 151.06, 134.35, 133.85 (d, J = 7.7 Hz), 130.27, 129.90, 129.66 (d, J = 7.8 Hz), 125.94 (d, J = 6.5 Hz), 124.12 (d, J = 45.1 Hz), 113.37 (d, J = 61.3 Hz), 42.45 (d, J = 23.5 Hz), 42.09 (d, J = 2.5 Hz), 36.25, 28.57 (d, J = 9.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 62.87. IR (neat): 2904, 2849, 2798, 1611, 1523, 1448, 1347, 1301, 1223, 1166, 1126, 1045, 972, 913, 815, 773, 744; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₄H₄₅AuClNPNa, 752.2463; found, 752.2448.

(2'-(diadamantylphosphino)biphenyl-4-yl)(piperidin-1-yl)methanone L3

Ligand L3 was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.31 (m, 4H), 7.26 (t, *J* = 3.9 Hz, 3H), 7.22

(ddd, J = 7.3, 4.0, 1.7 Hz, 1H), 3.72 (bs, 2H), 3.47 (bs, 2H), 1.85 (q, J = 12.7 Hz, 18H), 1.67 (m, 18 H). ¹³C NMR (125 MHz, CDCl₃) δ 170.57, 150.98 (d, J = 32.7 Hz), 145.27 (d, J = 6.9 Hz), 136.62 (d, J = 2.6 Hz), 133.78, 133.11 (d, J = 29.0 Hz), 130.68 (d, J = 4.1 Hz), 130.50 (d, J = 6.2 Hz), 128.19, 125.94, 125.53, 48.84, 43.26, 41.80 (d, J = 13.0 Hz), 37.34 (d, J = 26.2 Hz), 36.89, 28.78 (d, J = 8.6 Hz), 26.53, 25.72, 24.67. ³¹P NMR (162 MHz, CDCl₃) δ 20.64. IR (neat): 2911, 2861, 1627 (C=O), 1443, 1347, 1274, 1157, 1023, 751; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₈H₄₈NOPNa, 588.3371; found, 588.3395.

L3AuCl

Au complex L3AuCl was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.84 (m, 1H), 7.50 (d, *J* = 7.7 Hz, 4H), 7.16 (t, *J* = 7.5 Hz, 3H), 4.05 – 3.60 (m, 4H), 2.26 – 2.09 (m, 12H), 2.01 (s, 6H), 1.69 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 169.85, 150.07 (d, *J* = 13.0 Hz), 143.89 (d, *J* = 6.3 Hz), 136.25, 134.36 (d, *J* = 2.3 Hz), 133.94 (d, *J* = 7.5 Hz), 130.48 (d, *J* = 2.3 Hz), 129.68, 127.68, 126.44 (d, *J* = 6.4 Hz), 123.03 (d, *J* = 43.5 Hz), 49.77, 43.41, 42.66 (d, *J* = 23.9 Hz), 42.13 (d, *J* = 2.5 Hz), 36.23, 28.57 (d, *J* = 9.8 Hz), 36.97, 25.78, 24.74. ³¹P NMR (162 MHz, CDCl₃) δ 62.19. IR (neat): 2911, 2851, 1627 (C=O), 1443, 1347, 1274, 1157, 1023, 751; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for ₃₈H₄₈AuClNNaOP, 820.2725; found, 820.2709.

(2'-(diadamantylphosphino)biphenyl-3-yl)(morpholino)methanone L4

Ligand L4 was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 5.2, 3.7 Hz, 1H), 7.45 – 7.33 (m, 4H), 7.31 – 7.27 (m, 1H), 7.25 – 7.19 (m, 2H), 3.86 – 3.39 (m, 8H), 1.84 (dd, J = 29.2, 9.6 Hz, 18H), 1.64 (q, J = 12.6 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 170.64, 150.66 (d, J = 32.2 Hz), 143.89 (d, J = 7.1 Hz), 136.54 (d, J = 2.7 Hz), 134.04, 132.87 (d, J = 27.6 Hz), 132.44 (d, J = 4.1 Hz), 130.54 (d, J = 6.1 Hz), 128.71 (d, J = 3.8 Hz), 128.44 (d, J = 1.1 Hz), 127.62, 125.81, 125.33, 67.02, 48.51, 42.48, 41.92 (d, J = 12.8 Hz), 37.43 (d, J = 25.2 Hz), 36.89, 28.76 (d, J = 8.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 21.17. IR (neat): 2902, 2848, 1639 (C=O), 1450, 1301, 1273, 1166, 1115, 1018, 807, 743; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₇H₄₆NO₂PNa, 590.3164; found, 590.3174.

L4AuCl

Au complex **L4AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.84 (m, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.30 – 7.26 (m, 1H), 7.18 – 7.10 (m, 2H), 4.03 – 3.48 (m, 8H), 2.27 – 2.13 (m, 6H), 2.04 (dd, *J* = 44.5, 13.8 Hz, 12H), 1.75 – 1.59 (m, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 170.11, 149.56 (d, *J* = 12.9 Hz), 142.81 (d, *J* = 6.4 Hz), 135.49, 134.32, 133.53 (d, *J* = 7.3 Hz), 130.82, 130.57 (d, *J* = 2.1 Hz),

129.11, 127.69, 127.07, 126.66 (d, J = 6.6 Hz), 123.48 (d, J = 43.8 Hz), 67.55, 66.88, 48.80, 48.67, 42.65 (dd, J = 30.6, 23.7 Hz), 42.19 (d, J = 45.5 Hz), 36.23 (d, J = 8.0 Hz), 28.52 (dd, J = 16.5, 9.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 62.31. IR (neat): 2908, 2851, 1738, 1634 (C=O), 1460, 1347, 1302, 1264, 1157, 1114, 1045, 799, 748; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₇H₄₆AuClNNaO₂P, 822.2518; found, 822.2507.

2'-(diadamantylphosphino)-N,N-diethylbiphenyl-3-carboxamide L5

Ligand **L5** was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 1H), 7.41 – 7.33 (m, 3H), 7.33 – 7.25 (m, 3H), 7.22 (s, 1H), 3.49 (m, 4H), 1.96 – 1.78 (m, 18H), 1.70 – 1.52 (m, 12H), 1.36 – 0.98 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.46, 150.89 (d, *J* = 32.1 Hz), 143.63 (d, *J* = 7.0 Hz), 136.54 (d, *J* = 2.6 Hz), 135.91, 132.90 (d, *J* = 28.0 Hz), 131.67 (d, *J* = 4.4 Hz), 130.56 (d, *J* = 6.1 Hz), 128.50 (d, *J* = 3.9 Hz), 128.40 (d, *J* = 1.0 Hz), 127.23, 125.63, 124.31, 43.36, 41.88 (d, *J* = 12.9 Hz), 39.12, 37.39 (d, *J* = 25.7 Hz), 36.89, 28.76 (d, *J* = 8.6 Hz), 14.28, 12.97. ³¹P NMR (162 MHz, CDCl₃) δ 21.01. IR (neat): 2902, 2847, 1635 (C=O), 1449, 1345, 1303, 1218, 1100, 970, 767, 731; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₃₇H₄₈NOPNa, 576.3371; found, 576.3395.

L5AuCl

Au complex **L5AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.79 (m, 1H), 7.54 – 7.44 (m, 4H), 7.32 (dd, J = 9.1, 4.3 Hz, 1H), 7.16 (d, J = 7.4 Hz, 1H), 7.11 (s, 1H), 3.84 – 3.29 (m, 4H), 2.34 – 2.16 (m, 6H), 2.16 – 1.93 (m, 12H), 1.78 – 1.52 (m, 12H), 1.18 (dt, J = 45.6, 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.17, 149.86 (d, J = 12.6 Hz), 142.68 (d, J = 6.3 Hz), 137.60, 134.29 (d, J = 2.3 Hz), 133.71 (d, J = 7.4 Hz), 130.53 (d, J = 2.3 Hz), 130.23, 129.01, 127.00, 126.51 (d, J = 6.6 Hz), 126.00, 123.46 (d, J = 43.8 Hz), 43.62, 42.61 (dd, J = 46.3, 23.6 Hz), 42.18 (dd, J = 60.1, 2.6 Hz) 39.13, 36.24, 28.54 (dd, J = 17.8, 9.8 Hz) 14.54, 12.86. ³¹P NMR (162 MHz, CDCl₃) δ 62.36. IR (neat): 2908, 2851, 1629 (C=O), 1451, 1346, 1302, 1159, 1071, 1046, 771, 747; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₇H₄₈AuClNNaOP, 808.2725; found, 808.2700.

2'-(diadamantylphosphino)-N,N-diisopropylbiphenyl-3-carboxamide L6

Ligand L6 was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 7.5 Hz, 1H), 7.41 – 7.31 (m, 3H), 7.31 – 7.26 (m, 2H), 7.22 (dt, *J* = 7.4, 1.4 Hz, 1H), 7.17 (t, *J* = 1.5 Hz, 1H), 4.2 – 3.2 (m, 2H), 1.94 – 1.78 (m, 18H), 1.70 – 1.59 (m, 12H), 1.59 – 0.9 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 171.24, 151.01 (d, *J* = 32.1 Hz), 143.90 (d, *J* = 6.9 Hz), 137.85, 136.58 (d, *J* = 2.7 Hz), 132.76 (d, *J* = 27.9 Hz), 131.57 (d, *J* = 5.3 Hz), 130.78 (d, *J* = 6.2 Hz), 128.38 (d, *J* =

1.1 Hz), 127.43 (d, J = 2.6 Hz), 126.95, 125.54, 123.40, 50.72, 45.91, 41.89 (d, J = 12.9 Hz), 37.41 (d, J = 25.6 Hz), 36.90, 28.80 (d, J = 8.6 Hz), 20.79. ³¹P NMR (162 MHz, CDCl₃) δ 21.17. IR (neat): 2905, 2849, 1738, 1634 (C=O), 1445, 1373, 1340, 1212, 1158, 1041, 768; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₃₉H₅₂NOPNa, 604.3684; found, 604.3694.

L6AuCl

Au complex **L6AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (t, *J* = 7.9 Hz, 1H), 7.50 (q, *J* = 6.0, 4.2 Hz, 2H), 7.47 – 7.41 (m, 2H), 7.31 (t, *J* = 5.1 Hz, 1H), 7.12 (d, *J* = 7.0 Hz, 1H), 7.02 (s, 1H), 4.53 (bs, 1H), 3.49 (bs, 1H), 2.29 – 2.18 (m, 6H), 2.14 – 2.00 (m, 12H), 1.96 (s, 3H), 1.77 – 1.45 (m, 15H), 1.30 – 1.19 (m, 3H), 1.08 – 0.96 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.95, 149.94 (d, *J* = 13.1 Hz), 142.76 (d, *J* = 6.5 Hz), 139.05, 134.25, 133.68 (d, *J* = 7.3 Hz), 130.45, 129.59, 129.10, 126.46 (d, *J* = 6.5 Hz), 126.31, 124.97, 123.46 (d, *J* = 43.9 Hz), 51.38, 45.92, 42.53 (d, *J* = 93.5 Hz, 23.6 Hz), 42.17 (d, *J* = 82.5 Hz), 36.24, 28.54 (dd, *J* = 27.1, 9.8 Hz), 21.07, 20.67, 20.53. ³¹P NMR (162 MHz, CDCl₃) δ 62.37. IR (neat): 2917, 2850, 1736, 1628 (C=O), 1577, 1540, 1448, 1373, 1343, 1301, 1211, 1105, 1019, 973, 772, 747, 710; HRMS ESI (*m*/z): [MNa]⁺ calcd. for C₃₉H₅₂AuClNNaOP, 836.3038; found, 836.3021.

(2'-(diadamantylphosphino)biphenyl-3-yl)(piperidin-1-yl)methanone L7

Ligand **L7** was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.84 (m, 1H), 7.41 – 7.31 (m, 4H), 7.29 (ddd, *J* = 7.3, 2.6, 1.6 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.20 (d, *J* = 1.6 Hz, 1H), 3.71 (s, 2H), 3.47 (s, 2H), 1.85 (q, *J* = 11.9 Hz, 18H), 1.69 – 1.39 (m, 18H).¹³C NMR (125 MHz, CDCl₃) δ 170.52, 150.92 (d, *J* = 32.3 Hz), 143.70 (d, *J* = 7.1 Hz), 136.53 (d, *J* = 2.6 Hz), 135.31, 132.92 (d, *J* = 27.9 Hz), 132.10 (d, *J* = 4.7 Hz), 130.58 (d, *J* = 6.1 Hz), 128.41 (d, *J* = 3.1 Hz), 128.37 (d, *J* = 1.1 Hz), 127.29, 125.65, 125.02, 48.95, 43.12, 41.89 (d, *J* = 12.9 Hz), 37.41 (d, *J* = 25.5 Hz), 36.91, 28.79 (d, *J* = 8.6 Hz), 26.68, 25.62, 24.63. ³¹P NMR (162 MHz, CDCl₃) δ 21.12. IR (neat): 2901, 2847, 1630 (C=O), 1443, 1343, 1300, 1265, 1228, 1110, 1026, 1002, 970, 907, 826, 809, 765, 731; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₃₈H₄₈NOPNa, 588.3371; found, 588.3361.

L7AuCl

Au complex L7AuCl was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.82 (m, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.31 – 7.27 (m, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 3.86 – 3.53 (m, 4H), 2.28 – 1.91 (m, 18H), 1.84 – 1.42 (m, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 170.05, 149.81 (d, *J* = 12.9 Hz), 142.54 (d, *J* = 6.6 Hz), 136.66, 134.29, 134.27, 133.57 (d, *J* = 7.3 Hz), 130.50 (d, *J* = 2.2 Hz), 130.35, 129.05, 127.38,

126.70, 126.53 (d, J = 6.6 Hz), 123.49 (d, J = 43.9 Hz), 49.33, 43.16, 42.61 (J = 37.5 Hz, 23.8 Hz), 42.16 (dd, J = 55.0, 2.6 Hz) 36.25, 36.23, 36.22, 28.54 (dd, J = 15.1, 9.8 Hz),26.78, 25.75, 24.66. ³¹P NMR (162 MHz, CDCl₃) δ 62.26. IR (neat): 2906, 2851, 2231, 1625 (C=O), 1444, 1344, 1301, 1253, 1228, 1109, 1042, 1002, 972, 915, 852, 804, 772, 729; HRMS ESI (m/z): [MNa]⁺ calcd. C₃₈H₄₈AuClNNaOP, 820.2725; found, 820.2717.

(2'-(diadamantylphosphino)biphenyl-3-yl)(pyrrolidin-1-yl)methanone L8

Ligand **L8** was obtained according to general procedure A. ¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.85 (m, 1H), 7.48 (dt, J = 7.6, 1.4 Hz, 1H), 7.42 – 7.31 (m, 4H), 7.29 (d, J = 7.6 Hz, 1H), 7.25 – 7.21 (m, 1H), 3.65 (t, J = 7.0 Hz, 2H), 3.53 (t, J = 6.6 Hz, 2H), 2.00 – 1.78 (m, 22H), 1.72 – 1.55 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 169.91, 150.94 (d, J = 32.3 Hz), 143.51 (d, J = 7.0 Hz), 136.52 (d, J = 2.7 Hz), 136.01, 132.93 (d, J = 27.7 Hz), 132.33 (d, J = 4.3 Hz), 130.60 (d, J = 6.1 Hz), 128.90 (d, J = 3.6 Hz), 128.35 (d, J = 1.1 Hz), 127.25, 125.65, 125.31, 49.90, 46.04, 41.89 (d, J = 12.9 Hz), 37.35 (d, J = 25.5 Hz), 36.90, 28.78 (d, J = 8.6 Hz), 26.40, 24.54. ³¹P NMR (162 MHz, CDCl₃) δ 22.10. IR (neat): 2901, 2847, 1628 (C=O), 1424, 1342, 1301, 1253, 1162, 1047, 971, 921, 808, 767, 730; HRMS ESI (m/z): [MNa]⁺ calcd. for C₃₇H₄₆NOPNa, 574.3215; found, 574.3214.

L8AuCl

Au complex **L8AuCl** was obtained in quantitative yield according to general procedure A, step 4. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (t, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.54 – 7.42 (m, 3H), 7.29 (d, *J* = 18.1 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 1H), 3.93 – 3.53 (m, 4H), 2.30 – 1.79 (m, 22H), 1.73 – 1.59 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 169.23, 149.83 (d, *J* = 13.0 Hz), 142.46 (d, *J* = 6.4 Hz), 136.92, 134.28 (d, *J* = 2.4 Hz), 133.66 (d, *J* = 7.4 Hz), 130.94, 130.51 (d, *J* = 2.4 Hz), 128.61, 128.14,
127.22, 126.54 (d, J = 6.5 Hz), 123.52 (d, J = 43.7 Hz), 50.16, 46.42, 42.58 (dd, J = 23.7, 11.7 Hz), 42.16 (dd, J = 28.6, 2.6 Hz), 36.23, 28.54 (dd, J = 9.9, 7.1 Hz), 26.57, 24.43. ³¹P NMR (162 MHz, CDCl₃) δ 62.32. IR (neat): 2906, 2851, 2232, 1620 (C=O), 1598, 1575, 1442, 1344, 1301, 1259, 1198, 1104, 1045, 972, 914, 806, 772, 730; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₃₇H₄₆AuClNNaOP, 806.2569; found, 806.2565.

L8AuNTf₂

To a suspension of 0.95 mmol Au complex L8AuCl in vial with 5 mL anhydrous DCM was added AgNTf₂ (0.95 mmol). The mixture was stirred for 30 min at room temperature and the vial was left in a centrifuge for 5 min after which AgCl all stayed in the bottom. After passing through a Teflon syringe filter (0.2 μ m), the solvent was evaporated off under reduced pressure to give the desired gold complex L8AuNTf₂ in 95% yield. ¹H NMR (600 MHz, CDCl₃) $\delta \delta$ 7.91 – 7.85 (m, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.62 - 7.53 (m, 3H), 7.35 (bs, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.24 (bs, 1H), 3.72 - 7.53 (m, 3H), 7.35 (bs, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.24 (bs, 1H), 3.72 - 7.53 (m, 3H), 7.35 (bs, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.24 (bs, 1H), 3.72 - 7.53 (m, 3H), 7.35 (bs, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.24 (bs, 1H), 7.24 (b 3.40 (m, 4H), 2.24 - 1.82 (m, 22H), 1.76 - 1.53 (m, 12H).¹³C NMR (150 MHz, CDCl₃) δ 169.75, 148.81 (d, J = 10.6 Hz), 142.12, 136.21, 134.06, 133.59 (d, J = 7.4 Hz), 131.69, 131.29, 128.88, 127.66 (d, *J* = 87.8 Hz), 127.11 (d, *J* = 7.4 Hz), 121.30 (d, J = 44.7 Hz), 119.62 (dd, J = 324 Hz), 50.24, 46.92, 43.08 (d, J = 24.6 Hz), 42.14(d, J = 38.5 Hz), 36.03, 28.48 (dd, J = 12.3, 10.2 Hz), 26.20, 24.24. ³¹P NMR (162) MHz, CDCl₃) δ 61.10. IR (neat): 2908, 2853, 1622 (C=O), 1596, 1575, 1451, 1354, 1229, 1196, 1138, 1061; HRMS ESI^+ (*m/z*): $[\text{M-NTf}_2]^+$ calcd. for $C_{37}H_{46}$ NOAuP, 748.2983; found, 748.2975; ESI⁻ (*m/z*) [M-L8Au]⁻ calcd. For C₂NO₄S₂F₆, 279.9173; found, 279.9159.

General procedure B: Preparation of Enol Esters 1 (50 ppm)

In a sealed 1 dr reaction vial equipped with a magnetic stirring bar, 3 mmol carboxylic acids (1 equiv), 4.4 mmol 1-hexyne (1.45 equiv) or 3.6 mmol other alkynes (1.2 equiv) and 3.1 mg NaBAr^F₄ (1200 ppm) were added to 0.6 mL fluorobenzene. L8AuNTf₂ (50 μ L of a 3.09 mg/mL solution in PhF, 0.150 μ mol, 50 ppm) was added to the above vial and then the reaction mixture was heated at 80 °C for 12 - 24 h. Once the reaction finished by TLC, it was concentrated and left on the high vacuum pump for overnight to give the NMR pure product. If crude NMR was not pure, the residue was further purified through silica gel flash chromatography to give the desired product **1**.

dodec-1-en-2-yl benzoate 1a

857 mg Compound **1a** was obtained in 99% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl3) δ 8.14 – 8.05 (m, 2H), 7.63 – 7.55 (m, 1H), 7.51 – 7.42 (m, 2H), 4.84 (dt, *J* = 12.5, 2.0 Hz, 2H), 2.34 (t, *J* = 7.6 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.40 – 1.19 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.74, 156.83, 133.23, 129.92, 129.90, 128.42, 101.27, 33.43, 31.88, 29.56, 29.52, 29.35, 29.30, 28.99, 26.54, 22.66, 14.09. IR (neat): 3118, 2954, 2925, 2854, 1733 (C=O), 1666, 1602, 1454, 1378, 1314, 1270, 1222, 1172, 1068, 863, 705; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₉H₂₉O₂Na, 311.1987; found, 311.1981.

hex-1-en-2-yl 3,5-dimethylbenzoate 1b

693 mg Compound **1b** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 2H), 7.23 (s, 1H), 4.83 (d, *J* = 0.5 Hz, 2H), 2.38 (d, *J* = 0.5 Hz, 6H), 2.35 (t, *J* = 7.5 Hz, 2H), 1.59 – 1.48 (m, 2H), 1.45 – 1.34 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.07, 156.88, 138.09, 134.88, 129.73, 127.58, 101.16, 33.10, 28.64, 22.11, 21.11, 13.81. IR (neat): 3116, 2958, 2931, 2873, 2864, 1732 (C=O), 1667, 1610, 1466, 1382, 1204, 867, 761; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₅H₂₀O₂Na, 255.1361; found, 255.1342.

hex-1-en-2-yl 2-methylbenzoate 1c

652 mg Compound **1c** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (600 MHz, CDCl₃) δ 8.05 – 7.92 (m, 1H), 7.43 (td, J = 7.5, 1.3 Hz, 1H), 7.34 – 7.16 (m, 2H), 4.84 (dd, J = 6.1, 1.2 Hz, 2H), 2.64 (s, 3H), 2.35 (t, J = 7.5 Hz, 2H), 1.63 – 1.47 (m, 2H), 1.46 – 1.34 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.49, 156.79, 140.81, 132.31, 131.79, 130.86, 129.01, 125.75, 101.23, 33.15, 28.66, 22.10, 21.79, 13.82. IR (neat): 3072, 2957, 2932, 2873, 2864, 1735 (C=O), 1666, 1603, 1458, 1383, 1294, 865, 737; HRMS ESI (m/z): [MNa]⁺ calcd. for C₁₄H₁₈O₂Na, 241.1204; found, 241.1199.

hex-1-en-2-yl 3-methoxybenzoate 1d

698 mg Compound **1d** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (600 MHz, CDCl₃) δ 7.71 – 7.64 (m, 1H), 7.59 (dd, J = 2.5, 1.5 Hz, 1H), 7.36 (dd, J = 10.3, 5.6 Hz, 1H), 7.12 (ddd, J = 8.2, 2.7, 0.8 Hz, 1H), 4.84 (dd, J = 15.3, 1.4 Hz, 2H), 3.85 (s, 3H), 2.34 (t, J = 7.8 Hz, 2H), 1.57 – 1.46 (m, 2H), 1.45 – 1.31 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.55, 159.55, 156.75, 131.14, 129.40, 122.24, 119.71, 114.25, 101.22, 55.36, 33.06, 28.61, 22.05, 13.78. IR (neat): 3078, 2957, 2932, 2873, 2864, 1735 (C=O), 1666, 1586, 1488, 1466, 1432, 1278, 1213, 869, 750; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₄H₁₈O₃Na, 257.1154; found, 257.1151.

hex-1-en-2-yl 3-bromobenzoate 1e

845 mg Compound **1e** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (t, *J* = 1.8 Hz, 1H), 8.05 – 7.94 (m, 1H), 7.70 (ddd, *J* = 8.0, 2.0, 1.1 Hz, 1H), 7.34 (dd, *J* = 9.9, 5.9 Hz, 1H), 4.84 (dt, *J* = 3.7, 1.5 Hz, 2H), 2.33 (t, *J* = 7.5, 2H), 1.51 (tdd, *J* = 8.4, 7.3, 5.1 Hz, 2H), 1.38 (dq, *J* = 14.4, 7.3 Hz, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 163.36, 156.61, 136.15, 132.82, 131.81, 129.98, 128.43, 122.49, 101.47, 33.00, 28.59, 22.06, 13.78. IR (neat): 3070, 2959, 2932, 2873, 2864, 1737 (C=O), 1668, 1571, 1468, 1423, 1291, 1251, 1233, 1173, 1116, 1067, 869, 806, 742; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₃H₁₅BrO₂Na, 305.0153; found, 305.0144.

hex-1-en-2-yl 2-chloro-4-nitrobenzoate 1f

847 mg Compound **1f** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 2.2 Hz, 1H), 8.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 8.08 – 7.93 (m, 1H), 5.16 – 4.67 (m, 2H), 2.34 (t, *J* = 7.6 Hz, 2H), 1.57 – 1.47 (m, 2H), 1.38 (dq, *J* = 14.4, 7.3 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.18, 156.36, 149.49, 135.48, 134.90, 132.12, 126.00, 121.45, 101.90, 32.80, 32.80, 28.47, 28.47, 21.97, 21.97, 13.73, 13.73. IR (neat): 3041, 2959, 2931, 2873, 2864, 1745 (C=O), 1668, 1590, 1528, 1467, 1388, 1348, 1280, 1220, 1127, 1042, 860, 764, 732; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₃H₁₄CINO₄Na, 306.0509; found, 306.0508.

hex-1-en-2-yl 2,6-dichlorobenzoate 1g

816 mg Compound **1g** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.25 (m, 3H), 4.97 (d, J = 1.9 Hz, 1H), 4.88 (q, J = 1.3 Hz, 1H), 2.41 – 2.34 (m, 2H), 1.62 – 1.52 (m, 2H), 1.45 – 1.35 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) 162.82, 156.55, 133.28, 131.80, 130.98, 127.85, 101.94, 32.86, 28.42, 22.02, 13.79. IR (neat): 3087, 2959, 2933, 2874, 1756 (C=O), 1670, 1586, 1565, 1434, 1381, 1272, 1225, 1196 1166, 1139, 1082, 1053, 931, 881, 802, 780, 746; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₃H₁₄Cl₂O₂Na, 295.0269; found, 295.0256.

hex-1-en-2-yl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate 1h

987 mg Compound **1h** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 18.9 Hz, 1H), 8.16 (dt, *J* = 7.8, 1.5 Hz, 1H), 8.01 (d, *J* = 7.4 Hz, 1H), 7.46 (dd, *J* = 9.3, 5.9 Hz, 1H), 4.93 – 4.71 (m, 2H), 2.35 (dd, *J* = 23.6, 16.1 Hz, 2H), 1.57 – 1.44 (m, 2H), 1.43 – 1.26 (m, 16H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.76, 156.84, 139.45, 136.05, 132.53, 129.26, 127.80, 101.17, 84.04, 43.36, 33.04, 28.58, 24.79, 22.07, 13.77. IR (neat): 3065, 2979, 2960, 2933, 2874, 1735 (C=O), 1667, 1606, 1422, 1362, 1327, 1248, 1222, 1144, 965, 857, 753; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₈H₂₇BO₄Na, 353.1900; found, 353.1887.

hex-1-en-2-yl thiophene-2-carboxylate 1i

627 mg Compound **1i** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.80 (m, 1H), 7.68 – 7.51 (m, 1H), 7.19 – 7.05 (m, 1H), 4.87 (d, J = 1.3 Hz, 1H), 4.81 (s, 1H), 2.32 (t, J = 7.5 Hz, 2H), 1.70 – 1.48 (m, 2H), 1.45 – 1.25 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.16, 156.34, 134.03, 133.30, 132.92, 127.80, 101.38, 33.08, 28.55, 22.02, 13.77. IR (neat): 3116, 2956, 2932, 2873, 2864, 1725 (C=O), 1667, 1524, 1417, 1254, 1071, 864,744; HRMS ESI (*m/z*): [MNa]⁺ calcd. for C₁₁H₁₄O₄SNa, 233.0612; found, 233.0605.

(E)-hex-1-en-2-yl hex-2-enoate 1j

814 mg Compound **1j** was obtained in 97% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl₃) δ 7.03 (dt, *J* = 15.6, 6.9 Hz, 1H), 5.85 (dt, *J* = 15.4, 1.5 Hz, 1H), 4.72 (d, *J* = 2.5 Hz, 2H), 2.25 – 2.15 (m, 4H), 1.55 – 1.42 (m, 4H), 1.33 – 1.21 (m, 14H), 0.94 (t, *J* = 7.3 Hz, 3H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.68, 156.58, 150.64, 120.88, 100.85, 100.84, 34.26, 33.37, 31.87, 29.55, 29.51, 29.34, 29.29, 28.97, 26.44, 22.65, 21.18, 14.06, 13.63. IR (neat): 3056, 2956, 2928, 2856, 1737 (C=O), 1654, 1466, 1379, 1319, 1218, 1158, 1120, 983, 866; HRMS ESI (*m/z*): [MNa]⁺ calcd. for C₁₈H₃₂O₂Na, 303.2300; found, 303.2307.

(E)-hex-1-en-2-yl 2-methylbut-2-enoate 1k

766 mg Compound **1j** was obtained in 96% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl₃) δ 6.92 (dddd, *J* = 8.4, 7.1, 5.8, 1.4 Hz, 1H), 4.78 – 4.58 (m, 2H), 2.23 (t, *J* = 7.5 Hz, 2H), 1.87 – 1.84 (m, 3H), 1.81 (dd, *J* = 7.1, 1.0 Hz, 3H), 1.49 – 1.41 (m, 2H), 1.34 (dq, *J* = 14.3, 7.1 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.17, 156.88, 138.35, 128.39, 100.72, 33.07, 28.63, 22.06, 14.43, 13.79, 12.02. IR (neat): 3118, 2957, 2927, 2856, 1720 (C=O), 1666, 1654, 1467, 1380, 1342, 1264, 1225, 1145, 1124, 1068, 868, 729; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₇H₃₀NaO₂, 289.2144; found, 289.2138.

(2E, 4E)-hex-1-en-2-yl hexa-2,4-dienoate 1l

580 mg Compound **11** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.20 (m, 1H), 6.30 – 6.06 (m, 2H), 5.79 (dd, *J* = 19.5, 15.7 Hz, 1H), 4.78 – 4.67 (m, 2H), 2.23 (t, *J* = 7.5, 2H), 1.86 (d, *J* = 5.8 Hz, 3H), 1.50 – 1.40 (m, 2H), 1.34 (dq, *J* = 14.3, 7.1 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.33, 156.60, 146.12, 140.06, 129.68, 118.37, 100.85, 33.10, 28.57, 22.07, 18.65, 13.79. IR (neat): 3029, 2960, 2930, 2874, 2864, 1728 (C=O), 1646, 1617, 1329, 1228, 1177, 1128, 1000, 867; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₂H₁₈NaO₂, 217.1204; found, 217.1205.

dodec-1-en-2-yl cyclopropanecarboxylate 1m

748 mg Compound **1m** was obtained in 99% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl₃) δ 4.69 (d, *J* = 2.8 Hz, 2H), 2.18 (t, *J* = 7.6 Hz, 2H), 1.65 (qd, *J* = 6.8, 5.6, 2.7 Hz, 1H), 1.45 (p, *J* = 7.4 Hz, 2H), 1.27 (d, *J* = 12.5 Hz, 15H), 1.08 – 1.02 (m, 2H), 0.93 – 0.89 (m, 2H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.00, 156.63, 100.78, 33.29, 31.87, 29.56, 29.51, 29.35, 29.30, 28.96, 28.96, 26.42, 22.65, 14.07, 12.93, 8.74. HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₁H₁₄O₄SNa, 275.1987; found, 275.1971.

hex-1-en-2-yl adamantylcarboxylate 1n

778 mg Compound **1n** was obtained in 99% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (600 MHz, CDCl₃) δ 4.68 (d, *J* = 1.0 Hz, 1H), 4.64 (s, 1H), 2.19 (t, *J* = 7.2 Hz, 2H), 2.03 (s, 3H), 1.93 (d, *J* = 2.9 Hz, 6H), 1.78 – 1.67 (m, 6H), 1.48 – 1.38 (m, 2H), 1.34 (dq, *J* = 14.3, 7.1 Hz, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.59, 156.65, 100.46, 40.76, 38.64, 36.35, 32.82, 28.44, 27.82, 21.94, 13.71. IR (neat): 3115, 2957, 2933, 2908, 2864, 1743 (C=O), 1666, 1454, 1212, 1181, 1065, 865, 736; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₇H₂₆O₂Na, 285.1830; found, 285.1821.

dodec-1-en-2-yl but-3-enoate 10

742 mg Compound **10** was obtained in 98% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl₃) δ 5.94 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.25 – 5.08 (m, 2H), 4.71 (s, 3H), 3.16 (d, *J* = 7.0 Hz, 2H), 2.21 – 2.15 (m, 2H), 1.44 (p, *J* = 7.4 Hz, 2H), 1.35 – 1.20 (d, *J* = 11.8 Hz, 14H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.54, 156.52, 129.83, 118.81, 101.02, 39.12, 33.21, 33.21, 31.86, 29.54, 29.49, 29.33, 29.28, 28.92, 26.36, 22.64, 14.05. IR (neat): 3118, 3085, 2957, 2927, 2856, 1757 (C=O), 1667, 1645, 1330, 1292, 1223, 1447, 1147, 992, 976, 921, 869; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₆H₂₈O₂Na, 275.1987; found, 275.1971.

dodec-1-en-2-yl 2,2,2-trifluoroacetate 1p

1p, 99% (10 ppm Au) 832 mg Compound **1p** was obtained in 99% yield according to general procedure B after chromatography (eluents: hexanes). ¹H NMR (500 MHz, CDCl₃) δ 4.95 (d, J = 2.7 Hz, 1H), 4.91 – 4.85 (m, 1H), 2.27 (t, J = 7.6 Hz, 2H), 1.49 (p, J = 7.5 Hz, 2H), 1.38 – 1.20 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.71, 155.40 (q, J = 42.5 Hz), 114.50 (q, J = 283.75 Hz), 102.43, 32.63, 31.91, 29.56, 29.48, 29.32, 29.27, 29.27, 28.79, 26.11, 22.69, 14.05. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.09. IR (neat): 2929, 2886, 2858, 1798 (C=O), 1675, 1468, 1360, 1228, 1172, 1142, 879, 771. HRMS FI (*m*/*z*): [M]⁺ calcd. for C₁₄H₂₃F₃O₂, 280.1650; found, 280.1665.

dodec-1-en-2-yl 2,2,2-trichloroacetate 1q

978 mg Compound **1q** was obtained in 99% yield according to general procedure B after chromatography (eluents: hexanes). ¹H NMR (500 MHz, CDCl₃ δ 4.93 (d, *J* = 0.8 Hz, 1H), 4.87 (d, *J* = 3.2 Hz, 1H), 2.30 (t, *J* = 7.6 Hz, 2H), 1.52 (p, *J* = 7.5 Hz, 2H), 1.36 – 1.20 (m, 14H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.84, 156.69, 102.00, 89.78, 32.50, 32.50, 31.88, 29.54, 29.46, 29.30, 29.26, 28.79, 28.78, 26.16, 22.66, 14.08. IR (neat): 3121, 2957, 2928, 2856, 1779 (C=O), 1673, 1467, 1379, 1201, 1107, 961, 878, 823; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₄H₂₃Cl₃O₂Na, 351.0661; found, 351.0650.

hex-1-en-2-yl 2-oxo-2-phenylacetate 1r

693 mg Compound **1r** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (600 MHz, CDCl₃) δ 8.10 – 7.95 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 5.00 – 4.84 (m, 2H), 2.34 (t, J = 7.6 Hz, 2H), 1.52 (dt, J = 15.3, 7.5 Hz, 2H), 1.45 – 1.31 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C

NMR (150 MHz, CDCl₃) δ 185.48, 161.70, 156.04, 135.00, 132.25, 129.95, 128.92, 102.10, 32.82, 28.33, 21.94, 13.72. IR (neat): 3066, 2960, 2934, 2874, 2864, 1752 (C=O), 1691 (C=O), 1598, 1452, 1322, 1193, 1168, 987, 878, 746; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₄H₁₆O₃Na, 255.0997; found, 255.0988.

hex-1-en-2-yl 2-phenoxyacetate 1s

698 mg Compound **1s** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.96 – 6.92 (m, 2H), 4.80 (d, J = 1.8 Hz, 1H), 4.77 (d, J = 1.6 Hz, 1H), 4.70 (s, 2H), 2.23 (t, J = 7.5 Hz, 2H), 1.42 (tt, J = 8.3, 6.9 Hz, 2H), 1.38 – 1.28 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.95, 157.56, 155.89, 129.42, 129.41, 121.66, 114.48, 114.46, 101.31, 65.08, 32.79, 28.30, 21.86, 13.62. IR (neat): 3067, 2959, 2933, 2873, 2864, 1777 (C=O), 1652, 1668, 1601, 1590, 1497, 1459, 1458, 1438, 1379, 1162, 1108, 963, 876, 753; HRMS ESI (m/z): [MNa]⁺ calcd. for C₁₄H₁₈O₃Na, 257.1154; found, 257.1144.

1-tert-butyl 2-hex-1-en-2-yl pyrrolidine-1,2-dicarboxylate 1t

712 mg Compound **1t** was obtained in 80% yield according to general procedure B (600 ppm **L8**AuNTf₂, 2500 ppm NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 4.79 – 4.59 (m, 2H), 4.33 (dd, J = 8.6, 3.6 Hz, 1H), 4.26 (dd, J = 8.7, 4.0 Hz, 1H), 3.59 – 3.31 (m, 2H), 2.34 – 2.13 (m, 3H), 2.07 – 1.78 (m, 3H), 1.46 – 1.42 (m, 4H), 1.40 (d, J = 6.5 Hz, 6H), 1.36 – 1.26 (m, 2H), 0.92 – 0.81 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.11 , 156.47 , 156.29 , 154.20 , 153.66 , 100.78 , 79.92 , 79.66 , 59.00 , 58.91 , 46.44 , 46.26 , 32.91 ,

32.80, 30.89, 29.87, 28.44, 28.37, 28.31, 28.25, 24.28, 23.46, 21.94, 13.71. IR (neat): 3116, 2976, 2961, 2934, 2876, 1763 (C=O), 1705 (C=O), 1396, 1152, 1088, 957, 871, 773; HRMS ESI (m/z): [MNa]⁺ calcd. for C₁₆H₂₇NO₄Na, 320.1838; found, 320.1834.

hex-1-en-2-yl 2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate 1u

(150 ppm Au)

1128 mg Compound **1u** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.22 – 7.10 (m, 5H), 5.23 (dd, *J* = 11.3, 5.2 Hz, 1H), 4.78 (d, *J* = 1.8 Hz, 1H), 4.75 (d, *J* = 1.7 Hz, 1H), 3.68 – 3.51 (m, 2H), 2.21 (td, *J* = 7.5, 4.5 Hz, 2H), 1.40 (qd, *J* = 8.1, 7.5, 5.6 Hz, 2H), 1.35 – 1.24 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.26, 167.08, 156.45, 136.51, 134.08, 131.50, 128.82, 128.51, 126.84, 123.42, 101.49, 53.24, 34.65, 32.73, 28.40, 21.94, 13.73. IR (neat): 3065, 2958, 2933, 2873, 2865, 1778 (C=O), 1759 (C=O), 1718 (C=O), 1669, 1607, 1498, 1468, 1288, 1222, 1170, 1105, 1000, 961, 915, 876, 720; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₂₃H₂₃NO₄Na, 400.1525; found, 400.1515.

1-cyclohexylvinyl benzoate 1v

1v, 99% (100 ppm Au)

686 mg Compound **1v** was obtained in 99% yield according to general procedure B without chromatography. ¹H NMR (600 MHz, CDCl₃) δ 8.16 – 8.03 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 4.91 – 4.76 (m, 2H), 2.25 (td, J = 10.7, 3.0 Hz, 1H), 1.99 (t, J = 10.5 Hz, 2H), 1.87 – 1.73 (m, 2H), 1.72 – 1.64 (m, 2H), 1.34 – 1.13 (m, 6H).13C NMR (150 MHz, CDCl₃) δ 164.82, 160.66, 133.17, 129.94, 129.87, 128.40, 99.61, 41.80, 30.62, 26.05, 25.94. IR (neat): 3064, 2930, 2855, 1733 (C=O),

1661, 1601, 1451, 1314, 1271, 1240, 1194, 1169, 1133, 1092, 1068, 1026, 872, 705; HRMS ESI (*m/z*): [MNa]⁺ calcd. for C₁₅H₁₈NO₂Na, 253.1208; found, 253.1204.

6-chlorohex-1-en-2-yl benzoate 1w

678 mg Compound **1w** was obtained in 95% yield when 1,2-dichloroethane was used as a solvent instead of PhF. (0.5 M, 300 ppm **L8**AuNTf, no NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (t, J = 8.4 Hz, 2H), 7.67 – 7.53 (m, 1H), 7.47 (t, J = 7.7 Hz, 2H), 4.88 (d, J =21.0 Hz, 2H), 3.63 – 3.48 (m, 2H), 2.39 (t, J = 7.5 Hz, 2H), 1.88 (qd, J = 14.9, 6.9 Hz, 2H), 1.76 – 1.63 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 164.68, 155.79, 133.33, 129.88, 129.69, 128.45, 101.96, 44.64, 32.64, 31.70, 23.72. IR (neat): 3064, 2955, 2870, 2847, 1730 (C=O), 1667, 1602, 1492, 1452, 1272, 1026, 875, 801, 746; HRMS ESI (m/z): [MNa]⁺ calcd. for C₁₃H₁₅ClO₂Na, 261.0658; found, 261.0654.

4-(triisopropylsilyloxy)but-1-en-2-yl benzoate 1x

1023 mg Compound **1x** was obtained in 98% yield according to general procedure B (2500 ppm NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 50). ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.01 (m, 2H), 7.69 – 7.52 (m, 1H), 7.50 – 7.37 (m, 2H), 5.00 – 4.84 (m, 2H), 3.89 (td, *J* = 6.6, 0.8 Hz, 2H), 2.69 – 2.51 (m, 2H), 1.17 – 0.97 (m, 21H). ¹³C NMR (125 MHz, CDCl₃) δ 164.74, 153.83, 133.27, 129.92, 128.41, 103.97 – 103.59 (m), 103.15, 99.07, 60.64, 37.38, 17.96, 11.95. IR (neat): 3064, 2944, 2893, 2867, 1736 (C=O), 1670, 1602, 1464, 1384, 1268, 1233, 1175, 1092, 1069, 1026, 882, 706; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₂₀H₃₂NaO₃Si, 371.2018; found, 371.2020.

4-(benzyloxy)but-1-en-2-yl benzoate 1y

828 mg Compound **1y** was obtained in 89% yield according to general procedure B (2500 ppm NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 20). ¹H NMR (500 MHz, CDCl₃) δ 8.15 – 7.97 (m, 2H), 7.63 – 7.54 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.38 – 7.17 (m, 5H), 4.89 (d, *J* = 1.6 Hz, 1H), 4.87 – 4.85 (m, 1H), 4.51 (s, 2H), 3.51 (t, *J* = 6.1 Hz, 2H), 2.38 (t, *J* = 7.2 Hz, 2H), 1.77 – 1.51 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 164.69, 156.34, 138.51, 133.23, 129.88, 129.81, 128.41, 128.29, 127.54, 127.44, 101.59, 72.82, 69.88, 33.19, 29.02, 23.22. IR (neat): 3185, 2962, 2935, 2873, 2876, 1761 (C=O), 1674, 1250, 1217, 847, 833; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₂₀H₂₂O₃Na, 333.1467; found, 333.1453.

3-methylbuta-1,3-dien-2-yl benzoate 1z

547 mg Compound **1z** was obtained in 97% yield according to general procedure B (2 equiv 2-methylbut-1-en-3-yne, 5000 ppm NaBAr^F₄, 60 °C) after chromatography (eluents: ethyl acetate: hexanes = 1: 20).¹H NMR (500 MHz, CDCl₃) δ 8.16 (dtd, *J* = 8.1, 2.1, 1.3 Hz, 1H), 7.67 – 7.57 (m, 1H), 7.55 – 7.42 (m, 1H), 5.32 – 5.14 (m, 2H), 5.04 (ddd, *J* = 7.9, 2.9, 1.5 Hz, 2H), 2.01 (d, *J* = 0.7 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 165.13 – 164.49 (m), 154.09 – 153.24 (m), 136.63, 133.45, 130.04, 129.68 – 129.31 (m), 128.54, 113.92, 103.60, 19.46. IR (neat): 3063, 2976, 2954, 2928, 2902, 2855, 1738 (C=O), 1603, 1452, 1263, 1152, 1090, 1068, 1026, 887, 707; HRMS EI (*m*/*z*): [M]⁺ calcd. for C₁₂H₁₂O₂, 188.0837; found, 188.0835.

855 mg Compound **1aa** was obtained in 99% yield according to general procedure B (5000 ppm NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 30). ¹H NMR (500 MHz, CDCl₃) δ 8.12 (dt, *J* = 8.4, 1.6 Hz, 2H), 7.83 – 7.54 (m, 1H), 7.54 – 7.40 (m, 2H), 5.11 (t, *J* = 7.3 Hz, 1H), 2.41 – 2.19 (m, 2H), 1.97 (q, *J* = 7.3 Hz, 2H), 1.57 – 1.45 (m, 2H), 1.43 – 1.16 (m, 10H), 0.98 – 0.74 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.39, 148.58, 133.10, 129.91, 129.87, 128.40, 116.53, 33.43, 31.36, 31.23, 28.77, 26.37, 25.31, 22.41, 22.40, 13.98, 13.96. IR (neat): 3064, 2957, 2930, 2872, 2859, 1733 (C=O), 1452, 1259, 1089, 1068, 1026, 708; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₉H₂₈O₂Na, 311.1987; found, 311.1977.

$(Z)-5-(benzyloxy)pent-2-en-2-yl \ benzoate \ 1ab \ + \ (Z)-5-(benzyloxy)pent-2-en-3-yl \ benzoate \ 1ab'$

755 mg Compounds **1ab and 1ab'** were obtained in 85% yield (2.8:1) according to general procedure B (2500 ppm NaBAr^F₄) after chromatography (eluents: ethyl acetate: hexanes = 1: 15). ¹H NMR (500 MHz, CDCl₃) δ 8.15 – 8.07 (m, 2H), 7.64 – 7.58 (m, 1H), 7.52 – 7.46 (m, 2H), 7.38 – 7.26 (m, 5H), 5.31 (qd, *J* = 6.8, 0.9 Hz, 0.25H), 5.25 – 5.19 (m, 0.73H), 4.54 (s, 0.52H), 4.51 (s, 1.55H), 3.65 (td, *J* = 6.6, 1.1 Hz, 0.53H), 3.50 (td, *J* = 6.8, 1.1 Hz, 1.56H), 2.70 – 2.61 (m, 0.52H), 2.41 – 2.30 (m, 1.57H), 2.07 – 1.99 (m, 2.35H), 1.59 (dd, *J* = 6.8, 1.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.32, 164.25, 146.42, 146.26, 138.34, 138.23, 133.24, 133.21, 129.91, 129.89, 129.65, 129.60, 128.41, 128.27, 127.60, 127.57, 127.47, 127.46, 113.45,

112.85, 72.86, 72.75, 69.24, 67.26, 34.22, 26.19, 19.63, 10.81. HRMS ESI (m/z): [MNa]⁺ calcd. for C₁₉H₂₀O₃Na, 319.1310; found, 319.1313.

(Z)-3-ethoxy-3-oxo-1-phenylprop-1-enyl benzoate 1ac

870 mg Compound **1ac** was obtained in 98% yield according to general procedure B after chromatography (eluents: ethyl acetate: hexanes = 1: 4). This compound is known and the spectrum are consistent with literature data.^{[49] 1}H NMR (500 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.72 – 7.59 (m, 3H), 7.53 (dd, *J* = 10.8, 4.8 Hz, 2H), 7.47 – 7.34 (m, 3H), 6.38 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.08, 163.82, 157.83, 133.70, 133.45, 130.95, 130.37, 129.11, 128.84, 128.64, 125.95, 106.84, 60.38, 14.05. IR (neat): 2918, 2951, 1742 (C=O), 1714, 1636, 1449, 1279, 1234, 1157, 1080, 1064, 1023, 765; HRMS ESI (*m*/*z*): [MNa]⁺ calcd. for C₁₈H₁₆O₄Na, 319.0946; found, 319.0943.

General procedure C: Preparation of Amides by a One-pot Sequence

In a sealed 1 dr reaction vial equipped with a magnetic stirring bar, 3 mmol carboxylic acids (1 equiv), 4.4 mmol 1-hexyne (1.45 equiv) and 3.1 mg NaBAr^F₄ (1200 ppm) were added to 0.6 mL fluorobenzene. **L8**AuNTf₂ (50 μ L of a 3.09 mg/mL solution in PhF, 0.150 μ mol, 50 ppm or 100 μ L, 100 ppm) was added to the above vial and then the reaction mixture was heated at 80 °C for 12 - 18 h. Once the reaction finished by TLC, it was concentrated and left on the high vacuum pump for overnight to give the crude product, followed by adding 3.6 mmol amine (1.2 equiv) and stirring at 100 °C for 6 - 24 h. Once the reaction completed by TLC, the mixture was purified through

silica gel flash chromatography (eluents: ethyl acetate: hexanes = 1: 3) to give the desired product.

N-phenethylbenzamide

N-phenethylbenzamide was obtained in 96% overall yield according to general procedure C. This compound is known and the spectrum are consistent with literature data.

[50]

phenyl(piperidin-1-yl)methanone

Phenyl(piperidin-1-yl)methanone was obtained in 93% overall yield according to general procedure C. This compound is known and the spectrum are consistent with literature data.^[51]

1-(piperidin-1-yl)hexan-1-one

1-(Piperidin-1-yl)hexan-1-one was obtained in 94% overall yield according to general procedure C. This compound is known and the spectrum are consistent with literature data.^[52]

N-phenylhexanamide

N-Phenylhexanamide was obtained in 90% overall yield according to general procedure C. This compound is known and the spectrum are consistent with literature data.^[53]

DFT calculation results

The four optimized transition states

Two transition structures were obtained for NTf_2^- activation mode (**TS**-*NTf*₂ and **TS**-*NTf*₂') and the amide group activation mode (**TS**-*Amide* and **TS**-*Amide*'), respectively (shown in Supplementary Figure 159). For the Calculated total energies and geometrical coordinates, please see Supplementary Data 1.

Supplementary References

- (47) Samanta, D.; Sawoo, S.; Patra, S.; Ray, M.; Salmain, M.; Sarkar, A., Synthesis of hydrophilic Fischer carbene complexes as organometallic marker and PEGylating agent for proteins, *Journal of Organometallic Chemistry*, **690**, 5581-5590(2005).
- (48) Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L., Synthesis and Optical Resolution of 9,9'-Spirobifluorene-1,1'-diol, Organic Letters, 6, 2381-2383(2004).
- (49) Yoo, W.-J.; Li, C.-J., Highly Stereoselective Oxidative Esterification of Aldehydes with β-Dicarbonyl Compounds, *The Journal of Organic Chemistry*, 71, 6266-6268(2006).
- (50) Prasad, V.; Kale, R. R.; Mishra, B. B.; Kumar, D.; Tiwari, V. K., Diacetoxyiodobenzene Mediated One-Pot Synthesis of Diverse Carboxamides from Aldehydes, *Organic Letters*, 14, 2936-2939(2012).
- (51) Ren, W.; Yamane, M., Mo(CO)6-Mediated Carbamoylation of Aryl Halides, *The Journal of Organic Chemistry*, **75**, 8410-8415(2010).
- (52) Wei, W.; Hu, X.-Y.; Yan, X.-W.; Zhang, Q.; Cheng, M.; Ji, J.-X., Direct use of dioxygen as an oxygen source: catalytic oxidative synthesis of amides, *Chemical Communications*, 48, 305-307(2012).
- (53) Tian, J.; Gao, W.-C.; Zhou, D.-M.; Zhang, C., Recyclable Hypervalent Iodine(III) Reagent Iodosodilactone as an Efficient Coupling Reagent for Direct Esterification, Amidation, and Peptide Coupling, *Organic Letters*, 14, 3020-3023(2012).